JPH0667535B2 - Thin plate continuous casting method by twin roll type continuous casting machine - Google Patents

Thin plate continuous casting method by twin roll type continuous casting machine

Info

Publication number
JPH0667535B2
JPH0667535B2 JP61265111A JP26511186A JPH0667535B2 JP H0667535 B2 JPH0667535 B2 JP H0667535B2 JP 61265111 A JP61265111 A JP 61265111A JP 26511186 A JP26511186 A JP 26511186A JP H0667535 B2 JPH0667535 B2 JP H0667535B2
Authority
JP
Japan
Prior art keywords
roll
twin
continuous casting
circumferential surface
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61265111A
Other languages
Japanese (ja)
Other versions
JPS63119956A (en
Inventor
隆 山内
守弘 長谷川
敬之 中乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61265111A priority Critical patent/JPH0667535B2/en
Publication of JPS63119956A publication Critical patent/JPS63119956A/en
Publication of JPH0667535B2 publication Critical patent/JPH0667535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は狭間隙をあけて平行に対向配置した互いに反対
方向に回転する内部冷却式双ロールの円周面上において
湯溜りを形成するためのサイドダムを双ロールの両側部
の円周面の上に配置し,この湯溜りを内の溶湯を該ロー
ル表面で冷却凝固しながらロール間の最狭隙部で圧着し
て薄板に連続鋳造する双ロール式連続鋳造機による連続
鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is intended to form a pool on the circumferential surface of internally cooled twin rolls which are opposed to each other and are arranged in parallel with a narrow gap therebetween. Side dams are placed on the circumferential surfaces of both sides of the twin rolls, and the molten metal in this pool is cooled and solidified on the surface of the rolls, and is pressed at the narrowest gap between the rolls for continuous casting into a thin plate. The present invention relates to a continuous casting method using a twin roll type continuous casting machine.

〔従来の技術および発明の背景〕[Prior Art and Background of the Invention]

双ロール式連続鋳造機を鋼の薄板の製造に適用しようと
する試みがなされ,この薄板連続鋳造機の改善に関する
提案がこれまで数多くなされている。
Attempts have been made to apply a twin-roll type continuous casting machine to the production of thin steel plates, and many proposals have been made to improve the continuous casting machine.

双ロール式連続鋳造機の基本は,一対の内部冷却式ロー
ルを,軸を平行にして所定の間隙を開けて対向配置し,
この双ロールの円周面上に湯溜りを形成し,この湯溜り
内の溶湯を回転する双ロール表面で冷却しながら,この
冷却によって両方のロール表面上で成長する両方の凝固
殻(凝固シエル)を双ロールの最狭隙部で互いに圧着し
て薄板に直接製造するものである。したがって,回転す
る双ロール円周面上に適切に湯溜りを形成することが必
要であるが,このためには双ロールの円周面上における
サイド側(ロールの端部側)で湯が漏れないようにダム
を形成することが少なくとも必要となる。このダムをサ
イドダムと呼び,両側とも同じ構成にされるのが通常で
ある。
The twin roll type continuous casting machine is basically equipped with a pair of internal cooling type rolls arranged in parallel with their axes parallel to each other with a predetermined gap therebetween,
A pool is formed on the circumferential surface of the twin rolls, and while the molten metal in the pool is cooled by the rotating twin roll surface, this cooling causes both solidified shells (solidification shell) to grow on both roll surfaces. ) Are pressure-bonded to each other at the narrowest gap of twin rolls to directly produce a thin plate. Therefore, it is necessary to properly form a pool on the circumferential surface of the rotating twin rolls. For this purpose, the molten metal leaks on the side (the end side of the roll) on the circumferential surface of the twin rolls. It is at least necessary to form a dam so that it does not. This dam is called a side dam, and both sides are usually configured the same.

このサイドダムの設け方には,大きく分けて次の三種の
方式が知られている。
The following three types of methods are roughly known as the methods for installing this side dam.

一つは,双ロールの両サイド面(ロールの両端部の軸と
直交する外面)に,このサイド面と接して(摺接して)
壁を形成する方式である。
One is in contact (sliding contact) with both side surfaces of the twin rolls (outer surfaces orthogonal to the axes of both ends of the roll).
It is a method of forming a wall.

第二は,双ロールの円周面の上にサイドダムを立ち上げ
る方式である。すなわち,サイドダムの底部が双ロール
の画側部の円周面の上に摺接するように双ロール表面の
上に立ち上げるのである。
The second is a method of raising a side dam on the circumferential surface of a twin roll. That is, the bottom of the side dam is raised above the surface of the twin rolls so that it slides on the circumferential surface of the image side of the twin rolls.

第三は,底なし箱の形状をした方形の枠体を双ロールの
上に設置する方式である。つまり,サイドダム側と共に
これと直交する長辺側もこの枠体で囲繞する方式であ
る。いずれの場合においても,サイドダムが果たすべき
役割としては,湯の差し込みなどが生じないように湯を
適切に堰き止めることのほかに,鋳造される薄板の両端
部の品質に悪い影響を与えないこと,特に板を拘束した
り過大な摩擦が発生して耳割れ等が発生しないことが重
要であり,このためにいずれの方式でもそれなりの改善
案が提案されている。
The third method is to install a rectangular frame in the shape of a bottomless box on top of twin rolls. In other words, the side dam side and the long side orthogonal to this are also surrounded by this frame. In any case, the role of the side dam is to properly block the hot water so that the hot water is not inserted, and also to not adversely affect the quality of both ends of the thin sheet to be cast. In particular, it is important that the plates are restrained or excessive friction does not occur and ear cracks do not occur. For this reason, some improvement proposals have been proposed for both methods.

〔発明の目的〕[Object of the Invention]

本発明は,サイドダムの設置にさいして前記第二の方
式,つまり,双ロールの両側部の円周面上にその底部が
摺接するようにサイドダムを立ち上げる方式,の双ロー
ル式連続鋳造機を用いて溶鋼から薄板を直接製造する場
合に,サイドダムでの湯の差し込みやサイドダムの破損
等のトラブル発生を防止し,良品質の薄板を安定して製
造できる製造法の確立を目的としたものである。
The present invention provides a twin roll type continuous casting machine of the above-mentioned second method when installing a side dam, that is, a method of raising the side dam so that the bottoms thereof are in sliding contact with the circumferential surfaces of both sides of the twin rolls. The purpose of this method is to establish a manufacturing method that can prevent troubles such as pouring hot water at the side dam and damage to the side dam when directly manufacturing a thin plate from molten steel, and can stably manufacture a good quality thin plate. is there.

〔発明の構成〕[Structure of Invention]

前記の目的を達成せんとする本発明の要旨とするところ
は,狭間隙をあけて平行に対向配置した互いに反対方向
に回転する実質上同形の内部冷却式双ロールの円周面上
において,該ロールの軸に直角方向の面内に,その底部
が該ロールの円周面と摺接するように一対のサイドダム
を立ち上げ,この両サイドダムと双ロール円周面とで形
成される湯溜り内の溶湯を該ロール表面で冷却凝固しな
がらロール間の最狭隙部で圧着して薄板に連続鋳造する
さいに,下式(1)の条件を満足するように双ロールの
回転速度を制御することを特徴とする双ロール式連続鋳
造機による薄板連鋳方法にある。
The object of the present invention to achieve the above-mentioned object is to provide an inner-cooled twin roll of substantially the same shape, which is arranged in parallel and opposed to each other with a narrow gap, and which rotates in opposite directions. A pair of side dams are raised in a plane perpendicular to the roll axis such that their bottoms are in sliding contact with the circumferential surface of the roll, and inside the basin formed by these side dams and the twin roll circumferential surface. When the molten metal is cooled and solidified on the roll surface and pressure-bonded in the narrowest gap between the rolls to continuously cast a thin plate, controlling the rotation speed of the twin rolls so as to satisfy the condition of the following formula (1). Is a thin plate continuous casting method using a twin roll type continuous casting machine.

0゜<tan-1(2Y/S)<5゜ ・・(1) ただし,Sは双ロールの軸間距離(mm),Yは第1図に示す
ようにロール軸レベルLからの凝固完了点Wの高さ(m
m)である。
0 ° <tan -1 (2Y / S) <5 ° (1) However, S is the axial distance (mm) of the twin rolls, Y is the solidification from the roll axis level L as shown in Fig. 1. Height of point W (m
m).

〔発明の詳述〕[Detailed Description of the Invention]

先ず本発明法を適用する双ロール式連続鋳造機の具体例
を図面に従って説明する。
First, a specific example of a twin roll type continuous casting machine to which the method of the present invention is applied will be described with reference to the drawings.

第2図は本発明法を適用する双ロール式連続鋳造機の要
部を図解的に示したもので,同形の内部冷却式双ロール
1aと1bが軸を水平にして所定の間隙を開けて互いに平行
に同じ水平レベルい対向配置され,この双ロール1a,1b
は矢印の方向に互いに反対方向に回転する。この双ロー
ル1a,1bの円周面R上に湯溜り2が形成され,この湯溜
り2内の溶鋼が双ロール1a,1bの円周面R上で冷却され
つつ最狭隙部を経て薄板3に鋳造される。
FIG. 2 is a schematic diagram showing the main part of a twin roll type continuous casting machine to which the method of the present invention is applied.
The twin rolls 1a and 1b are arranged parallel to each other at the same horizontal level with their axes horizontal and with a predetermined gap between them.
Rotate in opposite directions in the directions of the arrows. A basin 2 is formed on the circumferential surface R of the twin rolls 1a and 1b, and the molten steel in the basin 2 is cooled on the circumferential surface R of the twin rolls 1a and 1b while passing through the narrowest gap to form a thin plate. Cast to 3.

双ロール1a,1bの円周面R上に湯溜り2を形成するため
に,サイドダム4a,4bが双ロール1a,1bの軸と直角方向の
面内に円周面R上に立ち上げられる。すなわち,双ロー
ル1a,1bの円周面Rの上において,その底部が円周面R
と摺接するように一対のサイドダム4a,4bが双ロール1a,
1bの両側方に立ち上げられる。このサイドダム4a,4bは
耐熱性や溶鋼に対する耐浸漬性などから耐火物で作ら
れ、図示しないが通常はこの耐火物のサイドダム4a,4b
の外側に冷却された板を取付け,この冷却板によってサ
イドダム4a,4bを所定の位置に固定する。
In order to form the pool 2 on the circumferential surface R of the twin rolls 1a, 1b, the side dams 4a, 4b are raised on the circumferential surface R in the plane perpendicular to the axes of the twin rolls 1a, 1b. That is, on the circumferential surface R of the twin rolls 1a and 1b, the bottom portion is the circumferential surface R.
The pair of side dams 4a and 4b are slidably contacted with the twin rolls 1a,
It is launched on both sides of 1b. These side dams 4a, 4b are made of refractory because of their heat resistance and resistance to immersion in molten steel, etc.
A cooled plate is attached to the outside of the, and the side dams 4a and 4b are fixed at predetermined positions by this cooling plate.

第3図は,双ロール1a,1bの軸に沿う垂直面でロール1a
と1bの間(鋳造される板の幅方向)を切断した鋳造中の
模式図である。Lは双ロール1aと1bの軸の水平レベル位
置であり,これは双ロール1a,1bの最狭隙部に一致して
いる。湯溜り中の溶鋼5はロール表面で冷却されて凝固
シエルを形成しつつこの最狭隙部で圧着されることにな
るが,そのさいに,板幅方向に押し拡げられる。第3図
において,この押し拡げられる部分を6c,6dで示してい
る。
Figure 3 shows the roll 1a on a vertical plane along the axis of the twin rolls 1a, 1b.
FIG. 3 is a schematic diagram during casting in which a portion between 1 and 1b (width direction of a cast plate) is cut. L is the horizontal level position of the axes of the twin rolls 1a and 1b, which corresponds to the narrowest gap of the twin rolls 1a and 1b. The molten steel 5 in the molten metal pool is cooled on the roll surface to form a solidified shell and is pressure-bonded in this narrowest gap portion, but at that time, it is expanded in the plate width direction. In FIG. 3, the portions to be expanded are indicated by 6c and 6d.

第4図は,凝固シエルが圧着される様子を第3図とは直
交する垂直面で図解的に示したものであるが,ロール1a
側のロール表面で形成する凝固シエル6aと,ロール1b側
のロール表面で形成する凝固シエル6bとが合流する地点
をWで示す。このWを本願明細書では凝固完了点と呼
ぶ。この凝固完了点Wがサイドダム4a,4bの下縁7a,7b
(7bの側は図面には見えないが同じ高さである)よりも
下方に位置すると,下縁7a,7bの下方には凝固完了点W
より上方で溶鋼が露出する部分が生ずるので漏鋼が生ず
ることになる。一方,凝固完了点Wがサイドダム4a,4b
の下縁7a,7bよりもあまりに上方に位置すると,今度は
先に述べたように最狭隙部で板幅方向に押し拡げられる
さいの圧力によってサイドダム4a,4bを破壊する原因と
なる。したがって,この方式の双ロール式連続鋳造機で
は,サイドダム4a,4bの下縁7a,7bの位置は凝固完了点W
の直上となるようにセットされることが必要である。と
ころが,凝固完了点Wは湯溜り中の溶鋼の湯面高さや温
度,冷却速度などの各種の鋳造条件によって鋳造中に変
動し易いので,このサイドダム4a,4bの下縁7a,7bからの
湯の差し込みが生ぜず且つサイドダム4a,4bに対しても
破壊に至るような押圧を防止することは,実際面ではな
かなか困難なことであった。またこの凝固完了点Wの高
さの推定法も明らかではなかったので凝固完了点Wが鋳
造により様々な位置に来て,鋳造上および品質上の問題
が生じていた。
Fig. 4 shows how the solidified shell is crimped in a vertical plane perpendicular to Fig. 3, but the roll 1a
The point where the solidification shell 6a formed on the side roll surface and the solidification shell 6b formed on the roll surface on the side of the roll 1b meet is indicated by W. This W is referred to as a solidification completion point in the present specification. This solidification completion point W is the lower edge 7a, 7b of the side dam 4a, 4b.
If it is located below (the side of 7b is not visible in the drawing but has the same height), the solidification completion point W is located below the lower edges 7a and 7b.
Since there is a portion where the molten steel is exposed above, leakage steel occurs. On the other hand, the solidification completion point W is the side dams 4a, 4b.
If it is located too higher than the lower edges 7a, 7b, it will cause the side dams 4a, 4b to be broken by the pressure when it is expanded in the plate width direction at the narrowest gap as described above. Therefore, in the twin roll type continuous casting machine of this system, the positions of the lower edges 7a, 7b of the side dams 4a, 4b are at the solidification completion point W.
It is necessary to set it so that it is directly above. However, the solidification completion point W tends to fluctuate during casting due to various casting conditions such as the height of the molten steel in the pool, the temperature, and the cooling rate, so the molten metal from the lower edges 7a, 7b of the side dams 4a, 4b It was quite difficult in practice to prevent the side dams 4a and 4b from being pressed against the side dams 4a and 4b, which would not be inserted. Further, since the method of estimating the height of the solidification completion point W has not been clarified, the solidification completion point W has come to various positions by casting, which causes problems in casting and quality.

この点をさらに詳しく述べると,凝固完了点Wがロール
軸レベルLよりも低い位置にくると末凝固によりブレー
クアウトが生じたり,バルジングや薄板の表面形状の悪
化を招くことになり,また板の内部に凝固収縮孔を発生
したりする。一方凝固完了点Wが高すぎると板の圧下率
が大きくなるのでロールは大きな反力を受けるようにな
り,その反力の増加量に応じてロールギャップは若干増
大する。したがって,サイドダム4a,4bとロール円周面
Rとの間に無視できない間隙が生じ,そこに湯が差すこ
とになる。このロールギャップが増大するという問題
は,例えば第5図に示すように双ロール1a,1bのロール
チョック8aと8bの間および8a′と8b′との間にいかに強
力な押付力を付与しておいても,ロールギャップを決め
るスペーサ9,9′およびロードセル10,10′が弾性体であ
る限り避けられない。また,先述のように,鋳造条件の
変動により,凝固完了点Wが下縁7a,7bよりもあまり高
くなると凝固完了点W以下の部分で板が圧下を受けて幅
広がり(6a,6b)を生じてサイドダム4a,4bをロール軸方
向に押すのでサイドダム下部の破壊を招くことになる。
This point will be described in more detail. When the solidification completion point W reaches a position lower than the roll axis level L, breakout occurs due to end solidification, bulging or deterioration of the surface shape of the thin plate is caused, and A solidification shrinkage hole is generated inside. On the other hand, if the solidification completion point W is too high, the reduction ratio of the plate increases, so that the roll receives a large reaction force, and the roll gap slightly increases according to the increase in the reaction force. Therefore, a non-negligible gap is generated between the side dams 4a, 4b and the roll circumferential surface R, and hot water is poured into the gap. The problem that the roll gap increases is that, for example, as shown in FIG. 5, how strong the pressing force is applied between the roll chocks 8a and 8b of the twin rolls 1a and 1b and between 8a ′ and 8b ′. However, it is unavoidable as long as the spacers 9 and 9'and the load cells 10 and 10 'that determine the roll gap are elastic bodies. Further, as described above, when the solidification completion point W becomes much higher than the lower edges 7a, 7b due to the variation of the casting conditions, the plate is subjected to the reduction in the portion below the solidification completion point W to widen the width (6a, 6b). As a result, the side dams 4a and 4b are pushed in the direction of the roll axis, which causes the lower part of the side dam to be destroyed.

本発明者らは,サイドダムを双ロールの円周面上にその
底部を円周面と摺接して立ち上げる双ロール式連続鋳造
機を用いて薄板を製造する場合に付随するかような基本
的な課題を解決すべく,凝固完了点Wの位置の推定と制
御について種々の試験研究を行った結果,本発明法を見
出すことができた。
The inventors of the present invention have a basic idea that is accompanied when a thin plate is manufactured by using a twin roll type continuous casting machine in which a side dam is erected on the circumferential surface of a twin roll and its bottom portion is brought into sliding contact with the circumferential surface. In order to solve these problems, various test studies were conducted on the estimation and control of the position of the solidification completion point W, and as a result, the method of the present invention could be found.

第1図は本発明法の原理を説明するための解析図である
が,図のように,凝固完了点Wのロール軸レベルLから
の高さをY(mm)とし,ロールの軸間距離をS(mm)と
すると,Yは次の(2)式で与えられる。
FIG. 1 is an analysis diagram for explaining the principle of the method of the present invention. As shown in the figure, the height of the solidification completion point W from the roll axis level L is Y (mm), and the axial distance of the rolls is set. Is S (mm), Y is given by the following equation (2).

Y=1/2Stanθ′ ・・(2) ただし,θ′はロール軸を中心とした場合のロール軸レ
ベルLと凝固完了点Wとの間の角度である。このθ′
は,次の(3)式と(4)式からDYを消去することによ
って算出できる。
Y = 1 / 2Stan θ ′ (2) where θ ′ is the angle between the roll axis level L and the solidification completion point W when the roll axis is the center. This θ ′
Can be calculated by eliminating D Y from the following equations (3) and (4).

ただし, DY:凝固完了点Wでのシエル厚(mm), k:凝固速度定数(mm/sec1/2), t:時間(sec), θ:ロール軸を中心とした場合のロール軸レベルLと湯
溜りの湯面がロール表面と接する位置との間の角度, a:凝固速度式の定数項(mm), R:ロール半径(mm), である。
Where D Y is the shell thickness at the solidification completion point W (mm), k is the solidification rate constant (mm / sec 1/2 ), t is the time (sec), and θ is the roll axis around the roll axis. The angle between the level L and the position where the surface of the basin contacts the roll surface, a: constant term of solidification rate equation (mm), R: roll radius (mm).

ここで,kとaについては,使用対象とする双ロール式連
続鋳造機を実際に数回稼動して実験的に求められる。そ
のさい,ロールによる圧下により板厚の減少が考えられ
るので,板に圧下力がほとんどかからないような鋳造条
件で鋳造を行ってこのkとaを求めることが大切であ
る。
Here, k and a are experimentally obtained by actually operating the twin roll type continuous casting machine to be used several times. At that time, the thickness of the sheet may be reduced by rolling with a roll. Therefore, it is important to carry out casting under the casting conditions such that the rolling force is hardly applied to the sheet and to obtain k and a.

tは,(5)式により求められる。t is calculated by the equation (5).

ただし, v:鋳造速度(m/min), h:湯面のロール軸レベルLからの高さ(mm), である。 Here, v is the casting speed (m / min), h is the height (mm) from the roll axis level L of the molten metal surface.

vはロール回転速度とRとから求めることができる。R
は予め設定したSと板厚H0(mm)の実測値を用いて
(6)式により得られる(Rは熱膨脹により増大す
る)。
v can be obtained from the roll rotation speed and R. R
Is obtained by the equation (6) by using the preset measured values of S and the plate thickness H 0 (mm) (R increases due to thermal expansion).

R=(S−H0)/2 ・・(6) ただし,板厚≒ロールギャップ(mm)。R = (S−H 0 ) / 2 (6) However, plate thickness ≈ roll gap (mm).

結局,tはRおよび実測されたv,hを(5)式に代入する
ことにより求めることができる。
After all, t can be obtained by substituting R and the measured v and h into the equation (5).

一方,θについては(7)式により得られる。On the other hand, θ is obtained by the equation (7).

θ=sin-1(h/R) ・・(7) 以上から,刻々のt,θ,Rを(3),(4)式に代入し,
演算処理することによって,刻々のθ′を求めることが
でき,(2)式によって刻々のYを求めることができ
る。
θ = sin −1 (h / R) ··· (7) From the above, t, θ, R every moment is substituted into the equations (3) and (4),
By performing arithmetic processing, it is possible to obtain the momentary θ'and the momentary Y can be determined by the equation (2).

したがって,鋳造中において湯面高さhや板厚H0を検出
信号として取り出し,この検出信号をコンピュータに入
力して演算し、記録されている目標θ′と比較し,この
差が一定の範囲となるようにロールの回転速度を制御す
る操作部に操作信号として出力するフイードバック制御
を行うことによって,凝固完了点Wの高さを所定の位置
に制御することができる。
Therefore, during casting, the height h of the molten metal surface and the plate thickness H 0 are extracted as detection signals, and these detection signals are input to a computer for calculation and compared with the recorded target θ ′, and this difference is within a certain range. By performing feedback control that outputs an operation signal to the operation unit that controls the rotation speed of the roll, the height of the solidification completion point W can be controlled to a predetermined position.

本発明者らの数多くの試験の結果,後記の実施例で実証
するように,YとSとの間で(1)式の関係が成立してい
るとき,つまりθ′が0゜を超え5゜未満の範囲にある
ときに良好な鋳造条件が維持されることが判明した。
As a result of many tests conducted by the present inventors, as demonstrated in the examples described later, when the relation of the equation (1) is established between Y and S, that is, θ ′ exceeds 0 ° and 5 It has been found that good casting conditions are maintained when in the range below °.

Yの制御としては鋳造速度vを変えることによって行う
のであるが,定性的にはvを大きくすればシエル厚
(DY)が薄くなり,Yが小さくなる。すなわち目標Y値と
刻々求められる計算Y値とを比較しロール回転速度にフ
イードバックさせる制御を行うのであるが,これら一連
のコンピータ処理において,以下に述べるような凝固完
了点高さYの簡便な推算・制御法を採用することもでき
る。
Y is controlled by changing the casting speed v, but qualitatively, if v is increased, the shell thickness (D Y ) becomes thinner and Y becomes smaller. That is, the target Y value and the calculated Y value obtained every moment are compared to perform feedback control to the roll rotation speed. In these series of computer processing, a simple estimation of the solidification completion point height Y as described below is performed. -A control method can also be adopted.

先ず,前記のようにして得たYの値とその時にかかって
いたロール圧下力(これを圧着負荷Pと呼ぶ)(kgf/m
mロール幅)との間の関係を予め求めておく。この圧着
負荷の測定は,先の第5図で説明したように,ロールチ
ョック8aと8bの間および8a′と8b′との間にロードセル
10,10′をセットし,このロードセル10,10′に前以て押
付力を与えておく。鋳造中にロードセル10,10′が押付
力指示が低下したとすれば,その低下分が圧着負荷Pに
相当することになる。すなわち,Yの値が板の圧下率と1
対1で対応する。つまり,Yが大きいほど板の圧下率は大
きくなり,したがって圧着負荷Pも大きくなる。
First, the value of Y obtained as described above and the rolling reduction force applied at that time (this is referred to as pressure bonding load P) (kgf / m
m roll width). This crimping load is measured by measuring the load cell between the roll chocks 8a and 8b and between 8a 'and 8b' as explained in FIG.
Set 10 and 10 'and apply pressing force to these load cells 10 and 10' beforehand. If the pressing force instruction of the load cells 10, 10 'is lowered during casting, the reduced amount corresponds to the crimping load P. That is, the value of Y is 1 with the rolling reduction of the plate.
Correspond to one by one. That is, the larger Y is, the larger the reduction rate of the plate is, and thus the larger the pressure bonding load P is.

このYと圧着負荷Pとの関係は,鋳造材料,ロール半径
およびロールギャップが変われば変わるので,これらの
鋳造条件が異なるごとに両者の関係を求めておく。第6
図はその一例を示したものてある。このようにして,或
る材料,ロール半径およびロールギャップについて,Yと
圧着負荷Pとの関係を求めておけば,圧着負荷Pのみの
測定によってYの値を概略推定できる。したがって,ロ
ードセルの押付力の変動値を検出信号としてロール回転
速度を調整するフイードバック制御を行なえばよく,こ
の簡易制御法によってもY値をほぼ一定に制御すること
が可能となる。
The relationship between Y and the crimping load P changes as the casting material, roll radius, and roll gap change, so the relationship between the two is determined for each different casting condition. Sixth
The figure shows an example. In this way, if the relationship between Y and the crimping load P is obtained for a certain material, roll radius and roll gap, the value of Y can be roughly estimated by measuring only the crimping load P. Therefore, feedback control for adjusting the roll rotation speed may be performed by using the fluctuation value of the pressing force of the load cell as a detection signal, and the Y value can be controlled to be substantially constant by this simple control method.

〔実施例〕〔Example〕

例1. ロールギャップ=3.00mmで予め押圧力を付与された400m
mφ×300mmWの鋼製の内部水冷式双ロール(従って,S=4
03mm)からなる双ロール式連続鋳造機のサイドダムとし
て25mm厚のセラミックファイバーボードを使用し,サイ
ドダムの下縁の高さ(ロール軸レベル位置からの高さ)
を10mmとなるようにセットした。
Example 1. 400m pre-pressed with roll gap = 3.00mm
mφ × 300 mm W steel inner water-cooled twin roll (hence S = 4
The height of the lower edge of the side dam (height from the roll axis level position) is used as the side dam of the twin roll continuous casting machine consisting of
Was set to be 10 mm.

目標Y値を5mm(θ′=1.4゜)として,湯溜りにSUS304
溶鋼を注入し,ロール軸レベルからの目標湯面高さhを
129mmとした。刻々の湯面高さhをITVの画像解析によっ
て連続測定し,この高さを鋳造中独立に129mm±5mm以内
に制御した。板厚H0はX線厚み計により連続計測した。
SUS304溶鋼のこの双ロール式連続鋳造機での凝固速度は
別途の実験により,(8)式のように定められた。
Set the target Y value to 5 mm (θ '= 1.4 °) and use SUS304 for the pool.
Molten steel is injected, and the target surface height h from the roll axis level
It was 129 mm. The molten metal surface height h was measured continuously by ITV image analysis, and this height was independently controlled within 129 mm ± 5 mm during casting. The plate thickness H 0 was continuously measured by an X-ray thickness meter.
The solidification rate of the SUS304 molten steel in this twin roll type continuous casting machine was determined by a separate experiment as shown in equation (8).

したがって,例えば鋳造中の或る時点での板厚がH0=2.
00mmであったが,この場合には (6)式によりRR=200.5mmと計算され, θは(7)式により40.05゜と計算され, vはロール回転速度より19.0m/minと測定されたので,t
=0.443secであった。これらの値を(3)および(4)
式に代入してθ′=2.6゜が得られ,(2)式より,Y=
9.15mmが得られた。この値は目標Y値よりも大きいので
鋳造速度を大きくする指示がこのY値が目標Y値に一致
するまで出された。以上の処理はコンピューターを用い
て自動制御で行われた。その結果,サイドダムが破壊さ
れることもなく,またブレークアウトや末凝固板の発生
もなく鋳造が安定して行われ,また板の品質も良好であ
った。
Therefore, for example, the plate thickness at some point during casting is H 0 = 2.
Although it was 00 mm, in this case, RR = 200.5 mm was calculated by the formula (6), θ was calculated as 40.05 ° by the formula (7), and v was measured as 19.0 m / min from the roll rotation speed. So t
It was 0.443 sec. These values are (3) and (4)
Substituting into the equation, θ ′ = 2.6 ° is obtained, and from equation (2), Y =
9.15 mm was obtained. Since this value is larger than the target Y value, an instruction to increase the casting speed was issued until the Y value coincided with the target Y value. The above processing was automatically controlled using a computer. As a result, the side dam was not destroyed, and there was no breakout and no solidified plate was produced, stable casting was performed, and the plate quality was good.

例2. 例1と同じ双ロール式連続鋳造機を用いて,サイドダム
の下縁高さを20mmとしてセットし,目標Y値は15mm
(θ′=4.3゜)とした以外は,例1と同じ鋳造条件で
鋳造を行った。第6図に示す予め求めておいたYと圧着
負荷Pとの関係を用いてYの制御を行った。圧着負荷P
の測定はロールチョック間に挿入したロードセルの押圧
力の測定によって行った。例えば,鋳造中の或る時点で
圧着負荷が60kgf/mmであったが,これに対応するY値
は第6図によるとY≒9mmと小さいので,目標Y値に一
致するように鋳造速度を小さくする指示を目標Y値に一
致するまで与えた。この制御もコンピューターを用いて
自動制御で行われた。その結果,サイドダムが破壊され
ることもなく,またブレークアウトや末凝固板の発生も
なく鋳造が安定して行われ,また板の品質も良好であっ
た。
Example 2. Using the same twin-roll type continuous casting machine as in Example 1, set the bottom edge height of the side dam to 20 mm and set the target Y value to 15 mm.
Casting was performed under the same casting conditions as in Example 1 except that (θ '= 4.3 °). Y was controlled using the relationship between Y and the pressure bonding load P which was obtained in advance and shown in FIG. Crimping load P
Was measured by measuring the pressing force of the load cell inserted between the roll chocks. For example, the crimping load was 60 kgf / mm at a certain point during casting, but the Y value corresponding to this was as small as Y ≈ 9 mm according to Fig. 6, so the casting speed should be adjusted to match the target Y value. Instructions to make it smaller were given until the target Y value was reached. This control was also performed automatically by using a computer. As a result, the side dam was not destroyed, and there was no breakout and no solidified plate was produced, stable casting was performed, and the plate quality was good.

例3(比較例) 例1と同じ双ロール式連続鋳造機を用いて,目標Y値を
20mm(θ′=5.7゜)とした以外は,例1と同じ鋳造条
件で鋳造を行った。その結果,ロール反力(圧着負荷)
が過大となったので,ロールギャップの増大が著しくな
り(≒0.3mm),サイドダム/ロール間に湯が差し,サ
イドダム下部が引きちぎれて鋳造失敗に終わった。
Example 3 (Comparative Example) Using the same twin roll type continuous casting machine as in Example 1, the target Y value was
Casting was performed under the same casting conditions as in Example 1 except that the thickness was 20 mm (θ '= 5.7 °). As a result, roll reaction force (crimping load)
Was too large, the roll gap increased remarkably (≈0.3 mm), the molten metal poured between the side dam and the roll, and the lower part of the side dam was torn off, resulting in a casting failure.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法に従って凝固完了点Wの位置を制御す
るための原理を示す解析図,第2図は本発明法を適用す
る双ロール式連続鋳造機の要部を示す斜視図,第3図は
双ロールの軸に沿う垂直面で両ロールの間(鋳造される
板の幅方向)を切断した鋳造中の模式図,第4図は凝固
シエルが圧着される様子を第3図とは直交する垂直面で
示した鋳造中の模式図,第5図は双ロールのロールギャ
ップに押圧を与える機構を示す略平面図,第6図は凝固
完了点高さYと圧着負荷Pとの関係例を示す図である。 1a,1b……双ロール,2……湯溜り,3……鋳造される薄板,
4a,4b……サイドダム,7a,7b……サイドダム4a,4bの下
縁,W……凝固完了点,S……ロール軸間距離,Y……凝固完
了点のロール軸レベルからの高さ,θ′……凝固完了点
角度。
FIG. 1 is an analysis diagram showing the principle for controlling the position of the solidification completion point W according to the method of the present invention, and FIG. 2 is a perspective view showing an essential part of a twin roll type continuous casting machine to which the method of the present invention is applied. Fig. 3 is a schematic diagram during the casting in which the space between both rolls (width direction of the plate to be cast) is cut by a vertical plane along the axis of the twin rolls, and Fig. 4 shows the state in which the solidified shell is pressed. Is a schematic view during casting shown by orthogonal vertical planes, FIG. 5 is a schematic plan view showing a mechanism for applying pressure to the roll gap of the twin rolls, and FIG. 6 is a diagram showing the solidification completion height Y and the crimping load P. It is a figure which shows the relationship example. 1a, 1b ...... twin rolls, 2 …… pool, 3 …… thin sheet to be cast,
4a, 4b …… side dam, 7a, 7b …… lower edge of side dam 4a, 4b, W …… solidification completion point, S …… roll axis distance, Y …… height from the roll axis level of solidification completion point, θ ′ …… Angle of solidification completion point.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】狭間隙をあけて平行に対向配置した互いに
反対方向に回転する実質上同形の内部冷却式双ロールの
円周面上において,該ロールの軸に直角方向の面内に,
その底部が該ロールの円周面と摺接するように一対のサ
イドダムを立ち上げ,この両サイドダムと双ロール円周
面とで形成される湯溜り内の溶湯を該ロール表面で冷却
凝固しながらロール間の最狭隙部で圧着して薄板に連続
鋳造するさいに,下式(1)の条件を満足するように双
ロールの回転速度を制御することを特徴とする双ロール
式連続鋳造機による薄板連鋳方法, 0゜<tan-1(2Y/S)<5゜ ・・(1) ただし,Sは双ロールの軸間距離(mm),Yは第1図に示す
ようにロール軸レベルLからの凝固完了点Wの高さ(m
m)である。
1. On the circumferential surface of an essentially cooled internally-cooled twin roll, which is arranged in parallel with a narrow gap and is opposed to each other and which rotates in mutually opposite directions, in a plane perpendicular to the axis of the roll,
A pair of side dams are raised so that their bottoms are in sliding contact with the circumferential surface of the roll, and the molten metal in the pool formed by both side dams and the circumferential surface of the twin rolls is cooled and solidified on the roll surface while being rolled. By a twin roll type continuous casting machine characterized by controlling the rotation speed of the twin rolls so as to satisfy the condition of the following formula (1) when pressure-bonding in the narrowest gap between them and continuously casting to a thin plate Thin plate continuous casting method, 0 ° <tan -1 (2Y / S) <5 ° (1) where S is the twin roll axial distance (mm) and Y is the roll axial level as shown in Fig. 1. Height of solidification completion point W from L (m
m).
JP61265111A 1986-11-07 1986-11-07 Thin plate continuous casting method by twin roll type continuous casting machine Expired - Lifetime JPH0667535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265111A JPH0667535B2 (en) 1986-11-07 1986-11-07 Thin plate continuous casting method by twin roll type continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265111A JPH0667535B2 (en) 1986-11-07 1986-11-07 Thin plate continuous casting method by twin roll type continuous casting machine

Publications (2)

Publication Number Publication Date
JPS63119956A JPS63119956A (en) 1988-05-24
JPH0667535B2 true JPH0667535B2 (en) 1994-08-31

Family

ID=17412761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265111A Expired - Lifetime JPH0667535B2 (en) 1986-11-07 1986-11-07 Thin plate continuous casting method by twin roll type continuous casting machine

Country Status (1)

Country Link
JP (1) JPH0667535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2814112B2 (en) * 1989-08-10 1998-10-22 日新製鋼株式会社 Method for producing austenitic stainless steel strip with excellent ductility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162555A (en) * 1984-02-02 1985-08-24 Mitsubishi Heavy Ind Ltd Continuous casting device for thin plate

Also Published As

Publication number Publication date
JPS63119956A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
JPH0366457A (en) Apparatus for controlling twin roll type continuous casting machine
JPH07108435B2 (en) Twin roll type continuous casting machine
JPH0667535B2 (en) Thin plate continuous casting method by twin roll type continuous casting machine
JPS626740A (en) Continuous casting method for thin sheet from molten steel
JP7127695B2 (en) Casting method of slab
JP3035587B2 (en) Continuous casting apparatus and continuous casting method
JP3135282B2 (en) Thin plate continuous casting method
JP2684037B2 (en) Thin plate continuous casting method
KR102388115B1 (en) Manufacturing method and control device of cast steel
JPH0159062B2 (en)
JPH0464774B2 (en)
JPH04224052A (en) Method and device for controlling pushing force to side weir in continuous caster for cast strip
JPH09103845A (en) Austenitic stainless steel thin slab and its production
JP2792739B2 (en) Continuous casting equipment for thin cast slabs
JPH01170551A (en) Mold for continuously casting steel
JPH0787971B2 (en) Twin roll continuous casting method and apparatus
JPH0539807Y2 (en)
JPS60162555A (en) Continuous casting device for thin plate
JPS63126645A (en) Twin roll type continuous casting machine
JPS6021161A (en) Continuous casting device for thin plate
KR100332645B1 (en) Method for manufacturing continuous cast slab of austenitic stainless steel
JPH0133254Y2 (en)
JPH1058095A (en) Partition plate in thin cast slab continuous casting apparatus
JPH03142045A (en) Method and apparatus for continuously casting metal strip
JPH03248749A (en) Method for preventing transverse crack in cast strip in twin roll type strip casting