JPH066745B2 - Iron loss improvement method for grain-oriented silicon steel sheet - Google Patents

Iron loss improvement method for grain-oriented silicon steel sheet

Info

Publication number
JPH066745B2
JPH066745B2 JP29184785A JP29184785A JPH066745B2 JP H066745 B2 JPH066745 B2 JP H066745B2 JP 29184785 A JP29184785 A JP 29184785A JP 29184785 A JP29184785 A JP 29184785A JP H066745 B2 JPH066745 B2 JP H066745B2
Authority
JP
Japan
Prior art keywords
iron loss
grain
plasma flame
steel sheet
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29184785A
Other languages
Japanese (ja)
Other versions
JPS62151517A (en
Inventor
圭司 佐藤
厚人 本田
文二郎 福田
甫朋 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29184785A priority Critical patent/JPH066745B2/en
Priority to US06/921,523 priority patent/US4772338A/en
Priority to CA000521084A priority patent/CA1325372C/en
Priority to DE8686308239T priority patent/DE3678099D1/en
Priority to EP86308239A priority patent/EP0220940B1/en
Priority to KR1019860008936A priority patent/KR910000009B1/en
Publication of JPS62151517A publication Critical patent/JPS62151517A/en
Priority to US07/209,845 priority patent/US4846448A/en
Publication of JPH066745B2 publication Critical patent/JPH066745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、変圧器等に使用される方向性けい素鋼板の
鉄損特性の有利な改善方法に関するものである。
TECHNICAL FIELD The present invention relates to an advantageous method for improving the iron loss characteristics of grain-oriented silicon steel sheets used for transformers and the like.

方向性けい素鋼板は、主として変圧器その他の電気機器
の鉄心として用いられ、その磁気特性が良好であること
が要求される。特に鉄心として使用した際のエネルギー
損失すなわち鉄損が低いことが重要であり、近年のエネ
ルギー事情の悪化から特に鉄損の低い方向性けい素鋼板
に対する要求は一段と高まりつつある。
The grain-oriented silicon steel sheet is mainly used as an iron core for transformers and other electric devices, and is required to have good magnetic properties. In particular, it is important that the energy loss when used as an iron core, that is, the iron loss is low, and the demand for a grain-oriented silicon steel sheet having a particularly low iron loss is increasing more and more due to the deterioration of the energy situation in recent years.

これまでにも鉄損を減少させるために、鋼板の結晶方位
を(110)<001>方位により高度に揃えること、Si含有量
を上げることにより鋼板の電気抵抗を増加させること、
そして不純物を低減させることなどが種々試みられた。
In order to reduce the iron loss, the crystal orientation of the steel sheet should be more highly aligned with the (110) <001> orientation, and the electrical resistance of the steel sheet should be increased by increasing the Si content.
Various attempts have been made to reduce impurities.

しかしながらこれらの冶金学的方法による鉄損の低減
は、近年の技術の向上によりほぼ限界に達している。
However, the reduction of iron loss by these metallurgical methods has almost reached the limit due to the improvement of technology in recent years.

(従来の技術) そこで冶金学的な方法以外に鉄損を改良する方法が種々
提案されている。これらのなかで現在工業化されている
ものは、特公昭57-2252号公報等に示されているパルス
レーザー照射による鉄損低減法である。この方法を用い
ることにより従来に較べ鉄損の大巾な低減が可能になっ
たが、装置が高価なこと、レーザー励起用ランプの寿命
が短いことによるイニシアルコスト及びランニングコス
ト増が避けがたい。また使用するレーザーは可視光でな
い場合が多く安全上の対策もかかせない。
(Prior Art) Therefore, various methods for improving iron loss have been proposed in addition to metallurgical methods. Among these, the one currently industrialized is the iron loss reduction method by pulse laser irradiation disclosed in Japanese Patent Publication No. 57-2252. By using this method, the iron loss can be greatly reduced as compared with the conventional method, but it is unavoidable that the apparatus is expensive and the initial cost and the running cost are increased due to the short life of the laser excitation lamp. In addition, the laser used is often not visible light, so safety measures are essential.

(発明が解決しようとする問題点) ところで発明者らは先に、上記のような欠点がなく、生
産性、作業性、安全性およびコストの面でより有利な手
段で著しく鉄損を低減させ得る方法として、プラズマ炎
の放射による方向性けい素鋼の鉄損低減方法を特願昭60
-236271号において提案した。
(Problems to be Solved by the Invention) By the way, the inventors have previously reduced the iron loss by a more advantageous means in terms of productivity, workability, safety and cost without the above-mentioned drawbacks. As a method for obtaining the same, Japanese Patent Application No. Sho 60 is a method for reducing iron loss in grain-oriented silicon steel by the radiation of plasma flames.
-Proposed in No. 236271.

この発明は、上記のプラズマ炎を放射する方法におい
て、特に有利に鉄損を低減し得る方法を提案することを
目的とする。
It is an object of the present invention to propose a method capable of reducing iron loss particularly advantageously in the above method of radiating a plasma flame.

(問題点を解決するための手段) さて発明者らは、プラズマ炎の最適放射条件を見出すべ
く鋭意実験検討を重ねた結果、プラズマ炎放射のための
ノズルの穴径、出力電流及びノズルと鋼板との相対速度
が鋼板の鉄損低減効果と強い相関を有することを新たに
知見し、この発明を完成させるにいたったのである。
(Means for Solving Problems) As a result of repeated intensive studies to find the optimum radiation condition of plasma flame, the inventors have found that the nozzle hole diameter for plasma flame radiation, the output current, the nozzle and the steel plate. The inventors have newly found that the relative speed of the and has a strong correlation with the iron loss reduction effect of the steel sheet, and have completed the present invention.

すなわちこの発明は、仕上げ焼鈍済みの方向性けい素鋼
板の表面に、ノズル穴径が2.0mm以下のトーチを用いて
プラズマ炎を放射するに際し、出力電流の電流密度W(A/
mm2)およびノズルと鋼板との相対速度v(mm/s)が、次
式、 を満足する条件下に、圧延方向と交わる方向にプラズマ
炎の放射を施すことから成る方向性けい素鋼板の鉄損改
善方法であり、かかる改善法の実施においては、プラズ
マ炎の放射間隔を2〜30mmとすことが好ましい。
That is, the present invention, on the surface of the finish-annealed grain-oriented silicon steel sheet, the nozzle hole diameter when irradiating a plasma flame using a torch of 2.0 mm or less, the current density W (A /
mm 2 ) and the relative velocity v (mm / s) between the nozzle and the steel plate are Is a method of improving iron loss of a grain-oriented silicon steel sheet by radiating a plasma flame in a direction intersecting the rolling direction under the condition of satisfying the condition (1). It is preferably about 30 mm.

以下この発明を由来した実験結果に基づき具体的に説明
する。
The present invention will be specifically described below based on the experimental results.

仕上げ焼鈍済みの0.23mm厚の鋼板に、ノズル穴径0.05〜
2.5mmを持つトーチよりプラズマ炎を放射した。
Nozzle hole diameter of 0.05 ~ on a 0.23 mm thick steel plate that has been finish annealed.
A plasma flame was emitted from a torch with 2.5 mm.

プラズマ発生はタングステンを主成分とする陰極と陽極
間に電圧を印加しアルゴン又はアルゴンと水素の混合ガ
スを流すことにより発生させた。
The plasma was generated by applying a voltage between a cathode containing tungsten as a main component and an anode and flowing argon or a mixed gas of argon and hydrogen.

出力電流はノズル穴径が大きい程大電流を流せるが1A〜
300Aの範囲で変えた。
Larger output current can flow with larger nozzle hole diameter, but 1A ~
I changed it in the range of 300A.

プラズマ炎の放射は鋼板の圧延方向とほぼ直角な向きに
連続な線状に放射し、圧延方向の放射間隔は6.35mmとし
た。プラズマ炎の放射滞留時間を決めるノズルと鋼板と
の相対速度は1mm/s〜4000mm/sの範囲で変化させた。こ
の相対速度とは、鋼板を静止させておきノズルを圧延方
向と直角方向に移動させながらプラズマ炎を放射する時
はそのノズルの移動速度であり、他方ノズルを固定し鋼
板をその圧延方向と直角方向に移動させる場合には鋼板
の移動速度に当る。
The radiation of the plasma flame was radiated in a continuous line in a direction substantially perpendicular to the rolling direction of the steel sheet, and the radiation interval in the rolling direction was 6.35 mm. The relative velocity between the nozzle and the steel plate, which determines the radiative residence time of the plasma flame, was changed in the range of 1 mm / s to 4000 mm / s. This relative speed is the moving speed of the nozzle when the steel plate is stationary and the plasma flame is emitted while moving the nozzle in the direction perpendicular to the rolling direction, while the nozzle is fixed and the steel plate is perpendicular to the rolling direction. When moving in the direction, it corresponds to the moving speed of the steel plate.

上記の広範囲にわたる実験の結果、ノズル穴径が2.0mm
を超える場合を除いて各ノズル穴径でプラズマ放射条件
を適切に選べは著しい鉄損の低減が達成されることが見
出された。
As a result of the above extensive experiment, the nozzle hole diameter is 2.0 mm
It has been found that the iron loss can be significantly reduced by properly selecting the plasma emission conditions for each nozzle hole diameter except when the value exceeds.

そこでさらに発明者らは、ノズル穴径が2.0mm以下の場
合について良好な鉄損減効果が得られる条件を詳細に検
討した結果、出力電流の電流密度及びノズルと鋼板との
相対速度が鉄損低減効果に大きく影響することを見出し
た。ここで電流密度とは出力電流をノズル穴断面積で除
した値である。
Therefore, the inventors further examined in detail the conditions under which a good iron loss reduction effect can be obtained when the nozzle hole diameter is 2.0 mm or less, and as a result, the current density of the output current and the relative velocity between the nozzle and the steel plate are It was found that the reduction effect is greatly affected. Here, the current density is a value obtained by dividing the output current by the nozzle hole cross-sectional area.

第1図に、プラズマ炎の電流密度W(A/mm2)およびノズル
と鋼板との相対速度v(mm/s)の比W/vと、鉄損低減分ΔW
(W/Kg)との関係を示す。使用したノズル穴径は、それぞ
れ0.1mm,0.5mm,1mmおよび2mmの4種類であり、図では
これらの結果をまとめて示してある。
Fig. 1 shows the current density W (A / mm 2 ) of the plasma flame and the ratio W / v of the relative velocity v (mm / s) between the nozzle and the steel plate and the iron loss reduction ΔW.
The relationship with (W / Kg) is shown. The nozzle hole diameters used were four types of 0.1 mm, 0.5 mm, 1 mm and 2 mm, respectively, and these results are shown together in the figure.

同図より明らかなように、鉄損低減はW/vに依存し、W/v
が次式、 の範囲を満足する場合に効果的な節損の低減が達成され
ることが判明した。
As is clear from the figure, iron loss reduction depends on W / v, and W / v
Is the following equation, It has been found that an effective reduction in loss is achieved when the range is satisfied.

次に、ノズル穴径:0.15mm、W/v=2の条件の下にプラ
ズマ炎を放射した場合の、圧延方向の放射間隔と鉄損低
減効果との関係について調べた結果を第2図に示すが、
放射間隔は2〜30mmが望ましいことがわかる。それ以外
では鉄損はむしろ劣化する場合がある。
Next, Fig. 2 shows the results of an examination of the relationship between the radiation interval in the rolling direction and the iron loss reduction effect when a plasma flame is radiated under the conditions of nozzle hole diameter: 0.15 mm and W / v = 2. Show,
It can be seen that the radiation interval is preferably 2 to 30 mm. Otherwise, iron loss may rather deteriorate.

プラズマ炎の放射の方向は圧延方向に垂直な方向にて最
も鉄損の低減をもたらすが、その方向より45°までづれ
ていても鉄損低減効果が認められた。
The direction of the radiation of the plasma flame is most effective in reducing the iron loss in the direction perpendicular to the rolling direction, but the iron loss reducing effect was recognized even if the direction was deviated by 45 ° from that direction.

さらに連続した線状ではなく非連続な直線あるいは曲線
状に放射してもかまわない。
Further, the radiation may be a discontinuous straight line or a curved line instead of a continuous line.

(作 用) プラズマ炎放射によって鉄損の減少する理由は、プラズ
マ炎が放射された部分が磁気的に硬質になり、それによ
って磁区が細分化されたものと推定される。
(Operation) The reason why the iron loss decreases due to plasma flame radiation is presumed to be that the part where the plasma flame is radiated becomes magnetically hard, which causes the magnetic domains to be subdivided.

この発明のプラズマ炎放射に用いる鋼板は、MnS,MnS
e,AlN及びSbなどをインヒビターとして含むけい素
鋼熱延板を1回または中間焼鈍をはさむ2回の冷間圧延
により最終板厚とした後、脱炭焼鈍を施し、次いでMg0
を主成分とする焼鈍分離剤を塗布してから約1200℃の高
温で仕上げ焼鈍した鋼板であり、二次再結晶が完了して
いる方向性けい素鋼板である。
The steel plate used for plasma flame radiation of the present invention is MnS, MnS
A hot rolled steel sheet containing e, AlN, Sb, etc. as inhibitors is cold-rolled once or twice by intermediate annealing to obtain the final thickness, followed by decarburization annealing, and then Mg0.
Is a steel sheet that has been subjected to finish annealing at a high temperature of approximately 1200 ° C. after applying an annealing separating agent containing as a main component, and is a grain-oriented silicon steel sheet that has completed secondary recrystallization.

通常、仕上げ焼鈍済み鋼板には仕上げ焼鈍時に生成する
フオルステライト被膜で覆われているが、プラズマ炎放
射はこのフオルステライト被膜上からでもまたフオルス
テライト被膜が無い状態、さらには通常フオルステライ
ト被膜上に上塗りするりん酸塩を主成分するコーチング
被膜上から行っても良い。
Normally, finish-annealed steel sheets are covered with a forsterite coating formed during finish annealing, but plasma flame radiation is present on the forsterite coating, without the forsterite coating, and usually on the forsterite coating. It may be performed from the top of the coating film containing a phosphate as a main component.

又プラズマ放射後、再コーチングしても良い。Further, after plasma irradiation, recoating may be performed.

プラズマ炎の放射は非移行型、移行型どちらでも良いが
非移行型の方が放射が容易である。
The plasma flame may be either non-transfer type or transfer type, but the non-transfer type is easier to radiate.

プラズマ炎発生のためのガスは、Ar,N2,H2等の不活性
及び非酸化性ガスならびにこれ等の混合ガスが望ましい
が、酸化性ガスおよびこれらの混合でもかまわない。
The gas for generating the plasma flame is preferably an inert or non-oxidizing gas such as Ar, N 2 , H 2 or a mixed gas thereof, but an oxidizing gas or a mixture thereof may be used.

(実施例) 実施例1 最終焼鈍を施した0.23mm厚の方向性けい素鋼板の表面
に、0.1mm及び2.5mmのノズル穴径を持つトーチに
より、プラズマ炎を、電流密度W(A/mm2)ならびにノズル
と鋼板との相対速度v(mm/s)を種々に変化させながら放
射した。ガスはアルゴンガスを用い、その時の電圧は30
Vとした。放射の方向は圧延方向と垂直な方向で連続な
線状に放射し、圧延方向の間隔は10mmとした。
(Example) Example 1 A plasma flame was generated on a surface of a 0.23 mm-thickness grain-oriented silicon steel sheet subjected to final annealing by a torch having nozzle hole diameters of 0.1 mm and 2.5 mm and a current density W (A / mm 2 ) and the relative velocity v (mm / s) between the nozzle and the steel plate were varied. Argon gas is used as the gas, and the voltage at that time is 30
V. The radiating direction was radiating in a continuous line in the direction perpendicular to the rolling direction, and the interval in the rolling direction was 10 mm.

放射前後における磁気特性を単板磁気試験装置で測定し
た結果を表1に示す。
Table 1 shows the results of measurement of the magnetic properties before and after radiation with a single-plate magnetic test device.

同表より明らかなように0.1mmのノズル穴径で、 を満足する条件下に放射を施した場合には、大幅な鉄損
向上が見られた。
As is clear from the table, with a nozzle hole diameter of 0.1 mm, When the radiation was applied under the condition of satisfying, the iron loss was significantly improved.

実施例2 最終焼鈍済みの0.23mm厚の方向性けい素鋼板の表面に、
0.15mmのノズル穴径を持つトーチによりプラズマ炎を放
射した。このときの出力電流の電流密度は400A/mm2,電
圧は30V,ノズルと鋼板との相対速度は200mm/sであり、
圧延方向の放射間隔を1〜50mmまで変化させた。ガスは
アルゴンガスを用い、放射の方向は圧延方向と垂直な方
向で連続な線状に放射した。
Example 2 On the surface of a 0.23 mm-thickness grain-oriented silicon steel sheet that had been finally annealed,
A plasma flame was emitted by a torch with a nozzle hole diameter of 0.15 mm. The current density of the output current at this time is 400 A / mm 2 , the voltage is 30 V, the relative speed between the nozzle and the steel plate is 200 mm / s,
The radial distance in the rolling direction was changed from 1 to 50 mm. Argon gas was used as the gas, and the radiation direction was a linear line that was perpendicular to the rolling direction.

放射前後の磁気特性を単板磁気試験装置で測定した結果
を表2に示す。
Table 2 shows the results of measurement of the magnetic properties before and after radiation with a single-plate magnetic test device.

放射間隔が2〜30mmの範囲でとりわけ良好な鉄損の向上
が見られた。
Particularly good improvement of iron loss was observed in the range of the radiation interval of 2 to 30 mm.

(発明の効果) かくしてこの発明によれば、プラズマ炎放射による方向
性けい素鋼板の大幅な鉄損低減が安定して実現される。
(Effects of the Invention) Thus, according to the present invention, a significant reduction in iron loss of the grain-oriented silicon steel sheet due to plasma flame radiation is stably realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は、プラズマ炎の電流密度W(A/mm2)およびノズル
と鋼板との相対速度v(mm/s)の比W/vと、鉄損低減分ΔW
17/50(W/Kg)との関係を示したグラフ、 第2図は、プラズマ炎の放射間隔とΔW17/50との関係を
示したグラフである。
Figure 1 shows the current density W (A / mm 2 ) of the plasma flame and the ratio W / v of the relative velocity v (mm / s) between the nozzle and the steel plate and the iron loss reduction ΔW.
17 is a graph showing the relationship with 17/50 (W / Kg), and FIG. 2 is a graph showing the relationship between the radiation interval of the plasma flame and ΔW 17/50 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 甫朋 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sugiyama Hoho 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】仕上げ焼鈍済みの方向性けい素鋼板の表面
に、ノズル穴径が2.0mm以下のトーチを用いてプラズマ
炎を放射するに際し、出力電流の電流密度W(A/mm2)およ
びプラズマ炎放射ノズルと鋼板との相対速度v(mm/s)
が、次式、 を満足する条件下に、圧延方向と交わる方向にプラズマ
炎の放射を施すことを特徴とする方向性けい素鋼板の鉄
損改善方法。
1. When a plasma flame is radiated onto a surface of a grain-finished grain-oriented silicon steel sheet having a nozzle hole diameter of 2.0 mm or less, a current density W (A / mm 2 ) of output current and Relative velocity v (mm / s) between plasma flame radiation nozzle and steel plate
Where, A method for improving iron loss of grain-oriented silicon steel sheet, characterized in that a plasma flame is radiated in a direction intersecting the rolling direction under the condition satisfying the above conditions.
【請求項2】プラズマ炎の放射間隔が、2〜30mmである
特許請求の範囲第1項記載の方法。
2. The method according to claim 1, wherein the radiation interval of the plasma flame is 2 to 30 mm.
JP29184785A 1985-10-24 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet Expired - Lifetime JPH066745B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP29184785A JPH066745B2 (en) 1985-12-26 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet
US06/921,523 US4772338A (en) 1985-10-24 1986-10-21 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
CA000521084A CA1325372C (en) 1985-10-24 1986-10-22 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
DE8686308239T DE3678099D1 (en) 1985-10-24 1986-10-23 METHOD AND DEVICE FOR IMPROVING THE IRON LOSS OF SHEETS IN ELECTROMAGNETIC STEEL OR AMORPHOUS MATERIAL.
EP86308239A EP0220940B1 (en) 1985-10-24 1986-10-23 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
KR1019860008936A KR910000009B1 (en) 1985-10-24 1986-10-24 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
US07/209,845 US4846448A (en) 1985-10-24 1988-06-22 Apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29184785A JPH066745B2 (en) 1985-12-26 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS62151517A JPS62151517A (en) 1987-07-06
JPH066745B2 true JPH066745B2 (en) 1994-01-26

Family

ID=17774184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29184785A Expired - Lifetime JPH066745B2 (en) 1985-10-24 1985-12-26 Iron loss improvement method for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH066745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561148B2 (en) * 2010-12-22 2014-07-30 Jfeスチール株式会社 Motor core with low iron loss degradation under compressive stress

Also Published As

Publication number Publication date
JPS62151517A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
US6444050B1 (en) Grain-oriented electromagnetic steel sheet
EP0571705B1 (en) Method of producing low iron loss, low-noise grain-oriented silicon steel sheet, and low-noise stacked transformer
JPH0772300B2 (en) Method for manufacturing low iron loss grain oriented silicon steel sheet
JP5471839B2 (en) Method for producing grain-oriented electrical steel sheet
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
US4772338A (en) Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
US5146063A (en) Low iron loss grain oriented silicon steel sheets and method of producing the same
JPH066745B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
US5223048A (en) Low iron loss grain oriented silicon steel sheets and method of producing the same
JP3174451B2 (en) Method for producing low iron loss oriented silicon steel sheet and plasma generator
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JP3388239B2 (en) Manufacturing method of ultra-high magnetic flux density unidirectional electrical steel sheet with high magnetic field iron loss and excellent film properties
US4915749A (en) Method of reducing iron loss of grain oriented silicon steel sheet
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
KR920008690B1 (en) Making method for electric steel plates
JPH0772301B2 (en) Iron loss reduction method for grain-oriented silicon steel sheet
JPS62151511A (en) Method for decreasing iron loss of grain oriented silicon steel sheet
JPH0649902B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
JPH0672265B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
KR100345697B1 (en) A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures
KR100336851B1 (en) Method for manufacturing high magnetic density electric steel sheet with low iron loss
JPS6386816A (en) Iron loss improving method for amorphous alloy foil
JPH01191743A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss excellent in adhesive strength of film
JPH06128647A (en) Production of grain oriented silicon steel sheet with low iron loss