JPH0666461A - Method of controlling defrosting of inverter air conditioner - Google Patents

Method of controlling defrosting of inverter air conditioner

Info

Publication number
JPH0666461A
JPH0666461A JP4324192A JP32419292A JPH0666461A JP H0666461 A JPH0666461 A JP H0666461A JP 4324192 A JP4324192 A JP 4324192A JP 32419292 A JP32419292 A JP 32419292A JP H0666461 A JPH0666461 A JP H0666461A
Authority
JP
Japan
Prior art keywords
defrosting
outdoor
air conditioner
compressor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4324192A
Other languages
Japanese (ja)
Other versions
JP2514774B2 (en
Inventor
Tae Duk Kim
泰 徳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH0666461A publication Critical patent/JPH0666461A/en
Application granted granted Critical
Publication of JP2514774B2 publication Critical patent/JP2514774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To shorten defrosting time and improve heating efficiency by flexibly controlling defrosting operation based upon an outdoor piping temperature conversion rate. CONSTITUTION: Outdoor piping temperature detected by an outdoor piping temperature detection sensor 7 is judged. When a starting condition of a defrosting operation is satisfied, control means 5 controls a four-way valve such that a flow direction of a refrigerant is varied for defrosting operation. Further, the control means 5 judges a present defrosting condition such that defrosting is achieved for a predetermined time, and hence judges whether or not an operation frequency of a compressor and a phase angle of a heater are variable, and on the basis of the judgement it controls the operation frequency of the compressor and the phase angle of the heater for the defrosting operation. Hereby, defrosting time can be controlled flexibly on the basis of an outdoor piping temperature conversion rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、インバータエアコンに
関し、特に、室外配管の温度変化に従って圧縮器及びヒ
ータを可変制御し、室外熱交換器に着霜される霜に対す
る除霜時間を短縮させることにより、一定空間に対して
常に一定水準以上の暖房効果を保持させうるインバータ
エアコンの除霜制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter air conditioner, and more particularly, to variably controlling a compressor and a heater according to a temperature change of an outdoor pipe to shorten a defrosting time for frost formed on an outdoor heat exchanger. Thus, the present invention relates to a defrosting control method for an inverter air conditioner that can always maintain a heating effect above a certain level in a certain space.

【0002】[0002]

【従来の技術】一般に、冷暖房をかねて使用するインバ
ータエアコン(例えば、スプリットヒートポンプ形イン
バータエアコン)における暖房の場合は、四方弁の制御
により冷媒は、圧縮器、アキュムレータ、室内熱交換
器、膨脹装置、室外熱交換器、四方弁、圧縮器の順で循
環される。
2. Description of the Related Art Generally, in the case of heating in an inverter air conditioner which is also used for cooling and heating (for example, a split heat pump type inverter air conditioner), the refrigerant is controlled by a four-way valve so that the refrigerant is a compressor, an accumulator, an indoor heat exchanger, an expansion device, The outdoor heat exchanger, the four-way valve, and the compressor are circulated in this order.

【0003】冷房の場合は、四方弁の制御により冷媒が
圧縮器、四方弁、室外熱交換器、膨脹装置、室内熱交換
器、アキュムレータ、圧縮器の順で循環される。図1
は、上記冷暖房サイクルをもつインバータエアコンで圧
縮器を駆動させる回路を示す。つまり、圧縮器4を駆動
させる回路に商用交流電圧1に入力されると、コンバー
タ2は、商用交流電圧1を直流電圧に変換させる。
In the case of cooling, the refrigerant is circulated in the order of the compressor, the four-way valve, the outdoor heat exchanger, the expansion device, the indoor heat exchanger, the accumulator, and the compressor by controlling the four-way valve. Figure 1
Shows a circuit for driving a compressor in an inverter air conditioner having the above-mentioned cooling and heating cycle. That is, when the commercial AC voltage 1 is input to the circuit that drives the compressor 4, the converter 2 converts the commercial AC voltage 1 into a DC voltage.

【0004】上記変換された直流電圧はインバータ2に
より再度圧縮器4を動作させるための交流電圧に逆変換
されて上記圧縮器4を動作させる。制御手段5は、トラ
ンジスタベース駆動部6を制御し、トランジスタベース
駆動部6は、上記インバータ3の動作を制御し、インバ
ータ3の出力周波数が可変されるようにする。
The converted DC voltage is inversely converted into an AC voltage for operating the compressor 4 again by the inverter 2 to operate the compressor 4. The control means 5 controls the transistor base drive unit 6, and the transistor base drive unit 6 controls the operation of the inverter 3 so that the output frequency of the inverter 3 is variable.

【0005】この際、制御手段5は室外温度感知センサ
7及び室外配管温度感知センサ8により感知された室外
配管温度に基づいて上記トランジスタベース駆動部6を
制御し、圧縮器4の運転周波数を上昇又は降下させて暖
房又は冷房運転を制御する。ここで、未説明符号9はヒ
ータ制御部であって、室内熱交換器とアキュムレータと
をつなぐ室外配管に取り巻かれて冷媒に熱を供給するヒ
ータの発熱量を制御するものである。
At this time, the control means 5 controls the transistor base drive unit 6 based on the outdoor pipe temperature detected by the outdoor temperature detection sensor 7 and the outdoor pipe temperature detection sensor 8 to raise the operating frequency of the compressor 4. Alternatively, it is lowered to control heating or cooling operation. Here, the unexplained reference numeral 9 is a heater control unit, which controls the heat generation amount of the heater which is surrounded by the outdoor pipe connecting the indoor heat exchanger and the accumulator and supplies heat to the refrigerant.

【0006】ところで、暖房運転が所定時間行われる
と、室外フアンにより外部へ排出される冷気により室外
熱交換器に霜が付くため、これを除去するために除霜運
転を行われなければならない、つまり、図2に示す如
く、一定時間t1 暖房運転を行い、一定時間t2 除霜運
転を行ったのち、再び一定時間t1 の暖房運転を行う。
上述のように、暖房運転時に室外熱交換器に付く霜を除
去するために、暖房運転中随時除霜運転を行う。ここ
で、除霜運転は四方弁を制御して冷媒サイクルを冷房サ
イクルとともに動作させればよい。
By the way, when the heating operation is carried out for a predetermined time, the outdoor heat exchanger is frosted by the cold air discharged to the outside by the outdoor fan, and therefore the defrosting operation must be carried out in order to remove the frost. that is, as shown in FIG. 2, with constant time t 1 the heating operation, after performing the predetermined time t 2 defrosting operation, perform heating operation for a predetermined time t 1 again.
As described above, the defrosting operation is performed at any time during the heating operation in order to remove the frost attached to the outdoor heat exchanger during the heating operation. Here, in the defrosting operation, the four-way valve may be controlled to operate the refrigerant cycle together with the cooling cycle.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来には室
外温度及び室外配管温度を勘案せずに、単に一定期間除
霜運転を行う固定制御方式であり、室外配管温度上昇時
間(除霜時間)が一定時間以内にはそれ以上は短縮され
ないという問題点があった。すなわち、図2に示す如
く、除霜運転開始時点の室外配管温度が一定温度(例え
ば、12℃)迄上げるのに要される時間t2 が長時間か
かるのである。
By the way, conventionally, there is a fixed control system in which the defrosting operation is simply performed for a certain period without considering the outdoor temperature and the outdoor pipe temperature, and the outdoor pipe temperature rise time (defrost time) However, there was a problem that it could not be shortened further within a certain time. That is, as shown in FIG. 2, the time t 2 required for raising the temperature of the outdoor pipe at the start of the defrosting operation to a constant temperature (for example, 12 ° C.) takes a long time.

【0008】また、一定時間の間に除霜運転の終了後に
も未だに霜が取り除かれていない場合には、室外熱交換
器に付いているため、熱交換効率が低下されることによ
り、暖房効率が低下されるしかないとともに、消費電力
が上昇する問題点があった。甚だしくは、室外熱交換器
の凍結現象が生じるのみならず、快適な環境作りにも未
尽であるよりしかないという問題点があった。
If the frost has not been removed even after the defrosting operation has been completed within a certain period of time, since the outdoor heat exchanger is attached, the heat exchange efficiency is reduced, so that the heating efficiency is reduced. There is a problem that power consumption rises as well as the power consumption is lowered. To a great extent, there is a problem that not only the freezing phenomenon of the outdoor heat exchanger occurs, but also a comfortable environment is created rather than exhaustive.

【0009】従って、本発明によるインバータエアコン
の除霜制御方法は、上記従来の種々の問題点を解決する
ために、案出されたものであって、室外配管温度に基づ
いて最適な除霜時間を制御手段によって判別し、判別さ
れた除霜時間の間に室外熱交換器に付いている霜を完全
に除去させるのはもとより、除霜時間の短縮されたイン
バータエアコンを提供することにその目的がある。
Therefore, the defrosting control method for an inverter air conditioner according to the present invention has been devised in order to solve the above-mentioned various problems of the related art, and the optimum defrosting time is based on the outdoor pipe temperature. The purpose is to provide an inverter air conditioner in which defrosting time is shortened as well as completely removing frost attached to the outdoor heat exchanger during the defrosting time determined by the control means. There is.

【0010】[0010]

【課題を解決するための手段】上記の如き目的を達成す
るための本発明によるインバータエアコン除霜制御方法
は、室外熱交換器に着霜された霜を除去するための除霜
運転(冷房運転)を行うインバータエアコンにおいて、
室外配管温度感知センサにより感知された室外配管温度
を判別して除霜運転の突入条件を満足する場合、冷媒の
流れ方向を変化させて除霜運転が行われるように四方弁
を制御する第1ステップと、所定時間に除霜が行われる
ように現在の除霜状態を判断して圧縮器の運転周波数及
びヒータの位相角に対する可変可否を判断する第2ステ
ップと、前記第2ステップの判断により圧縮器運転周波
数及びヒータの位相角を制御して除霜運転を行う第3ス
テップとからなることを特徴とする。
SUMMARY OF THE INVENTION An inverter air conditioner defrosting control method according to the present invention for achieving the above object is a defrosting operation for removing frost formed on an outdoor heat exchanger (cooling operation). In the inverter air conditioner
A first four-way valve that controls the four-way valve so that the defrosting operation is performed by changing the flow direction of the refrigerant when the outdoor piping temperature sensed by the outdoor piping temperature sensing sensor is determined and the inrush condition for the defrosting operation is satisfied. Steps, a second step of determining the present defrosting state so that defrosting is performed at a predetermined time, and determining whether or not the operating frequency of the compressor and the phase angle of the heater can be changed, and the determination of the second step. A third step of performing a defrosting operation by controlling the compressor operating frequency and the phase angle of the heater.

【0011】[0011]

【実施例】本発明によるインバータエアコンの除霜制御
方法は、暖房運転後、室外熱交換器に取り付いた霜を所
定時間の間に除去させるためのものである。この方法を
行うためにフローチャートが図3に示されている。図3
によれば、本発明によるインバータエアコンは、動作が
開始されると、ステップS1 で制御手段5を初期化す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for controlling defrosting of an inverter air conditioner according to the present invention is for removing frost attached to an outdoor heat exchanger within a predetermined time after a heating operation. A flow chart for performing this method is shown in FIG. Figure 3
According to the above, when the operation of the inverter air conditioner according to the present invention is started, the control means 5 is initialized in step S 1 .

【0012】ステップS2 では室外配管温度感知センサ
7により感知され、制御手段5に入力された温度感知値
を制御手段5に内装されたアナログ/ディジタル変換器
によりディジタルデータに変換し、現在の室外配管温度
Tが何度であるかを判別する。次いで、ステップS3
は上記ステップS2 の動作により判別された室外配管温
度Tが除霜運転突入条件に到達した場合、四方弁を制御
して冷媒が圧縮器、四方弁、室外熱交換器、膨脹装置、
室内熱交換器、アキュムレータ、圧縮器の順で循環され
るようにする。すると、インバータエアコンでは冷房サ
イクルが形成される。つまり、ステップS40の除霜制
御ルーチンを行い、室外熱交換器に取り付いている霜を
取り除くことになる。
In step S 2 , the temperature sensing value sensed by the outdoor pipe temperature sensing sensor 7 and inputted to the control means 5 is converted into digital data by the analog / digital converter incorporated in the control means 5, and the present outdoor condition is met. It is determined how many times the pipe temperature T is. Then, if the step S 3 in the step S outdoor pipe temperature T is determined by the operation of the 2 reaches the defrosting operation inrush conditions, the refrigerant compressor and controls the four-way valve, four-way valve, an outdoor heat exchanger, Inflator,
The indoor heat exchanger, accumulator, and compressor are circulated in this order. Then, a cooling cycle is formed in the inverter air conditioner. That is, the defrosting control routine of step S40 is performed to remove the frost attached to the outdoor heat exchanger.

【0013】図4によれば、ステップS41で除霜中で
あるかどうかを判別し、その結果、除霜中の場合にはス
テップS42に進んで除霜復帰かどうかを判別する。つ
まり、室外配管温度感知センサ7により感知される室外
配管温度Tが所定温度(例えば12℃)以上になったか
どうかを判断する。上記ステップS41での判別結果、
室外配管温度Tが所定温度以上にならずして、除霜復帰
でない場合には、ステップS43に進んで初期温度変化
率Y1を計算する。
According to FIG. 4, in step S41, it is determined whether or not defrosting is being performed. As a result, if defrosting is in progress, the process proceeds to step S42 to determine whether or not defrosting is returning. That is, it is determined whether or not the outdoor pipe temperature T sensed by the outdoor pipe temperature sensor 7 has become equal to or higher than a predetermined temperature (for example, 12 ° C.). The determination result in step S41,
If the outdoor pipe temperature T does not exceed the predetermined temperature and the defrosting is not recovered, the process proceeds to step S43 to calculate the initial temperature change rate Y1.

【0014】ここで、温度変換率Yは、除霜運転に要す
る圧縮器の運転周波数及びヒータの位相角を決めるため
の基準値になり、下記式(1) により求められる。
Here, the temperature conversion rate Y becomes a reference value for determining the operating frequency of the compressor and the phase angle of the heater required for the defrosting operation, and is obtained by the following equation (1).

【0015】[0015]

【数2】 [Equation 2]

【0016】すなわち、図6の(A)に示す如く、室外
配管温度Tが除霜運転開始時間t0の室外配管温度T0
から霜が完全に除去される除霜運転解除時間t1 の温度
1に到達するためには、上記式(1) により求められる
温度変換率Yをもつべきである。従って、制御手段5は
室外配管温度感知センサ8から感知されて入力される温
度Tの変化率Yがどの程度のときに所定時間(Δt=t
1 −t0 )に室外熱交換器に取り付かれている霜を完全
に取り除くことができる温度T1 となるのかを知りう
る。このことは、制御手段5が上記式(1) から求められ
た温度変化率Yを保持して除霜運転を行うと、所定時間
(Δt=t1 −t0 )に霜が完全に除去される温度T1
に到達されるようになることを意味するものである。
[0016] That is, as shown in (A) of FIG. 6, the outdoor pipe temperature T 0 of the outdoor piping temperature T defrost operation start time t 0
In order to reach the temperature T 1 at the defrosting operation release time t 1 at which frost is completely removed from the frost, the temperature conversion rate Y determined by the above equation (1) should be obtained. Therefore, the control means 5 has a predetermined time (Δt = t) when the rate of change Y of the temperature T which is detected by the outdoor pipe temperature detection sensor 8 is input.
It can be known at 1- t 0 ) whether the temperature becomes T 1 at which the frost attached to the outdoor heat exchanger can be completely removed. This means that when the control means 5 holds the temperature change rate Y obtained from the above equation (1) and performs the defrosting operation, the frost is completely removed within a predetermined time (Δt = t 1 −t 0 ). Temperature T 1
Is meant to be reached.

【0017】従って、室外配管温度感知センサ8により
感知され、制御手段5に入力された除霜運転開始時間t
0 における室外配管温度T0 が−12℃であり、除霜運
転解除時間t1 における室外配管温度T1 は、12℃で
あるとする場合、初期の温度変換率Y1 は上記式(1) に
より下記のごとく決められうる。
Therefore, the defrosting operation start time t which is detected by the outdoor pipe temperature sensor 8 and input to the control means 5.
Outdoor pipe temperature T 0 in 0 an is -12 ° C., the outdoor pipe temperature T 1 of the defrosting operation cancellation time t 1, when assumed to be 12 ° C., a temperature conversion Y 1 of the initial above formula (1) Can be determined as follows.

【0018】[0018]

【数3】 [Equation 3]

【0019】これにより、上記除霜運転時間(Δt=t
1 −t0 )を3分にしようとすれば、温度変換率Y1
下記の如く求められうる。
As a result, the defrosting operation time (Δt = t
If 1- t 0 ) is set to 3 minutes, the temperature conversion rate Y 1 can be obtained as follows.

【0020】[0020]

【数4】 [Equation 4]

【0021】このことは、1分当たりの室外配管温度T
が8℃ずつ高められると3分間に霜が完全に取り除かれ
うることを意味するのである。このような仕方で、除霜
運転時間を4分間にしようとすれば、温度変換率(℃/
min )となり、1分当たりの室外配管温度が6℃ずつ高
められると、4分間に霜を完全に取り除かれうることを
意味する。
This means that the outdoor pipe temperature T per minute
It means that the frost can be completely removed in 3 minutes by increasing the temperature by 8 ° C. If the defrosting operation time is set to 4 minutes in this way, the temperature conversion rate (° C /
min) means that the frost can be completely removed in 4 minutes when the outdoor piping temperature per minute is increased by 6 ° C.

【0022】上述のところにより、初期の温度変換率Y
1 が求められると、制御手段5は圧縮器の運転周波数及
びヒータの位相角を制御し、室外配管の温度変換率Yの
初期に求められた温度変換率Y1 となるようにすること
ができる。すなわち、ヒータの位相は上記式(1) により
求められた温度変換率Y1 に比例するべく制御し、圧縮
器4の運転周波数は上記式(1) により求められた温度変
換率Yに反比例するように制御する。
According to the above, the initial temperature conversion rate Y
When 1 is obtained, the control means 5 can control the operating frequency of the compressor and the phase angle of the heater so that the temperature conversion rate Y 1 of the outdoor pipe is the initially obtained temperature conversion rate Y 1. . That is, the phase of the heater is controlled so as to be proportional to the temperature conversion rate Y 1 obtained by the above equation (1), and the operating frequency of the compressor 4 is inversely proportional to the temperature conversion rate Y obtained by the above equation (1). To control.

【0023】次に、図6の(B)によれば、ヒータの位
相角は温度変換率Yに反比例する。図6の(C)によれ
ば、圧縮器の運転周波数は温度変換率Yに比例する。従
って、上記図6の(B),(C)に示す如く、ヒータの
位相角Xθと圧縮器の運転周波数Xfでエアコンを運転
すると、室外配管の温度変換率Yは初期に計算された温
度変換率Y1 をもつようになる。
Next, according to FIG. 6B, the phase angle of the heater is inversely proportional to the temperature conversion rate Y. According to FIG. 6C, the operating frequency of the compressor is proportional to the temperature conversion rate Y. Therefore, as shown in (B) and (C) of FIG. 6, when the air conditioner is operated with the heater phase angle Xθ and the compressor operating frequency Xf, the temperature conversion rate Y of the outdoor pipe is the temperature conversion calculated initially. To have the rate Y 1 .

【0024】上記の如く、制御手段5はステップS43
で初期温度変化率Y1 の計算後、ステップS44を行
う。つまり、ステップS44では現在の温度変換率Yx
を計算する。この際、上記現在温度変換率Yxは、除霜
動作を行った後、室外配管温度感知センサ8で感知さ
れ、制御手段5に入力される室外配管温度に基づき式
(1) により計算される。ここで、所定時間Δtは任意に
設定可能となる。
As described above, the control means 5 controls the step S43.
After calculating the initial temperature change rate Y 1 , the step S44 is performed. That is, in step S44, the current temperature conversion rate Yx
To calculate. At this time, the current temperature conversion rate Yx is calculated by the outdoor pipe temperature detection sensor 8 after the defrosting operation and based on the outdoor pipe temperature input to the control means 5.
Calculated according to (1). Here, the predetermined time Δt can be set arbitrarily.

【0025】上記ステップS44で現在の温度変換率Y
xが計算されると、制御手段5は、上記ステップS43
で計算された温度変換率Y1 と、ステップS44で計算
された現在の温度変換率Xyの大きさをステップS45
とステップS46とで比べる。比較結果、初期の温度変
換率Y1 と現在の温度変換率Yxが同一の場合には、現
在のヒータ位相角と圧縮器の位相周波数により運転する
場合、定められた時間中をめどにする室外配管温度に到
達したという意味になる。
At step S44, the current temperature conversion rate Y
When x is calculated, the control means 5 causes the above step S43.
The temperature conversion rate Y 1 calculated in step S44 and the current temperature conversion rate Xy calculated in step S44 are calculated in step S45.
And step S46. Comparison result, when the initial temperature conversion Y 1 and current temperature conversion Yx are the same, when driving by the phase frequency current heater phase angle and compressor, an outdoor to prospect through the prescribed time This means that the pipe temperature has been reached.

【0026】従って、制御手段5はステップS47でヒ
ータ位相角と圧縮器の位相周波数を初期に設定した状態
に保持してエアコンを制御する。しかし、上記ステップ
S45とステップS46とを比べた結果、現在の温度変
換率Yxが初期の温度変換率Y1 より小さい場合には、
現在のヒータ位相角と圧縮器の位相周波数により運転す
る場合、定められた時間中をめどにする室外配管温度に
到達できないという意味になる。つまり、室外配管温度
の高まる温度幅が少なく、基本的なヒータの位相角と圧
縮器の運転周波数Xfだけでは、定められた時間中をめ
どにする室外配管温度に到達させることはできない。
Therefore, the control means 5 holds the heater phase angle and the phase frequency of the compressor at the initial settings in step S47 to control the air conditioner. However, as a result of comparing step S45 and step S46, if the current temperature conversion rate Yx is smaller than the initial temperature conversion rate Y 1 ,
When operating by the phase frequency current heater phase angle and the compressor, the meaning can not reach the outdoor piping temperature to prospect through the stipulated time. That is, the temperature range is less growing of outdoor piping temperature, only the operating frequency Xf between the phase angle of the basic heater compressor, it is impossible to reach the outdoor piping temperature to prospect through the stipulated time.

【0027】従って、ステップS48において温度変換
率Yを増加させる。上記ステップS48で温度変化率Y
を増加させるということは、図6の(B)でヒータの位
相角は小さくし(発熱量の増加)、図6の(C)で圧縮
器の運転周波数は上昇(室内では冷房効率の増大される
状態であって、除霜効率の増大する状態)させるのであ
る。
Therefore, the temperature conversion rate Y is increased in step S48. In step S48, the temperature change rate Y
6B, the heater phase angle is reduced (increased heat generation amount), and the operating frequency of the compressor is increased in FIG. 6C (cooling efficiency is increased indoors). In this state, the defrosting efficiency is increased).

【0028】これは、図6の(B),(C)の如く、小
さくなった位相角及び上昇した運転周波数によってヒー
タと圧縮器を駆動すると、増加した温度変換率Yにより
室外配管温度が上昇し定められた時間をめどにする温度
に到達するようになることを意味する。また、上記ステ
ップS45とステップS46における比較結果、現在の
温度変換率Xyが初期の温度変換率Y1 より大の場合に
は、現在のヒータ位相角と圧縮器の位相周波数により運
転する場合、定められた時間前をめどにする室外配管温
度に到達するという意味となる。
As shown in FIGS. 6B and 6C, when the heater and the compressor are driven by the decreased phase angle and the increased operating frequency, the temperature of the outdoor pipe increases due to the increased temperature conversion rate Y. It was defined time means that would like to reach a temperature at which the prospect. If the current temperature conversion rate Xy is larger than the initial temperature conversion rate Y 1 as a result of the comparison in step S45 and step S46, it is determined when operating with the current heater phase angle and the phase frequency of the compressor. the front of time the sense that it reaches the outdoor piping temperature of the prospect.

【0029】すなわち、室外配管温度の上昇される温度
幅が大きいため、基本となるヒータ位相角と圧縮器の運
転周波数Xfによっては、定められた時間前をめどにす
る室外配管温度に到達させる。よって、ステップS49
で温度変換率Yを減らす。上記温度変換率Yを減らすと
いうことは、図6の(B)に示す如く、ヒータの位相角
はおし(発熱量の減少)、図6の(C)に示す圧縮器の
運転周波数は下降(室内では冷房効率の減少される状態
であって、除霜効率の減る状態)にするのである。
[0029] That is, since elevated the temperature range of the outdoor piping temperature is larger, depending on the operating frequency Xf the heater phase angle underlying compressor, to reach the outdoor piping temperature to prospect pre defined time. Therefore, step S49
The temperature conversion rate Y is reduced by. Decreasing the temperature conversion rate Y means that the phase angle of the heater is lowered (the amount of heat generation is decreased) and the operating frequency of the compressor shown in FIG. 6C is decreased (as shown in FIG. 6B). In the room, the cooling efficiency is reduced and the defrosting efficiency is reduced).

【0030】これは、図6の(B),(C)の如く、大
きくなった位相角及び下降された運転周波数によりヒー
タと圧縮器を駆動すると、減少された温度変換率Yで室
外配管温度が上昇し、定められた時間をめどにする温度
に到達されるようになることを意味する。一方、除霜復
帰かどうかを判断するステップS42で除霜復帰(終
了)であると判断される場合には、ステップS39で除
霜解除動作(四方弁を制御して循環冷媒量の流れを変更
することにより、再び暖房運転が行われるようにする)
を行う。
As shown in FIGS. 6B and 6C, when the heater and the compressor are driven by the increased phase angle and the lowered operating frequency, the outdoor pipe temperature is reduced at the reduced temperature conversion rate Y. There rises, which means that will be reached to a temperature that it plans a time determined. On the other hand, when it is determined in step S42 that determines whether or not to return to defrosting, it is determined to be returning to defrosting (end), in step S39, defrosting release operation (the four-way valve is controlled to change the flow of the circulating refrigerant amount). So that the heating operation is performed again.)
I do.

【0031】上記の如く、除霜制御ルーチン(ステップ
S40)を行った後には、制御手段5はステップS50
で圧縮器運転周波数確定ルーチンを行う。図5は、上記
ステップS50の圧縮器運転周波数確定ルーチンをより
詳しく示したフローチャートである。図5によれば、ス
テップS51で圧縮器の運転周波数変化であるかどうか
を判別する。つまり、ステップS40の除霜制御ルーチ
ンを行った結果、室外配管の温度変換率Yを変化させる
ために、圧縮器の運転周波数を変化するべき場合が生じ
たかを判別する。
After performing the defrosting control routine (step S40) as described above, the control means 5 performs step S50.
The compressor operating frequency determination routine is performed. FIG. 5 is a flowchart showing in more detail the compressor operating frequency determination routine of step S50. According to FIG. 5, in step S51, it is determined whether the operating frequency of the compressor has changed. That is, as a result of performing the defrosting control routine of step S40, it is determined whether the operating frequency of the compressor should be changed in order to change the temperature conversion rate Y of the outdoor pipe.

【0032】制御手段5は上記ステップS51での判別
の結果、圧縮器運転周波数が変化すべき場合にはステッ
プS52を行う。ステップS52では新たに設定された
運転周波数により圧縮器が動作されるようトランジスタ
ベース駆動部6に制御信号を出力する。トランジスタベ
ース駆動部6は上記の制御信号によりインバータ3を制
御し、変化されたパルス幅変調信号(PWM信号)によ
り圧縮器が駆動されるようにする。
As a result of the determination in step S51, the control means 5 performs step S52 if the compressor operating frequency should change. In step S52, a control signal is output to the transistor base drive unit 6 so that the compressor operates at the newly set operating frequency. The transistor base drive unit 6 controls the inverter 3 by the above control signal so that the compressor is driven by the changed pulse width modulation signal (PWM signal).

【0033】このように、圧縮器の運転周波数を変化さ
せ、望む時間内に冷房運転(除霜運転)により、室外熱
交換器に取り付いた霜を除去させうる。次いで、ステッ
プS53とステップS54では圧縮器運転に利用される
現在の運転周波数が除霜条件に従う目標周波数と一致す
るかどうかを比較する。比較結果、現在の周波数により
圧縮器を駆動する。もし、上記比較結果、現在周波数が
目標周波数に比して低い場合には、ステップS55で現
在周波数を目標周波数に到達するべく上昇させて圧縮器
を運転する。
In this way, the operating frequency of the compressor can be changed and the frost attached to the outdoor heat exchanger can be removed by the cooling operation (defrosting operation) within the desired time. Next, in steps S53 and S54, it is compared whether or not the current operating frequency used for compressor operation matches the target frequency according to the defrosting condition. As a result of the comparison, the compressor is driven by the current frequency. If the current frequency is lower than the target frequency as a result of the above comparison, the current frequency is increased to reach the target frequency and the compressor is operated in step S55.

【0034】また、上記比較の結果、現在周波数が目標
周波数より高い場合には、ステップS56で現在周波数
を低めて目標周波数と一致させた後、圧縮器を運転す
る。すなわち、循環される冷媒量を調整してめどにする
室外配管温度が達成されることにより、室外熱変換器に
取り付いている霜に対する際霜時間を最適化させるので
ある。上記の如く圧縮器運転周波数可変動作が行われる
と、可変される圧縮器運転周波数により、除霜条件が満
足されながら、除霜条件を短縮させるようになる。上記
の如く、ステップS50で圧縮器運転周波数確定ルーチ
ンを行ったのち、制御手段5はステップS6を行う。上
記ステップS56では室内温度が最適効率の保持される
状態で外部へ放出される室外フアンの駆動回転数を確定
する。
As a result of the above comparison, if the current frequency is higher than the target frequency, the current frequency is lowered to match the target frequency in step S56, and then the compressor is operated. That is, by the outdoor piping temperature of the prospect by adjusting the amount of refrigerant to be circulated is achieved, is the to optimize the Saishimo time for frost that Toritsui the outdoor heat converter. When the compressor operating frequency varying operation is performed as described above, the defrosting condition is shortened while the defrosting condition is satisfied by the varied compressor operating frequency. As described above, after the compressor operating frequency determination routine is performed in step S50, the control means 5 performs step S6. In step S56, the driving rotational speed of the outdoor fan that is released to the outside while the indoor temperature is maintained at the optimum efficiency is determined.

【0035】以後、ステップS7では図4に示す如き除
霜制御ルーチンで調整された位相角度でヒータを制御し
て発熱量を調整することにより、最大限の除霜条件を満
足しながら、除霜運転が行われるようにする。
Thereafter, in step S7, the heater is controlled at the phase angle adjusted by the defrosting control routine as shown in FIG. 4 to adjust the heat generation amount, thereby satisfying the maximum defrosting condition and defrosting. Allow driving to take place.

【0036】[0036]

【発明の効果】以上のように、本発明の方法によれば、
室外配管温度変換率に基づいて弾力的に除霜時間を制御
することにより、除霜時間を短縮させるのみならず、結
果としては暖房効率を向上させ、消費電力も節約させう
る大なる効果がある。また、本発明は、発明の範囲を逸
脱することなく種々の変形が実施できることは明らかで
ある。
As described above, according to the method of the present invention,
By elastically controlling the defrosting time based on the outdoor pipe temperature conversion rate, not only the defrosting time can be shortened, but as a result, heating efficiency can be improved and power consumption can be saved. . Further, it is obvious that the present invention can be variously modified without departing from the scope of the invention.

【0037】なお、上述においてはインバータエアコン
についてのみ述べたが、除霜動作を要するほかの暖房機
具に対しても、本発明の方法を適用して、同一効果を奏
しうることはもちろんである。
Although only the inverter air conditioner has been described above, it goes without saying that the same effect can be obtained by applying the method of the present invention to other heating appliances that require defrosting operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般のインバータエアコンの圧縮器駆動回路で
ある。
FIG. 1 is a compressor drive circuit of a general inverter air conditioner.

【図2】従来のインバータエアコンの動作状態図であ
る。
FIG. 2 is an operation state diagram of a conventional inverter air conditioner.

【図3】本発明のインバータエアコンの除霜制御方法の
フローチャートである。
FIG. 3 is a flowchart of a defrosting control method for an inverter air conditioner according to the present invention.

【図4】図3における除霜制御ルーチンの詳細フローチ
ャートである。
FIG. 4 is a detailed flowchart of a defrost control routine in FIG.

【図5】図3における圧縮器運転周波数ルーチンのフロ
ーチャートである。
5 is a flowchart of a compressor operating frequency routine in FIG.

【図6】(A)は本発明の室外配管温度の変換率フロー
チャート、(B)は、室外配管温度変換率とヒータ位相
角との関係を示す特性図、(C)は、室外配管温度変換
率と圧縮器の運転周波数との関係を示す特性図である。
6A is a flow chart of conversion rate of outdoor piping temperature of the present invention, FIG. 6B is a characteristic diagram showing a relationship between the conversion rate of outdoor piping and the heater phase angle, and FIG. 6C is temperature conversion of outdoor piping. It is a characteristic view which shows the relationship between a rate and the operating frequency of a compressor.

【符号の説明】[Explanation of symbols]

5 制御手段 7 室外配管温度感知センサ T 室外配管温度 Y 室外配管温度変化率 5 Control means 7 Outdoor pipe temperature detection sensor T Outdoor pipe temperature Y Outdoor pipe temperature change rate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 室外熱交換器に着霜された霜を除去する
ための除霜運転(冷房運転)を行うインバータエアコン
において、室外配管温度感知センサにより感知された室
外配管温度を判別して除霜運転の突入条件を満足する場
合、冷媒の流れ方向を変化させて除霜運転が行われるよ
うに四方弁を制御する第1ステップと、所定時間に除霜
が行われるように現在の除霜状態を判断して圧縮器の運
転周波数及びヒータの位相角に対する可変可否を判断す
る第2ステップと、前記第2ステップの判断により圧縮
器運転周波数及びヒータの位相角を制御して除霜運転を
行う第3ステップとからなることを特徴とするインバー
タエアコンの除霜制御方法。
1. In an inverter air conditioner that performs a defrosting operation (cooling operation) for removing frost formed on an outdoor heat exchanger, the outdoor pipe temperature detected by an outdoor pipe temperature sensor is discriminated and removed. When the rush condition of the frost operation is satisfied, the first step of controlling the four-way valve so that the defrosting operation is performed by changing the flow direction of the refrigerant, and the current defrosting so that the defrosting is performed at a predetermined time. The second step of determining the state to determine whether or not the compressor operating frequency and the heater phase angle can be changed, and the determination of the second step controls the compressor operating frequency and the heater phase angle to perform the defrosting operation. A defrosting control method for an inverter air conditioner, comprising: a third step to be performed.
【請求項2】 前記第2ステップは、室外配管の温度変
化率を感知して所定時間に除霜が完了されるかどうかを
判断する除霜条件判断段階と、前記除霜条件判断ステッ
プの判断結果につれて除霜条件を決定する除霜条件決定
段階とからなることを特徴とする請求項1記載のインバ
ータエアコンの除霜制御方法。
2. The defrosting condition determining step of sensing the temperature change rate of the outdoor pipe to determine whether defrosting is completed within a predetermined time, and the determining step of the defrosting condition determining step. The defrosting control method for an inverter air conditioner according to claim 1, further comprising a defrosting condition determining step of determining the defrosting condition according to the result.
【請求項3】 除霜条件判断段階は、除霜運転初期段階
で計算された室外配管温度変化率と、以後周期的に計算
された室外配管温度変化率とを比較して判断することを
特徴とする請求項2記載のインバータエアコンの除霜制
御方法。
3. The defrosting condition judging step comprises judging by comparing the outdoor pipe temperature change rate calculated in the initial stage of the defrosting operation with the outdoor pipe temperature change rate calculated periodically thereafter. The defrosting control method for an inverter air conditioner according to claim 2.
【請求項4】 室外配管温度変化率Yは、下記式(1) 【数1】 (ただし、Δtは除霜運転時間であり、ΔTは現在の室
外配管温度T0 と除霜運転完了時の室外配管温度T1
の差を表わす。)により算出されることを特徴とする請
求項3記載のインバータエアコンの除霜制御方法。
4. The outdoor pipe temperature change rate Y is expressed by the following equation (1): (However, Δt is the defrosting operation time, and ΔT represents the difference between the current outdoor piping temperature T 0 and the outdoor piping temperature T 1 at the completion of the defrosting operation.) Item 4. A defrosting control method for an inverter air conditioner according to Item 3.
【請求項5】 除霜動作制御段階は、初期の室外配管温
度変化率と、以後の除霜動作段階の室外配管温度変化率
との比較結果に従ってヒータの位相角と圧縮器の運転周
波数を決定することを特徴とする請求項2記載のインバ
ータエアコンの除霜制御方法。
5. The defrosting operation control step determines the phase angle of the heater and the operating frequency of the compressor according to the comparison result of the initial outdoor pipe temperature change rate and the outdoor pipe temperature change rate in the subsequent defrosting operation step. The defrosting control method for an inverter air conditioner according to claim 2, wherein
JP4324192A 1991-12-27 1992-12-03 Defrost control method for inverter air conditioner Expired - Fee Related JP2514774B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910024641A KR950000738B1 (en) 1991-12-27 1991-12-27 Method of controlling frost of invertor air conditioner
KR24641/1991 1991-12-27

Publications (2)

Publication Number Publication Date
JPH0666461A true JPH0666461A (en) 1994-03-08
JP2514774B2 JP2514774B2 (en) 1996-07-10

Family

ID=19326244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4324192A Expired - Fee Related JP2514774B2 (en) 1991-12-27 1992-12-03 Defrost control method for inverter air conditioner

Country Status (4)

Country Link
JP (1) JP2514774B2 (en)
KR (1) KR950000738B1 (en)
CN (1) CN1072350C (en)
DE (1) DE4243634C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283880A (en) * 2020-09-17 2021-01-29 珠海格力电器股份有限公司 Control system and control method for preventing air conditioner from freezing
CN113074445A (en) * 2021-03-08 2021-07-06 海信(山东)空调有限公司 Air conditioner defrosting control method and device, air conditioner and computer readable storage medium
CN113091216A (en) * 2021-04-14 2021-07-09 海信(广东)空调有限公司 Defrosting control method for air conditioner

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598809B2 (en) * 1997-08-25 2004-12-08 三菱電機株式会社 Refrigeration cycle device
KR20050105029A (en) * 2004-04-30 2005-11-03 엘지전자 주식회사 Defrosting driving method for air conditioner
JP4836212B2 (en) * 2009-07-22 2011-12-14 シャープ株式会社 Air conditioner
CN103123194A (en) * 2012-03-31 2013-05-29 宁波奥克斯电气有限公司 Defrosting method of multi-combination type air conditioning unit
CN102721115B (en) * 2012-06-27 2014-10-29 美的集团股份有限公司 Air conditioner and control method thereof
CN104214885B (en) * 2013-05-29 2016-12-28 珠海格力电器股份有限公司 Air-conditioner defrosting control method and device and air-conditioning
CN105953365B (en) * 2016-05-16 2019-03-29 广东美的制冷设备有限公司 Air conditioner and its defrosting control method
CN107588543A (en) * 2017-11-03 2018-01-16 邹城市东基新热力管道防腐保温有限公司 A kind of far infrared heater of wellhead anti-freezing
CN109084434B (en) * 2018-08-29 2019-10-18 珠海格力电器股份有限公司 A kind of frequency conversion heat pump air conditioner and its defrosting control method
DE102018221328A1 (en) * 2018-12-10 2020-06-10 BSH Hausgeräte GmbH Refrigeration device and method for initializing a defrosting process in a refrigeration device
CN110057029A (en) * 2019-04-25 2019-07-26 宁波奥克斯电气股份有限公司 A kind of air-conditioner defrosting control method, device and air conditioner
CN110470025B (en) * 2019-08-04 2021-12-21 重庆海尔空调器有限公司 Control method and device for defrosting of air conditioner and air conditioner
CN112344622B (en) * 2020-11-06 2022-01-28 中山市爱美泰电器有限公司 Intelligent defrosting device of heat pump system and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079331B2 (en) * 1986-12-26 1995-02-01 松下電器産業株式会社 Operation control method for heat pump type air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283880A (en) * 2020-09-17 2021-01-29 珠海格力电器股份有限公司 Control system and control method for preventing air conditioner from freezing
CN113074445A (en) * 2021-03-08 2021-07-06 海信(山东)空调有限公司 Air conditioner defrosting control method and device, air conditioner and computer readable storage medium
CN113091216A (en) * 2021-04-14 2021-07-09 海信(广东)空调有限公司 Defrosting control method for air conditioner

Also Published As

Publication number Publication date
KR950000738B1 (en) 1995-01-28
JP2514774B2 (en) 1996-07-10
DE4243634A1 (en) 1993-07-01
DE4243634C2 (en) 2002-08-14
KR930013607A (en) 1993-07-22
CN1072350C (en) 2001-10-03
CN1073760A (en) 1993-06-30

Similar Documents

Publication Publication Date Title
JP2514774B2 (en) Defrost control method for inverter air conditioner
US6860431B2 (en) Strategic-response control system for regulating air conditioners for economic operation
EP1684025B1 (en) Air conditioner with variable-capacity compressor and control method therefor
JP2723339B2 (en) Heat pump heating equipment
CN104613593A (en) Air conditioner and electric heating control method thereof
JPH1114124A (en) Air conditioner
JP4060429B2 (en) Air conditioner
CN111649452B (en) Air conditioner auxiliary defrosting method, control device, storage medium and air conditioner
JPH10148377A (en) Air conditioner
JP3518353B2 (en) Heat pump heating system
US6997002B2 (en) Air conditioning unit and method of operating the same
KR100502304B1 (en) Control method for compressor in air conditioner
JP4078447B2 (en) Air conditioner and outdoor unit of air conditioner
CN110542174B (en) Defrosting method of air conditioner external unit, computer readable storage medium and air conditioner
JPS58115235A (en) Control circuit of air conditioner
KR100683830B1 (en) Method for controlling inverter compressor of air conditioner
JPH07120049A (en) Air conditioner
JP3171456B2 (en) Air conditioner operation control method
KR100452771B1 (en) Cotrol method of air-conditioner
JP6939094B2 (en) Power converter control device and refrigeration device
JPH11132605A (en) Air conditioner
JP3169485B2 (en) Air conditioner
JP2021124228A (en) Refrigeration cycle device
JP3098793B2 (en) Control device for air conditioner
JP2613977B2 (en) Control method of air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees