JPH0665774A - Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device - Google Patents

Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device

Info

Publication number
JPH0665774A
JPH0665774A JP4223899A JP22389992A JPH0665774A JP H0665774 A JPH0665774 A JP H0665774A JP 4223899 A JP4223899 A JP 4223899A JP 22389992 A JP22389992 A JP 22389992A JP H0665774 A JPH0665774 A JP H0665774A
Authority
JP
Japan
Prior art keywords
gas
series
fuel cell
parallel
gas outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223899A
Other languages
Japanese (ja)
Inventor
Hideo Maeda
秀雄 前田
Kenro Mitsuta
憲朗 光田
Toshiaki Murahashi
俊明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4223899A priority Critical patent/JPH0665774A/en
Publication of JPH0665774A publication Critical patent/JPH0665774A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To refine and compress hydrogen gas containing impurities with low electric power consumption according to the change in the gas flow rate by switching the arrangement of pieces of a single electric cell and connecting them in series or parallel as to single electric cell provided with gas diffusion electrodes arranged on both sides of an ion conductive solid electrolyte. CONSTITUTION:A single electric cell is formed by disposing gas diffusion electrodes on both sides of an ion conductive solid electrolyte such as a proton conductive film. Pieces 6, 7 of single electric cell are laminated in series electrically with a metallic collector interposed, on which DC current is applied from a power source 28. Hydrogen gas containing impurities are supplied through a gas inlet 21 to the pieces 6, 7 of a single cell to be treated, refined and compressed, and then high purity hydrogen gas is discharged through a gas outlet 22 in a pressurized state. In this gas refining device, a serial and parallel switching connecting means consisting of valves 17, 18, 19 is arranged between the gas inlet 21 and gas outlet 22. Thereby, when a large amt. of gas is treated, pieces 6, 7 of the single electric cell are connected in parallel, while for a small amt. of gas, cells are connected in series. Thus, the solid electrolyte can be thinned in film thickness and the electric power consumption is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はガスを電気化学的な反
応を利用して精製するガス精製装置およびこのガス精製
装置を備えた炭化水素改質型燃料電池システムに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas refining device for refining gas by utilizing an electrochemical reaction and a hydrocarbon reforming fuel cell system equipped with this gas refining device.

【0002】[0002]

【従来の技術】図4は例えば特公昭62ー59184号
公報に示された従来のガス精製装置を示す断面図であ
り、図において、1はイオン電導性膜で、その一方の面
には陽極のガス拡散電極2が、他方の面には陰極のガス
拡散電極3が配設されている。4は陽極側の金属集電体
で、下面の中央部にガス導入口4aを、中央部から離れ
た位置に残余ガス導出口4bを有し、ガス拡散電極2と
対向する面側には上記ガス入口4aに連通する溝状のガ
ス流路4cが設けられている。5は陰極側の金属集電体
で、上面の中央部にガス導出口5aを有し、ガス拡散電
極3と対抗する面側には上記ガス導出口5aと連通する
溝状のガス流路5bが設けられている。
2. Description of the Related Art FIG. 4 is a sectional view showing a conventional gas purifying apparatus disclosed in, for example, Japanese Patent Publication No. 62-59184, in which 1 is an ion conductive film, and one surface thereof is an anode. Of the gas diffusion electrode 2 and the gas diffusion electrode 3 of the cathode are disposed on the other surface. Reference numeral 4 denotes a metal collector on the anode side, which has a gas inlet 4a at the center of the lower surface and a residual gas outlet 4b at a position distant from the center, and the surface facing the gas diffusion electrode 2 has the above A groove-shaped gas passage 4c communicating with the gas inlet 4a is provided. Reference numeral 5 denotes a metal collector on the cathode side, which has a gas outlet port 5a at the center of the upper surface, and a groove-shaped gas flow channel 5b communicating with the gas outlet port 5a on the side facing the gas diffusion electrode 3. Is provided.

【0003】次に動作に付いて説明する。ガス拡散電極
2、3間に電圧を印加するとガス導入口4aからガス流
路4cに入った水素ガスは陽極のガス拡散電極2で電子
を失い水素イオンとなる。 H2+H2O→2e-+2H3+ 水素イオンはイオン電導性膜1中の水を伴い上記電圧を
駆動力として陰極のガス拡散電極3まで進み、ガス拡散
電極3で電子を受け取り、水素ガスに戻る。 2e-+2H3+→H2+H2O 生じた水素ガスはイオン電導性膜1を通ることができ
ず、上記電圧によるイオンの移動力は大きいので、陰極
のガス拡散電極3側に水素ガスが蓄積される。この水素
ガスはガス流路5bからガス導出口5aに導かれ、ガス
導出口5bからは純度の高い水素ガスが得られる。この
ときガス導出口5aの出口流量を流量調整弁(図示せ
ず)等により調整すれば高圧の水素ガスが得られる。一
方、上記イオン電導性膜1内を移動することができるの
は、水素イオンだけであるので、ガス導入口4aに不純
物を含む水素ガスが導入された場合には、純粋な水素ガ
スと水分のみが、対極のガス拡散電極3に導出され、水
素濃度の低いガスはガス流路4cから残余ガス導出口4
bに導かれ、残余ガス導出口4bから流出する。
Next, the operation will be described. When a voltage is applied between the gas diffusion electrodes 2 and 3, the hydrogen gas that has entered the gas flow path 4c from the gas inlet 4a loses electrons at the anode gas diffusion electrode 2 and becomes hydrogen ions. H 2 + H 2 O → 2e + 2H 3 O + Hydrogen ions travel to the gas diffusion electrode 3 of the cathode by using the above voltage as a driving force together with water in the ion conductive film 1 and receive electrons at the gas diffusion electrode 3 to generate hydrogen. Return to gas. 2e + 2H 3 O + → H 2 + H 2 O The generated hydrogen gas cannot pass through the ion conductive film 1 and the ion mobility due to the above voltage is large. Is accumulated. This hydrogen gas is guided to the gas outlet 5a from the gas flow path 5b, and hydrogen gas of high purity is obtained from the gas outlet 5b. At this time, high-pressure hydrogen gas can be obtained by adjusting the outlet flow rate of the gas outlet 5a with a flow rate adjusting valve (not shown) or the like. On the other hand, since only hydrogen ions can move in the ion conductive film 1, when hydrogen gas containing impurities is introduced into the gas inlet 4a, only pure hydrogen gas and water are allowed. However, the gas having a low hydrogen concentration is discharged to the counter gas diffusion electrode 3 and the residual gas discharge port 4 is discharged from the gas flow path 4c.
It is led to b and flows out from the residual gas outlet 4b.

【0004】[0004]

【発明が解決しようとする課題】従来のガス精製装置は
以上のように構成されているので、ガス拡散電極2、3
間に係る電圧Eは次式のようになる。 E=E0+RT/2F×ln(P2/P1)+Ir ただし、E0は水素のイオン化電位、Rは気体常数、T
は温度、Fはファラディー常数、P2はガス拡散電極3
側の水素分圧、P1はガス拡散電極2側の水素分圧、I
は電流、rはイオン電導性膜1の電気抵抗である。ここ
で、両ガス拡散電極2、3に係る電圧について、その内
訳を見ると、右辺の第1項のイオン化電位E0は0.0
2V、第2項はネルンスト加電圧と呼ばれ両ガス拡散電
極2、3のガスの状態で決まるが、分圧比が100at
m/1atmの場合でも0.06V程度である。しかし
残る第3項の抵抗が、400mA/cm2程度の電流で
も0.1Vと大きく上記電圧の55%を占めている。つ
まり電圧の効率がイオン電導性膜1の電気抵抗rが高い
ために非常に小さくなり電気特性が悪くなる。上記電気
抵抗rはイオン電導性膜1の厚みが0.2mmの時のも
のであり、イオン電導性膜1の電気抵抗rを小さくする
ためにはイオン電導性膜1の厚みを薄くすれば良いが、
イオン電導性膜1の厚みを薄くすれば機械的強度が落
ち、例えば、0.2mmの膜厚では100気圧の差圧に
も十分耐えるが、膜厚が0.025mmだと20気圧、
同0.013mmだと7気圧程度の差圧にしか耐えられ
ず、電気特性を上げようとすると、機械的な特性が悪く
なり、また、処理する必要なガスの量の大幅な変化に対
処できない等の問題点があった。
Since the conventional gas purification apparatus is constructed as described above, the gas diffusion electrodes 2, 3 are
The voltage E applied between them is as follows. E = E 0 + RT / 2F × ln (P 2 / P 1 ) + Ir where E 0 is the ionization potential of hydrogen, R is the gas constant and T
Is temperature, F is Faraday constant, P 2 is gas diffusion electrode 3
Side hydrogen partial pressure, P 1 is the hydrogen partial pressure on the gas diffusion electrode 2 side, I
Is the electric current and r is the electric resistance of the ion conductive film 1. Here, looking at the breakdown of the voltages applied to both gas diffusion electrodes 2 and 3, the ionization potential E 0 of the first term on the right side is 0.0.
2V, the second term is called Nernst applied voltage and is determined by the gas state of both gas diffusion electrodes 2, 3, but the partial pressure ratio is 100 at.
Even in the case of m / 1 atm, it is about 0.06V. However, the remaining resistance of the third term is as large as 0.1 V even at a current of about 400 mA / cm 2 , accounting for 55% of the above voltage. That is, the voltage efficiency is very small because the electric resistance r of the ion conductive film 1 is high, and the electric characteristics are deteriorated. The electric resistance r is obtained when the thickness of the ion conductive film 1 is 0.2 mm. To reduce the electric resistance r of the ion conductive film 1, the thickness of the ion conductive film 1 may be reduced. But,
If the thickness of the ion conductive film 1 is reduced, the mechanical strength is lowered. For example, a film thickness of 0.2 mm can sufficiently withstand a pressure difference of 100 atm, but a film thickness of 0.025 mm is 20 atm,
If it is 0.013 mm, it can withstand only a pressure difference of about 7 atm, and if the electrical characteristics are to be increased, the mechanical characteristics will deteriorate and it will not be possible to cope with a large change in the amount of gas required to be processed. There were problems such as.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、厚みの薄い電気抵抗の小さいイ
オン導電性固体電解質体を使用し不純物を含む水素ガス
を、その流量が大きく変化しても精製・圧縮できるガス
精製装置、さらに、上記ガス精製装置を備えた負荷の大
きな変動に対処し得る炭化水素改質型燃料電池システム
を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a thin ion conductive solid electrolyte body having a small electric resistance is used, and the flow rate of hydrogen gas containing impurities is largely changed. An object of the present invention is to provide a gas refining device that can be purified and compressed even further, and a hydrocarbon reforming fuel cell system that is equipped with the above gas refining device and that can cope with large fluctuations in load.

【0006】[0006]

【課題を解決するための手段】この発明に係るガス精製
装置はイオン化可能なガスのガス入口流路と、複数個の
単電池で精製されたガスを送出するガス出口流路間に、
上記複数個の単電池を直列または並列に切り換え接続す
る直並列切換手段を設けたものである。また、燃料電池
の負荷の急減時等において上記燃料電池をバイパスした
改質ガスと燃料電池の放出ガスとを、複数個の単電池を
直並列切換接続するようにした上記ガス精製装置により
精製し、この精製ガスをタンクを介し上記燃料電池に供
給するようにしものである。
A gas purifying apparatus according to the present invention comprises a gas inlet passage for an ionizable gas and a gas outlet passage for delivering a gas purified by a plurality of cells.
A serial / parallel switching means for switching and connecting the plurality of unit cells in series or in parallel is provided. Further, when the load of the fuel cell is suddenly reduced, the reformed gas bypassing the fuel cell and the released gas of the fuel cell are purified by the gas purification device configured to connect a plurality of unit cells in series / parallel switching. The purified gas is supplied to the fuel cell through a tank.

【0007】[0007]

【作用】この発明におけるガス精製装置は直並列切り換
え手段により直列または並列に切換え接続された複数個
の単電池によりガス入り口流路から流入したガスが精製
される。また、ガス精製装置により燃料電池からの放出
ガスと改質器からの改質ガスが精製され、この精製され
たガスはタンクに蓄積されると共に上記タンクを介し燃
料電池に供給される。
In the gas purifying apparatus according to the present invention, the gas flowing in from the gas inlet passage is purified by the plurality of unit cells connected in series or in parallel by the serial / parallel switching means. Further, the gas purification device purifies the gas released from the fuel cell and the reformed gas from the reformer, and the purified gas is accumulated in the tank and supplied to the fuel cell through the tank.

【0008】[0008]

【実施例】【Example】

実施例1.図1はこの発明の一実施例によるガス精製装
置を示す構成図であり、図において、6、7は一体に形
成された第1と第2の単電池で、図2にその概念的な断
面図を示す。図2において、8、9はプロトン導電性性
膜等のイオン導電性固体電解質体で、その一方の面には
陽極のガス拡散電極10、11が、他方の面には陰極の
ガス拡散電極12、13が配設されている。14は陰極
側の金属集電体で、中央部にはガス導出口14aを有
し、ガス拡散電極12と対向する面側には図3に示され
るように上記ガス導出口14aに連通しガス拡散電極1
2側に開口する溝状のガス流路14bが形成されてい
る。15は陽極側の金属集電体で、中央部にガス導入口
15aを、中央部から離れた位置に残余ガス導出口15
cを有し、ガス拡散電極11と対向する面側にはガス導
入口15aおよび残余ガス導出口15cと連通し陽極の
ガス拡散電極11側に開口する図3に示されるような溝
状のガス流路15bが形成されている。
Example 1. FIG. 1 is a block diagram showing a gas purifying apparatus according to an embodiment of the present invention. In the figure, 6 and 7 are first and second cells which are integrally formed, and FIG. The figure is shown. In FIG. 2, reference numerals 8 and 9 denote ion conductive solid electrolyte bodies such as a proton conductive membrane, one side of which is an anode gas diffusion electrode 10 and 11 and the other side of which is a cathode gas diffusion electrode 12. , 13 are provided. Reference numeral 14 denotes a metal collector on the cathode side, which has a gas outlet port 14a in the central portion thereof, and a gas communicating with the gas outlet port 14a as shown in FIG. Diffusion electrode 1
A groove-shaped gas flow path 14b having an opening on the second side is formed. Reference numeral 15 denotes a metal collector on the anode side, which has a gas inlet 15a in the center and a residual gas outlet 15 at a position away from the center.
A groove-shaped gas having a c, which is in communication with the gas inlet 15a and the residual gas outlet 15c on the surface side facing the gas diffusion electrode 11 and is open to the gas diffusion electrode 11 side of the anode as shown in FIG. The flow path 15b is formed.

【0009】16は陽極のガス拡散電極10と陰極のガ
ス拡散電極13間に配設された金属集電体で、ガス拡散
電極10と対向する面側にはガス導入口16aおよび残
余ガス導出口16cと連通しガス拡散電極10側に開口
する図3に示されるような溝状のガス流路16bが、ま
た、ガス拡散電極13と対向する面側にはガス導出口1
6dと連通しガス拡散電極13側に開口する図3に示さ
れるような溝状のガス流路16eが形成されている。上
記8、10、12、14、16によって第1の単電池
が、上記9、11、13、15、16によって第2の単
電池7が構成され、これらの第1と第2の単電池6、7
は上記金属集電体16によって電気的に直列に積層され
ている。
Reference numeral 16 denotes a metal current collector disposed between the anode gas diffusion electrode 10 and the cathode gas diffusion electrode 13, and has a gas inlet 16a and a residual gas outlet on the side facing the gas diffusion electrode 10. A groove-shaped gas flow channel 16b as shown in FIG. 3 that is open to the gas diffusion electrode 10 side and communicates with 16c, and a gas outlet 1 on the side facing the gas diffusion electrode 13.
A groove-shaped gas flow channel 16e as shown in FIG. 3 is formed which is in communication with 6d and opens toward the gas diffusion electrode 13 side. The above-mentioned 8, 10, 12, 14, 16 form a first unit cell, and the above-mentioned 9, 11, 13, 15, 16 form a second unit cell 7. These first and second unit cells 6 , 7
Are electrically stacked in series by the metal current collector 16.

【0010】17は第1の単電池6のガス導入口16a
と第2の単電池7のガス導出口16d間に接続された第
1の開閉弁、18は第2の単電池7のガス導入口15a
と第1の単電池6のガス導入口16a間に接続された第
2の開閉弁、19は第1の単電池6のガス導出口14a
と第2のガス導出口16d間に接続された第3の開閉
弁、20はイオン化可能なガスのガス入口流路21とガ
ス出口流路22間に第1と第2の単電池6、7を直列ま
たは並列に切換え接続する直並列切換接続手段であり、
上記第1、2、3の開閉弁17、18、19で構成され
ている。23は第1の単電池6の残余ガス導出口16c
に第4の開閉弁24を介し接続されたガス排出管、25
は第2の単電池7の残余ガス導出口15cに第5の開閉
弁26を介し接続されたガス排出管、27は上記6、
7、20〜26で構成されたガス精製装置、28は第1
と第2の単電池6、7の両極に適当な電位を与える直流
電源である。
Reference numeral 17 denotes a gas inlet 16a of the first unit cell 6.
And a first opening / closing valve connected between the gas outlet 16d of the second cell 7 and 18 is a gas inlet 15a of the second cell 7
And a second opening / closing valve connected between the gas inlet 16a of the first unit cell 6 and 19 is a gas outlet 14a of the first unit cell 6.
A third on-off valve connected between the second gas outlet 16d and the second gas outlet 16d, and 20 is a first and second unit cell 6, 7 between the gas inlet passage 21 and the gas outlet passage 22 of the ionizable gas. Is a series-parallel switching connection means for switching and connecting in series or in parallel,
The first, second and third on-off valves 17, 18 and 19 are included. 23 is a residual gas outlet 16c of the first unit cell 6
A gas discharge pipe connected to the through a fourth on-off valve 24, 25
Is a gas discharge pipe connected to the residual gas outlet 15c of the second unit cell 7 through a fifth opening / closing valve 26, and 27 is the above 6,
A gas purifier composed of 7, 20 to 26, and 28 is the first
And a direct current power source for applying an appropriate potential to both electrodes of the second unit cells 6 and 7.

【0011】次に動作に付いて説明する。 モード1(並列):処理するガスが大量の時、開閉弁1
7を閉じ、開閉弁18、19を開き、ガス入口流路21
とガス出口流路22間に第1と第2の単電池6、7が並
列に接続される。ガス入口流路21に入った不純物を含
んだ水素ガスは、ガス導入口15aとガス導入口16a
へ分岐して流入し、第1と第2の単電池6、7の陽極の
ガス拡散電極10、11で電子を失い水素イオンとな
る。この水素イオンはプロトン導電性性膜8、9中の水
を伴い第1の単電池6の両ガス拡散電極10、12間、
第2の単電池7の両ガス拡散電極11、13間に印加さ
れた電圧を駆動源として陰極のガス拡散電極12、13
まで進み、ここで電子を受け取り、水素ガスに戻る。こ
の純度が高く、圧力が高くなった水素ガスはガス流路1
4b、16eを流れてガス導出口14a、16dに導か
れる。ガス導出口14aへ導かれた水素ガスはガス導出
口4aからガス出口流路22へ送出される。また、ガス
導出口16dに導かれた水素ガスはガス導出口16dか
ら開閉弁19を介してガス出口流路22へ送出される。
一方、開閉弁24、26を開くと、ガス流路15b、1
6bを流れ水素濃度が低くなったガスは残余ガス導出口
15c、16cへ導かれ、残余がス導出口15c、16
cから開閉弁24、26、ガス排出管23、25を介し
外部へ放出される。
Next, the operation will be described. Mode 1 (parallel): Open / close valve 1 when a large amount of gas is processed
7 is closed, the on-off valves 18 and 19 are opened, and the gas inlet channel 21
The first and second unit cells 6 and 7 are connected in parallel between the gas outlet channel 22 and the gas outlet channel 22. Hydrogen gas containing impurities that has entered the gas inlet channel 21 is supplied to the gas inlet 15a and the gas inlet 16a.
The gas flows into the gas diffusion electrodes 10 and 11 at the anodes of the first and second unit cells 6 and 7 to become hydrogen ions. This hydrogen ion is accompanied by water in the proton conductive membranes 8 and 9, and between the gas diffusion electrodes 10 and 12 of the first unit cell 6,
Using the voltage applied between the gas diffusion electrodes 11 and 13 of the second unit cell 7 as a drive source, the gas diffusion electrodes 12 and 13 of the cathode are used.
It goes to, receives electrons here, and returns to hydrogen gas. The hydrogen gas with high purity and high pressure is supplied to the gas passage 1
It flows through 4b and 16e and is guided to the gas outlets 14a and 16d. The hydrogen gas guided to the gas outlet 14a is sent to the gas outlet passage 22 from the gas outlet 4a. Further, the hydrogen gas guided to the gas outlet 16d is delivered from the gas outlet 16d to the gas outlet passage 22 via the opening / closing valve 19.
On the other hand, when the opening / closing valves 24, 26 are opened, the gas flow paths 15b, 1
The gas flowing through 6b and having a low hydrogen concentration is guided to the residual gas outlet ports 15c and 16c, and the residual gas is discharged into the residual gas outlet ports 15c and 16c.
It is discharged from c through the on-off valves 24 and 26 and the gas discharge pipes 23 and 25 to the outside.

【0012】モード2(直列):処理するガスが少ない
とき、開閉弁17を開き、開閉弁18、19を閉じ、ガ
ス入口流路21とガス出口流路22間に第1と第2の単
電池6、7を直列に接続する。ガス入口流路21に入っ
た不純物を含んだ水素ガスはガス導入口15aからガス
流路15bに流入し、第2の単電池7の陽極のガス拡散
電極11で電子を失い水素イオンとなる。この水素イオ
ンはプロトン導電性性膜9中の水を伴い第2の単電池7
の両ガス拡散電極11、13間に印加された電圧を駆動
源として陰極のガス拡散電極13まで進み、ここで電子
を受け取り、水素ガスに戻る。この純度が高くなった水
素ガスはガス流路16eを流れてガス導出口14a、1
6dに導かれる。ガス導出口14aへ導かれた水素ガス
はガス導出口4aから開閉弁17を介しガス導入口16
aへ導かれガス流路16bに流入し、陽極のガス拡散電
極10で再びイオン化しプロトン導電性性膜8を通り陰
極のガス拡散電極12まで進み、ここで電子を受け取
り、再び水素ガスに戻り、ガス流路14bを経てガス導
出口14aからガス出口流路22へ送出される。このと
きガス出口流路22の出口流量を流量調整弁(図示せ
ず)等により調整すれば所定の高圧の圧縮水素ガスが得
られる。
Mode 2 (series): When the amount of gas to be processed is small, the open / close valve 17 is opened, the open / close valves 18 and 19 are closed, and the first and second single cells are provided between the gas inlet passage 21 and the gas outlet passage 22. The batteries 6 and 7 are connected in series. The hydrogen gas containing impurities that has entered the gas inlet channel 21 flows into the gas channel 15b from the gas inlet port 15a and loses electrons at the gas diffusion electrode 11 of the anode of the second cell 7 to become hydrogen ions. This hydrogen ion accompanies the water in the proton conductive film 9 and the second unit cell 7
The voltage applied between the two gas diffusion electrodes 11 and 13 is used as a drive source to proceed to the cathode gas diffusion electrode 13, where it receives electrons and returns to hydrogen gas. The hydrogen gas having a high purity flows through the gas flow passage 16e and flows through the gas outlets 14a, 1
You are led to 6d. The hydrogen gas introduced to the gas outlet 14a is supplied from the gas outlet 4a through the opening / closing valve 17 to the gas inlet 16a.
The gas is guided to the gas flow path 16a, flows into the gas flow path 16b, is ionized again in the gas diffusion electrode 10 of the anode, passes through the proton conductive membrane 8 and advances to the gas diffusion electrode 12 of the cathode, where it receives electrons and returns to hydrogen gas again. Then, the gas is delivered from the gas outlet 14a to the gas outlet passage 22 through the gas passage 14b. At this time, if the outlet flow rate of the gas outlet channel 22 is adjusted by a flow rate adjusting valve (not shown) or the like, compressed hydrogen gas of a predetermined high pressure can be obtained.

【0013】この圧縮は直列に接続された第1と第2の
単電池6、7の2段に分けて行なわれるので、1段で高
圧まで圧縮する従来のものよりもプロトン導電性性膜
8、9の厚さを薄くすることができ、プロトン導電性性
膜8、9内の水の拡散を助けプロトン導電性性膜8、9
自体の電気抵抗が低くなって前述の電圧の効率が高くな
り、消費電力も小さくなる。一方、開閉弁26を開く
と、ガス流路15bを流れ水素濃度が低くなったガスは
残余ガス導出口15cへ導かれ、残余がス導出口15c
から開閉弁26、ガス排出管25を介し外部へ放出され
る。なお、この場合、ガス導入口16aからガス流路1
6bに流入するガスは単電池7で精製された純粋の水素
ガスであるので開閉弁24を閉じる。
Since this compression is performed in two stages of the first and second unit cells 6 and 7 connected in series, the proton conductive membrane 8 is compressed to a high pressure in one stage as compared with the conventional one. , 9 can be thinned to help the diffusion of water in the proton conductive membranes 8, 9 and the proton conductive membranes 8, 9
The electric resistance of the device itself is lowered, the efficiency of the above voltage is increased, and the power consumption is reduced. On the other hand, when the opening / closing valve 26 is opened, the gas having a low hydrogen concentration flowing through the gas flow path 15b is guided to the residual gas outlet port 15c, and the residual gas is discharged through the residual gas outlet port 15c.
Is discharged to the outside through the on-off valve 26 and the gas discharge pipe 25. In addition, in this case, the gas flow path 1 from the gas inlet 16a
Since the gas flowing into 6b is pure hydrogen gas purified by the unit cell 7, the on-off valve 24 is closed.

【0014】実施例2.なお、上記実施例では電気的に
直列に積層した2つの単電池をガス入口流路とガス出口
流路間に直並列に切換接続しているが、これに限らず、
例えば、電気的に直列に積層した3つ以上の単電池をガ
ス入口流路とガス出口流路間に直並列に切換接続するよ
うにしても良く、前述実施例と同様の効果が得られる。
Example 2. In addition, in the above-described embodiment, the two single cells that are electrically stacked in series are connected in series and parallel between the gas inlet passage and the gas outlet passage, but not limited to this.
For example, three or more single cells that are electrically stacked in series may be connected in series and parallel between the gas inlet passage and the gas outlet passage, and the same effect as that of the above-described embodiment can be obtained.

【0015】実施例3.また、複数個の単電池を電気的
に直列に積層することなく、単独に形成された複数個の
単電池をガス入口流路とガス出口流路間に直並列に切換
接続するようにしても良く、前述実施例と同様の効果が
得られる。
Example 3. Further, without electrically stacking a plurality of unit cells, a plurality of unit cells formed independently may be connected in series and parallel between the gas inlet channel and the gas outlet channel. It is possible to obtain the same effect as that of the above-described embodiment.

【0016】実施例4.図4はこの発明の他の実施例を
示す炭化水素改質型燃料電池システムの構成図であり、
図において、25は図1に示されるガス精製装置、29
はメタノールタンク30からのメタノールと水タンク3
1からの水とを反応させる改質器、32は燃料電池、3
3は燃料電池32に空気や酸素等の酸化剤を供給する酸
化剤供給装置、34は改質器29の改質ガスを燃料電池
32をバイパスしガス精製装置25に供給するバイパス
回路35を開閉する開閉弁、36は燃料電池32のガス
放出口32aとガス精製装置25のガス入口流路21間
に接続された逆止弁、37はガス精製装置25のガス出
口流路22と燃料電池32のガス導入口32b間に開閉
弁38、39を介し接続された高圧ガスタンク、40は
ガス精製装置25のガス出口流路22と燃料電池32の
ガス導入口32b間に開閉弁41、42を介し接続され
た緩衝タンクである。
Example 4. FIG. 4 is a configuration diagram of a hydrocarbon reforming fuel cell system showing another embodiment of the present invention,
In the figure, 25 is a gas purifier shown in FIG.
Is the methanol and water tank 3 from the methanol tank 30
A reformer for reacting with water from 1, a fuel cell 32,
3 is an oxidant supply device that supplies an oxidant such as air or oxygen to the fuel cell 32, and 34 is a bypass circuit 35 that opens and closes the reformed gas of the reformer 29 that bypasses the fuel cell 32 and supplies the gas purification device 25. A check valve 36 connected between the gas discharge port 32a of the fuel cell 32 and the gas inlet channel 21 of the gas purifier 25, and 37 a gas outlet channel 22 of the gas purifier 25 and the fuel cell 32. A high-pressure gas tank connected between the gas inlets 32b of the gas purifying device 32 through the on-off valves 38 and 39, and 40 through on-off valves 41 and 42 between the gas outlet passage 22 of the gas purifier 25 and the gas inlet 32b of the fuel cell 32. It is a connected buffer tank.

【0017】次に動作について説明する。改質器29へ
メタノールタンク30からメタノールが導入され、水タ
ンク31からは水が導入される。改質器29へ導入され
たメタノールは水タンク31から導入された水と改質器
29内で反応して、 CH3OH+H2O→CO2+3H2 水素ガスと炭酸ガスの混合ガスとなって燃料電池32へ
送られる。燃料電池32では炭酸ガスを消費しないので
余分なガスはガス放出口32aから放出される。この時
燃料電池32内での水素の欠乏と水の補給のために、反
応に必要な量よりも過剰に、燃料である上記混合ガスを
供給するので、ガス放出口32aから放出されるガス中
には多量の水素が含まれることになる。また、燃料電池
32の負荷量に応じて上記混合ガスの供給量が増減さ
れ、負荷が大きい時にはガス放出口32aから放出され
るガス量も多くなる。
Next, the operation will be described. Methanol is introduced into the reformer 29 from the methanol tank 30, and water is introduced from the water tank 31. The methanol introduced into the reformer 29 reacts with the water introduced from the water tank 31 in the reformer 29 to become a mixed gas of CH 3 OH + H 2 O → CO 2 + 3H 2 hydrogen gas and carbon dioxide gas. It is sent to the fuel cell 32. Since the fuel cell 32 does not consume carbon dioxide gas, excess gas is discharged from the gas discharge port 32a. At this time, since the above-mentioned mixed gas which is a fuel is supplied in excess of the amount necessary for the reaction in order to deficiency of hydrogen and replenishment of water in the fuel cell 32, the gas discharged from the gas discharge port 32a Will contain a large amount of hydrogen. Further, the supply amount of the mixed gas is increased or decreased according to the load amount of the fuel cell 32, and when the load is large, the gas amount released from the gas release port 32a also increases.

【0018】したがって、燃料電池32の負荷が大きい
時には、ガス精製装置25の開閉弁17が閉じられると
共に、開閉弁18、19が開かれ、ガス精製装置25は
上記モード1(並列)に設定され、燃料電池32のガス
放出口32aから逆止弁36を介して供給された多量の
放出ガスが精製される。ガス精製装置25で精製された
多量の水素ガスは少し圧力が上がり、開閉弁41、42
を開くことにより緩衝タンク40を介し再び燃料電池3
2に供給される。なお、燃料電池32の負荷が急減した
ときには、改質器29での改質ガス量を急変させること
は困難であるので、開閉弁42が閉じられると共に、開
閉弁34が開かれ、改質器29から出てくる改質ガスの
一部が燃料電池32をバイパスしてガス精製装置25に
導入され精製される。この精製された水素ガスは開閉弁
41を介して緩衝タンク40に導入され蓄積される。
Therefore, when the load of the fuel cell 32 is large, the opening / closing valve 17 of the gas purification device 25 is closed and the opening / closing valves 18 and 19 are opened, and the gas purification device 25 is set to the mode 1 (parallel). A large amount of release gas supplied from the gas release port 32a of the fuel cell 32 via the check valve 36 is purified. A large amount of hydrogen gas purified by the gas purification device 25 has a slight increase in pressure, and the on-off valves 41, 42
The fuel cell 3 is opened again by opening the buffer tank 40.
2 is supplied. When the load on the fuel cell 32 suddenly decreases, it is difficult to suddenly change the amount of reformed gas in the reformer 29. Therefore, the on-off valve 42 is closed and the on-off valve 34 is opened, so that the reformer 29 is opened. A part of the reformed gas coming out of 29 bypasses the fuel cell 32 and is introduced into the gas purification device 25 for purification. The purified hydrogen gas is introduced into the buffer tank 40 via the opening / closing valve 41 and accumulated therein.

【0019】また、燃料電池32の負荷が小さい時に
は、ガス精製装置25の開閉弁17が開かれると共に、
開閉弁18、19が閉じられ、ガス精製装置25は上記
モード2(直列)に設定され、燃料電池32のガス放出
口32aから逆止弁36を介して供給された小量の放出
ガスが精製される。このとき開閉弁38が閉じられてい
るのでガス精製装置25で精製された水素ガスの圧力は
高圧となる。この高圧の水素ガスは開閉弁38を開くこ
とにより高圧ガスタンク37に蓄積される。高圧ガスタ
ンク37に蓄積された高圧の水素ガスは燃料電池32の
負荷が急増し改質器29からの燃料が不足するときに、
開閉弁39が開かれ再び燃料電池32に供給される。
When the load on the fuel cell 32 is small, the opening / closing valve 17 of the gas purifier 25 is opened, and
The on-off valves 18 and 19 are closed, the gas purification device 25 is set to the mode 2 (series), and a small amount of released gas supplied from the gas release port 32a of the fuel cell 32 via the check valve 36 is purified. To be done. At this time, since the opening / closing valve 38 is closed, the pressure of the hydrogen gas purified by the gas purification device 25 becomes high. This high-pressure hydrogen gas is accumulated in the high-pressure gas tank 37 by opening the opening / closing valve 38. The high-pressure hydrogen gas accumulated in the high-pressure gas tank 37 causes a sudden increase in the load of the fuel cell 32 and a shortage of fuel from the reformer 29.
The on-off valve 39 is opened and the fuel cell 32 is supplied again.

【0020】なお、ここで想定したように負荷が大きく
変動するシステムとしては、燃料電池を、例えば電気自
動車の電源とした場合が挙げられ、この場合その特性が
十分に発揮される。
As a system in which the load fluctuates greatly as assumed here, there is a case where a fuel cell is used as a power source for an electric vehicle, for example, and its characteristics are sufficiently exhibited.

【0021】実施例5.なお、上記実施例においては、
改質器29でメタノールと水とを反応させて得た水素ガ
スを含んだ改質ガスを燃料電池32に導入するようにし
たものを示したが、これに限らず、改質ガスは水素ガス
を含んだものであれば良く、例えば、メタンや軽油と水
を反応させて得た改質ガスであっても良く、上記実施例
と同様の効果が得られる。
Example 5. In the above embodiment,
Although the reformer 29 has shown that the reformed gas containing hydrogen gas obtained by reacting methanol and water in the reformer 29 is introduced into the fuel cell 32, the reformed gas is not limited to this, and the reformed gas is hydrogen gas. It may be a reformed gas obtained by reacting methane or light oil with water, and the same effect as that of the above-mentioned embodiment can be obtained.

【0022】実施例6.また、単電池を構成するガス拡
散電極に触媒を担持させても良く、この場合、電圧効率
がより向上する。
Embodiment 6. Further, the catalyst may be supported on the gas diffusion electrode forming the unit cell, in which case the voltage efficiency is further improved.

【0023】[0023]

【発明の効果】以上のように、この発明によれば、複数
個の単電池をガス入口流路とガス出口流路間に直列また
は並列に切り換え接続するように構成したので、厚みの
薄い電気抵抗の小さいイオン導電性固体電解質体を使用
することができ電圧効率が向上し、不純物を含む水素ガ
スを低電力で、かつ、その流量が大きく変化しても精製
・圧縮できる。また、上記直並列に切り換え接続される
複数個の単電池を電気的に直列に積層しているので、装
置が小型化される。また、燃料電池の負荷の急減時等に
おいて上記燃料電池をバイパスした改質ガスと燃料電池
の放出ガスとを、複数個の単電池を直並列切換接続する
ようにしたガス精製装置により精製し、この精製ガスを
タンクを介し上記燃料電池に供給するように構成したの
で、燃料電池の負荷が大きく変化してもその変化に応じ
た量の燃料を燃料電池に供給することができ、かつ、燃
料電池の燃料の利用効率が向上する等の効果がある。
As described above, according to the present invention, since a plurality of unit cells are connected in series or in parallel between the gas inlet passage and the gas outlet passage, the electric cells having a small thickness are connected. An ion conductive solid electrolyte having a low resistance can be used, voltage efficiency is improved, hydrogen gas containing impurities can be purified and compressed with low electric power and even when the flow rate is greatly changed. Further, since the plurality of unit cells that are switched and connected in series and parallel are electrically stacked in series, the device can be downsized. Further, when the load on the fuel cell is suddenly reduced, the reformed gas bypassing the fuel cell and the gas released from the fuel cell are purified by a gas purification device configured to connect a plurality of single cells in series / parallel switching, Since the purified gas is supplied to the fuel cell through the tank, it is possible to supply the fuel cell with an amount of fuel corresponding to the change in the load of the fuel cell, and This has the effect of improving the utilization efficiency of fuel in the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるガス精製装置の構成
図である。
FIG. 1 is a configuration diagram of a gas purification apparatus according to an embodiment of the present invention.

【図2】図1に示される単電池の概念的な断面図であ
る。
FIG. 2 is a conceptual cross-sectional view of the unit cell shown in FIG.

【図3】図2のIIIーIII断面図である。FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】この発明の他の実施例による炭化水素改質型燃
料電池システムの構成図である。
FIG. 4 is a configuration diagram of a hydrocarbon reforming fuel cell system according to another embodiment of the present invention.

【図5】従来のガス精製装置の構成図である。FIG. 5 is a configuration diagram of a conventional gas purification device.

【符号の説明】[Explanation of symbols]

6 第1の単電池 7 第2の単電池 20 直並列切換接続手段 21 ガス入口流路 22 ガス出口流路 6 1st single cell 7 2nd single cell 20 Serial / parallel switching connection means 21 Gas inlet channel 22 Gas outlet channel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イオン導電性固体電解質体の両側にガス
拡散電極を配した複数個の単電池と、イオン化可能なガ
スのガス入口流路と、上記複数個の単電池で精製された
ガスを送出するガス出口流路と、上記ガス入口流路と上
記ガス出口流路間に上記複数個の単電池を直列、または
並列に切換え接続する直並列切換接続手段とを備えてい
ることを特徴とするガス精製装置。
1. A plurality of unit cells in which gas diffusion electrodes are arranged on both sides of an ion conductive solid electrolyte body, a gas inlet channel of an ionizable gas, and a gas purified by the plurality of unit cells. A gas outlet flow path for sending out, and a serial / parallel switching connection means for switching and connecting the plurality of cells in series or in parallel between the gas inlet flow path and the gas outlet flow path, Gas purifier.
【請求項2】 イオン導電性固体電解質体の両側にガス
拡散電極を配した複数個の単電池と、イオン化可能なガ
スのガス入口流路と、上記複数個の単電池で精製された
ガスを送出するガス出口流路と、上記ガス入口流路と上
記ガス出口流路間に上記複数個の単電池を直列、または
並列に切換え接続する直並列切換接続手段とを備え、上
記複数個の単電池を電気的に直列に積層したことを特徴
とするガス精製装置。
2. A plurality of unit cells in which gas diffusion electrodes are arranged on both sides of an ion conductive solid electrolyte body, a gas inlet channel of an ionizable gas, and a gas purified by the plurality of unit cells. A gas outlet flow path for sending out, and a serial / parallel switching connection means for switching and connecting the plurality of unit cells in series or in parallel between the gas inlet flow path and the gas outlet flow path, and the plurality of unit cells are provided. A gas purifier characterized in that batteries are electrically stacked in series.
【請求項3】 燃料電池と、上記燃料電池に水素ガスを
含んだ改質ガスを供給する改質器とを備えると共に、イ
オン導電性固体電解質体の両側にガス拡散電極を配した
複数個の単電池と、上記改質器の改質ガスと上記燃料電
池の放出ガスのガス入口流路と、上記複数個の単電池で
精製されたガスのガス出口流路と、上記ガス入口流路と
上記ガス出口流路間に上記複数個の単電池を直列、また
は並列に切換え接続する直並列切換接続手段とを有する
ガス精製装置と、上記ガス出口流路から送出される精製
されたガスを蓄積すると共に上記精製ガスを上記燃料電
池に供給するガスタンクとを備えていることを特徴とす
る炭化水素改質型燃料電池システム。
3. A plurality of fuel cells and a reformer for supplying a reformed gas containing hydrogen gas to the fuel cell, wherein a plurality of gas diffusion electrodes are provided on both sides of the ion conductive solid electrolyte body. A unit cell, a gas inlet channel of the reformed gas of the reformer and a gas released from the fuel cell, a gas outlet channel of the gas purified by the plurality of unit cells, and the gas inlet channel A gas purification device having a series-parallel switching connection means for switching and connecting the plurality of cells in series or in parallel between the gas outlet channels, and storing purified gas delivered from the gas outlet channels. And a gas tank for supplying the purified gas to the fuel cell.
JP4223899A 1992-08-24 1992-08-24 Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device Pending JPH0665774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223899A JPH0665774A (en) 1992-08-24 1992-08-24 Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223899A JPH0665774A (en) 1992-08-24 1992-08-24 Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device

Publications (1)

Publication Number Publication Date
JPH0665774A true JPH0665774A (en) 1994-03-08

Family

ID=16805454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223899A Pending JPH0665774A (en) 1992-08-24 1992-08-24 Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device

Country Status (1)

Country Link
JP (1) JPH0665774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526608A (en) * 2013-07-01 2016-09-05 サステイナブル イノベーションズ エルエルシーSustainable Innovations,Llc Hydrogen system and method of operation
JP2018090899A (en) * 2016-12-06 2018-06-14 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526608A (en) * 2013-07-01 2016-09-05 サステイナブル イノベーションズ エルエルシーSustainable Innovations,Llc Hydrogen system and method of operation
JP2018090899A (en) * 2016-12-06 2018-06-14 パナソニックIpマネジメント株式会社 Electrochemical hydrogen pump

Similar Documents

Publication Publication Date Title
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
US6833207B2 (en) Unitized regenerative fuel cell with bifunctional fuel cell humidifier and water electrolyzer
US7132189B2 (en) Fuel cell stack with bypass
US6838199B2 (en) Start up system and method for a fuel cell power plant using a cathode electrode fuel purge
CN101887981B (en) Hydrogen closed circulation system used for fuel cell
CN101325263A (en) Recovery of inert gas from a fuel cell exhaust stream
KR102275277B1 (en) Hydrogen system and method of operation
US8192876B2 (en) Method for operating a fuel cell system in a mode of reduced power output
JPH06203863A (en) Fuel cell equipment and its inert-gas discharging and adjusting method
JP2003203669A (en) Fuel cell stack
JP5155649B2 (en) Solid polymer fuel cell power generation system
JPH0665774A (en) Gas refining device and hydrocarbon-reforming type fuel cell system using the gas refining device
US6821664B2 (en) Method and apparatus for a combined fuel cell and hydrogen purification system
JP4684585B2 (en) Fuel cell stack
KR20040000568A (en) Stack structure for fuel cell
JP2000357529A (en) Fuel cell system
JP3914418B2 (en) Fuel cell stack
JP2004087190A (en) Solid polymer cell assembly
JP2005166515A (en) Fuel cell and fuel cell system
KR102575715B1 (en) Fuel cell system for vehicle
CA2679999C (en) Fuel cell system having fuel cell stack with impurity storage
JP2000260458A (en) Fuel cell system and fuel cell automobile
JP2007213928A (en) Fuel cell
JP4547868B2 (en) Solid polymer electrolyte fuel cell
JPH11121023A (en) Electric power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080610

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A02