JPH0665751A - Electroless composite plating bath and plating method - Google Patents

Electroless composite plating bath and plating method

Info

Publication number
JPH0665751A
JPH0665751A JP4242600A JP24260092A JPH0665751A JP H0665751 A JPH0665751 A JP H0665751A JP 4242600 A JP4242600 A JP 4242600A JP 24260092 A JP24260092 A JP 24260092A JP H0665751 A JPH0665751 A JP H0665751A
Authority
JP
Japan
Prior art keywords
plating
electroless
nickel
plating bath
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4242600A
Other languages
Japanese (ja)
Inventor
Kunio Kashiwada
邦夫 柏田
Satoshi Negishi
悟史 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4242600A priority Critical patent/JPH0665751A/en
Publication of JPH0665751A publication Critical patent/JPH0665751A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal

Abstract

PURPOSE:To develope the electroless composite plating bath which can form the electroless plating film excellent in wear resistance and corrosion resistance compared to the conventional electroless composite plating and to provide a plating method using the same. CONSTITUTION:Particulates of silicon carbide is added to the electroless plating bath in which an alloy of nickel-tungsten-phosphorus is deposited from the salts of nickel and tungsten using hypophosphite as a reducing agent. The body to be plated is immersed into the electroless plating liq., and the particulates of silicon carbide are coprecipitated dispersedly on the surface of the body to be plated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無電解複合めっき浴及び
めっき方法に関するものであり、さらに詳しくは耐摩耗
性、耐食性に優れた無電解複合めっき皮膜を得ることが
できる無電解複合めっき浴及びそれを用いためっき方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless composite plating bath and a plating method, and more specifically to an electroless composite plating bath capable of obtaining an electroless composite plating film having excellent wear resistance and corrosion resistance. The present invention relates to a plating method using the same.

【0002】[0002]

【従来の技術】従来、金属表面の耐摩耗性、耐食性ある
いは潤滑性を向上させる方法として、浸炭処理、窒化処
理、金属溶射、樹脂コーティング、硬質陽極酸化処理、
硬質クロムめっき及び無電解ニッケルめっきなどの方法
がとられているが、この中で無電解ニッケルめっきは他
の処理方法に比べて、非処理物の形状に関係なく均一な
膜厚のめっき皮膜を被覆できる耐摩耗性及び耐食皮膜処
理として特徴があり、多くの工業部品に応用されてい
る。例えば、被処理物表面に無電解ニッケル−リンめっ
き皮膜を形成した後、この皮膜の上に無電解ニッケル−
タングステン−リンめっき皮膜を形成する方法が提案さ
れている(特開昭60−258473号公報)が、耐食
性は改善されるが、耐摩耗性が未だ不十分であるという
欠点がある。
2. Description of the Related Art Conventionally, carburizing, nitriding, metal spraying, resin coating, hard anodizing, as a method for improving wear resistance, corrosion resistance or lubricity of a metal surface,
Although methods such as hard chrome plating and electroless nickel plating are used, electroless nickel plating has a uniform film thickness regardless of the shape of the non-processed object compared to other processing methods. It is characterized by wear resistance and corrosion resistant coating that can be coated, and is applied to many industrial parts. For example, after forming an electroless nickel-phosphorus plating film on the surface of an object to be processed, an electroless nickel-plating film is formed on the film.
A method of forming a tungsten-phosphorus plating film has been proposed (Japanese Patent Laid-Open No. 60-258473), but the corrosion resistance is improved but the abrasion resistance is still insufficient.

【0003】一方、この無電解ニッケルめっきだけでな
く金属溶射や窒化、硬質クロムめっきなどの従来の耐摩
耗用処理方法よりも耐摩耗性が優れているとして、最
近、硬さ又は潤滑性を有する無機微粒子を金属と共に共
析させる、いわゆる電解法あるいは無電解法複合ニッケ
ルめっきが注目され、実用化されているものもある。例
えば、次亜リン酸を還元剤として、界面活性剤およびア
ミンもしくはアンモニウム塩が添加され、さらに水不溶
性複合粒子または繊維が分散されている無電解複合めっ
き浴が提案されている(特開平2−54775号公報)
が、耐食性や耐摩耗性が未だ不十分であり改良の余地が
ある。
On the other hand, not only the electroless nickel plating but also the metal abrasion, nitriding, hard chrome plating, and other conventional wear-resistant treatment methods are considered to be superior in wear resistance, and have recently been found to have hardness or lubricity. The so-called electrolytic method or electroless method composite nickel plating, in which inorganic fine particles are co-deposited with a metal, has attracted attention and some have been put to practical use. For example, an electroless composite plating bath has been proposed in which a surfactant and an amine or ammonium salt are added using hypophosphorous acid as a reducing agent, and further, water-insoluble composite particles or fibers are dispersed (JP-A-2- (Japanese Patent No. 54775)
However, the corrosion resistance and wear resistance are still insufficient and there is room for improvement.

【0004】この複合めっきが品質的に安定してかつ作
業性よく供給できれば、浸炭や窒素化のような熱処理に
於けるような熱衝撃を品物に与えなくとも、又金属溶射
に於けるような熱衝撃を与えず、また金属溶射に於ける
処理表面の粒度の悪化や処理皮膜の不均一さも解消で
き、さらに硬質クロムめっきに於けるようなめっき皮膜
の不均一さ、ピンホールやヘアクラック発生を招くこと
も少なく、単なる無電解ニッケルめっき皮膜よりも被処
理物に優れた耐摩耗性や潤滑性、耐食性を付与すること
ができ有益であるはずである。しかしこのような複合め
っきは未だなく、優れた無電解複合めっき浴及びそれを
用いためっき方法が強く求められている。
If the composite plating can be supplied in a stable quality and with good workability, it is possible to apply the same to metal spraying without subjecting the product to thermal shock such as heat treatment such as carburization and nitrogenation. It does not give a thermal shock, and it can eliminate the deterioration of the grain size of the treated surface due to metal spraying and the non-uniformity of the treatment film. Furthermore, the non-uniformity of the plating film, such as in hard chromium plating, pinholes and hair cracks Therefore, it should be beneficial because it is possible to impart superior wear resistance, lubricity, and corrosion resistance to an object to be treated, compared with a simple electroless nickel plating film. However, such composite plating is not yet available, and an excellent electroless composite plating bath and a plating method using the same are strongly demanded.

【0005】[0005]

【発明が解決しようとする課題】耐摩耗性、耐食性を向
上させる手段としてはニッケル皮膜中の炭化珪素含有量
を増加させる方法があるが、皮膜の内部応力の増加によ
るクラックの発生や皮膜が脆くなるなどの問題がある。
また、耐食性の向上については無電解ニッケル皮膜の上
に樹脂コーティングを行う方法もあるが、耐摩耗性が低
く、効果が短期間で無くなるなどの問題がある。本発明
は上記課題を解決し、無電解複合ニッケルめっきに比べ
耐摩耗性、耐食性に優れた無電解複合めっき皮膜を得る
ことができる無電解複合めっき浴及びそれを用いためっ
き方法を提供することを目的とする。
As a means for improving the wear resistance and the corrosion resistance, there is a method of increasing the silicon carbide content in the nickel film, but cracks are generated due to an increase in internal stress of the film and the film becomes brittle. There is a problem such as becoming.
Further, there is a method of resin coating on the electroless nickel film for improving the corrosion resistance, but there are problems such as low wear resistance and loss of effect in a short period of time. The present invention solves the above problems and provides an electroless composite plating bath capable of obtaining an electroless composite plating film having excellent wear resistance and corrosion resistance as compared with electroless composite nickel plating, and a plating method using the same. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため種々検討を行った結果、従来の無電解ニッケ
ル−リンめっきにタングステンを添加することにより耐
摩耗性、耐食性を向上させ、さらに炭化珪素の粒子を添
加することにより、上記の課題を解決し、優れた耐摩耗
性、耐食性を有する無電解複合めっきが得られることを
見い出し、本発明をなすに至った。
As a result of various studies to achieve the above object, the present invention improves wear resistance and corrosion resistance by adding tungsten to conventional electroless nickel-phosphorus plating, Further, it has been found that by adding particles of silicon carbide, the above problems can be solved and an electroless composite plating having excellent wear resistance and corrosion resistance can be obtained, and the present invention has been completed.

【0007】本発明の請求項1の発明は、ニッケル及び
タングステンの金属塩を次亜リン酸塩を還元剤としてニ
ッケル−タングステン−リンの合金を析出させる無電解
めっき浴に、炭化珪素微粒子を添加したことを特徴とす
る無電解複合めっき浴である。
According to the first aspect of the present invention, silicon carbide fine particles are added to an electroless plating bath for precipitating a nickel-tungsten-phosphorus alloy using nickel and tungsten metal salts with hypophosphite as a reducing agent. This is an electroless composite plating bath.

【0008】本発明の請求項2の発明は、請求項1記載
の無電解複合めっき浴中に被めっき物を浸漬して被めっ
き物表面に炭化珪素微粒子を分散共析させることを特徴
とする無電解複合めっき方法である。以下、本発明につ
き更に詳しく説明する。
The invention of claim 2 of the present invention is characterized in that the object to be plated is immersed in the electroless composite plating bath according to claim 1 to disperse and co-deposit silicon carbide fine particles on the surface of the object to be plated. This is an electroless composite plating method. Hereinafter, the present invention will be described in more detail.

【0009】本発明の無電解複合めっき方法は、常法に
従い、上記無電解複合めっき浴中に被めっき物を浸漬し
てめっきするもので、めっき条件としては通常のめっき
条件を採用することができる。また、被めっき物にも制
限はなく、無電解めっき可能ないずれの材質のものも使
用することができる。例えば、鉄鋼、亜鉛、アルミニウ
ム、銅、銅−亜鉛合金その他の金属素地、セラミックや
ABS樹脂その他のプラスチック素地上にその材質に応
じた通常の方法で所定の前処理を行った後、これに本発
明方法を実施し得る。
In the electroless composite plating method of the present invention, an object to be plated is immersed in the electroless composite plating bath according to a conventional method for plating, and ordinary plating conditions can be adopted as plating conditions. it can. The object to be plated is not limited, and any material capable of electroless plating can be used. For example, iron, steel, zinc, aluminum, copper, copper-zinc alloy and other metal substrates, ceramics and ABS resin and other plastic substrates are subjected to a predetermined pretreatment by a usual method according to the material, and then the The inventive method may be practiced.

【0010】上記前処理としては、金属素地の場合に
は、一般に金属表面を浸漬法及び/又は電解法によりア
ルカリ脱脂した後、酸で中和する方法が採用できる。ア
ルミニウム素地の場合には表面を活性化した後、亜鉛置
換を行う方法が採用できる。また本発明の無電解複合め
っきを行う前に、必要により所望の下地めっきを行うこ
とができる。この場合、この下地めっきの種類は特に限
定されず、被めっき物の材質、用途などに応じて選択さ
れる。例えば、光沢銅めっきを行うことができる。光沢
銅めっきとしては通常の硫酸銅めっき浴、ピロリン酸銅
めっき浴、青化銅めっき浴、その他の銅めっき浴を通常
の浴組成、めっき条件で使用することにより実施するこ
とができる。
As the above-mentioned pretreatment, in the case of a metal base, a method of degreasing the metal surface with an alkali by a dipping method and / or an electrolytic method and then neutralizing with an acid can be generally adopted. In the case of an aluminum base material, a method of activating the surface and then substituting zinc can be adopted. In addition, before the electroless composite plating of the present invention, desired undercoating can be performed, if necessary. In this case, the type of the base plating is not particularly limited, and is selected according to the material of the object to be plated, the application, etc. For example, bright copper plating can be performed. The bright copper plating can be carried out by using a normal copper sulfate plating bath, a copper pyrophosphate plating bath, a copper cyanide plating bath, and other copper plating baths with a normal bath composition and plating conditions.

【0011】また、プラスチック素地の場合には、クロ
ム酸−硫酸混合液で化学エッチングする方法或いは機械
的粗化法を採用してプラスチック表面を粗化した後、こ
の粗化したプラスチック表面にパラジウムなどの触媒金
属核を付着させる活性化工程を行い、次いで無電解銅め
っき、無電解ニッケルめっきなどの無電解めっきを行っ
て、プラスチック表面を金属化する方法が採用できる。
In the case of a plastic substrate, the surface of the plastic is roughened by a method of chemical etching with a chromic acid-sulfuric acid mixed solution or a mechanical roughening method, and then palladium or the like is applied to the roughened plastic surface. The method of metallizing the plastic surface by performing an activation step of attaching the catalytic metal nuclei of the above, and then performing electroless plating such as electroless copper plating or electroless nickel plating can be adopted.

【0012】本発明の無電解複合めっき浴は、還元剤と
して次亜リン酸ナトリウムなどの次亜リン酸塩を用いる
ものであるが、ニッケル−タングステン−リン合金の皮
膜を形成するための水溶性金属塩を含み、また、通常こ
れらの金属塩の錯化剤として有機酸やその金属塩を含有
する。
The electroless composite plating bath of the present invention uses a hypophosphite such as sodium hypophosphite as a reducing agent, and is water-soluble for forming a nickel-tungsten-phosphorus alloy film. It contains a metal salt, and usually contains an organic acid or a metal salt thereof as a complexing agent for these metal salts.

【0013】これら金属塩、錯化剤、更に還元剤の種類
及び濃度は適宜選定される。ニッケル塩類としては、例
えば硫酸ニッケルまたは塩化ニッケルがあり、その濃度
は0.05〜1モル/L,タングステン塩類としてはタ
ングステン酸ナトリウムまたはタングステン酸カリウム
などのタングステン酸塩類を挙げることができ、その濃
度は0.05〜1モル/L、錯化剤は、クエン酸塩類、
または酒石酸塩類、蓚酸塩類を挙げることができ、その
濃度は0.1〜1モル/L、還元剤は次亜リン酸ナトリ
ウムなどの次亜リン酸塩類を挙げることができ、その濃
度は0.1〜0.5モル/Lとすることが望ましい。ま
た浴のPHも適宜選定されるが、通常7〜9.5とする
ことが望ましい。
The types and concentrations of these metal salts, complexing agents, and reducing agents are appropriately selected. Examples of the nickel salts include nickel sulfate or nickel chloride, the concentration of which is 0.05 to 1 mol / L, and examples of the tungsten salts include tungstates such as sodium tungstate and potassium tungstate. Is 0.05 to 1 mol / L, the complexing agent is citrate,
Alternatively, tartrate salts and oxalate salts can be mentioned, the concentration thereof is 0.1 to 1 mol / L, the reducing agent can be hypophosphite salts such as sodium hypophosphite, and the concentration thereof can be 0. It is desirable to be 1 to 0.5 mol / L. The pH of the bath is also appropriately selected, but it is usually desirable to set it to 7 to 9.5.

【0014】本発明の無電解めっき浴には、更にアニオ
ン系、カチオン系、ノニオン系、両性イオン系といった
界面活性剤の1種又は2種以上が組み合わせて添加して
もよい。炭化珪素微粒子の分散、共析のためにはノニオ
ン系の界面活性剤が好適に添加される。界面活性剤の添
加量は適宜選定されるが、通常0.001〜0.1g/
Lとすることが望ましい。また、上記めっき浴中には無
電解めっきに常用される安定剤などの適宜成分を添加す
ることができる。
In the electroless plating bath of the present invention, one or more kinds of anionic, cationic, nonionic and amphoteric surfactants may be added in combination. In order to disperse and eutectoid the silicon carbide fine particles, a nonionic surfactant is preferably added. The addition amount of the surfactant is appropriately selected, but usually 0.001 to 0.1 g /
It is desirable to set to L. Further, appropriate components such as a stabilizer commonly used in electroless plating can be added to the plating bath.

【0015】耐摩耗性の向上のために上記めっき浴中に
分散させる粒子としては炭化物、ホウ化物、窒化物、酸
化などのセラミクス粒子があるが、皮膜への含有量、浴
の安定性、耐摩耗性の観点から炭化珪素が最も望まし
い。この複合粒子の平均粒系は適宜選定されるが、通常
0.3〜2.0μmとすることが望ましい。
The particles dispersed in the plating bath for improving the wear resistance include ceramic particles such as carbides, borides, nitrides, and oxides. Silicon carbide is most desirable from the viewpoint of wear resistance. The average particle size of the composite particles is appropriately selected, but it is usually desirable to set it to 0.3 to 2.0 μm.

【0016】炭化珪素の結晶構造としては、菱面体ウル
ツ鉱型構造のα型と立方晶系閃亜鉛鉱型のβ型のいずれ
でもよい。また、炭化珪素の主要不純物として炭素、酸
化珪素、鉄、アルミなどがあるが、これらの不純物によ
るめっき浴成分の分解を抑制するため、鉄、アルミなど
の不純物はできるだけ少ないものがよい。このような炭
化珪素はミクロ硬度としては約3000〜3500とな
る。炭化珪素粒子のめっき浴中への添加量は適宜種々選
択されるが、通常1〜100g/L、特に5〜30g/
Lとすることが望ましい。
The crystal structure of silicon carbide may be either a rhombohedral wurtzite type α type or a cubic system zinc blende type β type. Further, although main impurities of silicon carbide include carbon, silicon oxide, iron, aluminum, etc., in order to suppress decomposition of plating bath components due to these impurities, it is preferable that impurities such as iron and aluminum be as small as possible. Such silicon carbide has a micro hardness of about 3000 to 3500. The amount of silicon carbide particles added to the plating bath is appropriately selected, but is usually 1 to 100 g / L, particularly 5 to 30 g / L.
It is desirable to set to L.

【0017】本発明の複合めっき浴を用いて被めっき物
に無電解複合めっきを行う時の一般的なめっき条件につ
いて以下に述べる。 (被めっき物の前処理)めっき皮膜の密着不良、クラッ
クの発生、不均一めっきなどの不良を防止するため通常
以下の順序で前処理を行う。 脱脂→電解脱脂→酸洗浄→ニッケルめっき(活性化処
理)
General plating conditions for performing electroless composite plating on an object to be plated using the composite plating bath of the present invention will be described below. (Pretreatment of object to be plated) Usually, pretreatment is performed in the following order in order to prevent defects such as poor adhesion of the plating film, generation of cracks and uneven plating. Degreasing → Electrolytic degreasing → Acid cleaning → Nickel plating (activation treatment)

【0018】(めっき浴の温度)浴の温度を上げること
によりめっきの析出速度は指数関数的に増化するが、そ
れにともない、めっき浴成分の分解の発生頻度も増加す
る。また、めっき皮膜中への炭化珪素の含有量は析出速
度の増加とともに低下する。このためめっき温度は適宜
選択されるが、通常75〜95℃、特に80〜85℃が
望ましい。
(Temperature of Plating Bath) Although the deposition rate of plating increases exponentially by raising the temperature of the bath, the frequency of decomposition of components of the plating bath also increases accordingly. Further, the content of silicon carbide in the plating film decreases as the deposition rate increases. Therefore, the plating temperature is appropriately selected, but usually 75 to 95 ° C, particularly 80 to 85 ° C is desirable.

【0019】[めっき浴の攪拌(分散共析)]ピンホー
ルを防止しながら炭化珪素を分散共析させため、めっき
反応中に発生する水素ガス気泡を被処理物から脱離させ
るなどの目的でエアーバブリング、めっき液のポンプ循
環、攪拌器などによる攪拌法が行われる。なかでもエア
ーバブリングによる攪拌が炭化珪素を被めっき物に均一
に分散共析させると言う観点から好ましく用いられる。
エアーバブリング量は単位めっき液量(1L)当たり
0.3〜8L/min、特に1〜5L/minが望まし
い。
[Stirring of plating bath (dispersion eutectoid)] Since silicon carbide is dispersed and eutectoid while preventing pinholes, hydrogen gas bubbles generated during the plating reaction are desorbed from the object to be treated. Air bubbling, pump solution circulation of a plating solution, and a stirring method using a stirrer are performed. Among them, stirring by air bubbling is preferably used from the viewpoint that silicon carbide is uniformly dispersed and co-deposited on the object to be plated.
The amount of air bubbling is preferably 0.3 to 8 L / min, particularly 1 to 5 L / min per unit plating solution amount (1 L).

【0020】(めっき厚み)めっき厚みを増加すると、
内部応力の増加によるめっき皮膜のはくり、クラックな
どが発生する。このためめっき厚みとしては通常5〜1
00μm、特に10〜30μmが望ましい。また、厚み
をコントロールする因子としてはめっき時間、めっき温
度などがある。
(Plating Thickness) When the plating thickness is increased,
The plating film peels and cracks occur due to an increase in internal stress. Therefore, the plating thickness is usually 5 to 1
00 μm, particularly 10 to 30 μm is desirable. In addition, factors that control the thickness include plating time and plating temperature.

【0021】[0021]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明の主旨を逸脱しない限り本発明はこれ
らの例によってなんら限定されるものではない。 (実施例1)(Ni−W−P/SiC無電解めっき) 被めっき物としてSUS304板(50mm×50m
m)を用い、通常の前処理を行った後(脱脂→電解脱脂
→酸洗→Niめっき)、下記のめっき液組成の無電解め
っき浴を用い、下記の条件でめっきを行った。めっき
後、500℃、2時間熱処理した。 めっき液 硫酸ニッケル 10g/L 組成 タングステン酸ソーダ 30g/L 次亜燐酸ナトリウム 15g/L クエン酸ソーダ 30g/L 塩化鉛 5mg/L 炭化珪素微粉末 10g/L めっき条件 液温度 87℃ 液量 1L 攪拌法 エアーバブリング 浴比 1dm2 /L PH 8.5 めっき時間 1時間
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples without departing from the gist of the present invention. (Example 1) (Ni-WP / SiC electroless plating) As an object to be plated, a SUS304 plate (50 mm x 50 m)
m) was subjected to a normal pretreatment (degreasing → electrolytic degreasing → pickling → Ni plating), and then plating was performed under the following conditions using an electroless plating bath having the following plating solution composition. After plating, heat treatment was performed at 500 ° C. for 2 hours. Plating liquid Nickel sulfate 10 g / L composition Sodium tungstate 30 g / L Sodium hypophosphite 15 g / L Sodium citrate 30 g / L Lead chloride 5 mg / L Silicon carbide fine powder 10 g / L Plating conditions Liquid temperature 87 ° C Liquid amount 1 L Stirring method Air bubbling Bath ratio 1dm 2 / L PH 8.5 Plating time 1 hour

【0022】(比較例1)上記SUS304板をそのま
ま用いた。
Comparative Example 1 The SUS304 plate was used as it was.

【0023】(比較例2)(Ni−P無電解めっき) 下記のめっき液組成の無電解めっき浴を用いた以外は実
施例1と同様に無電解めっきを行った。めっき後、40
0℃、2時間熱処理した。 めっき液組成 硫酸ニッケル 10g/L 次亜燐酸ナトリウム 15g/L クエン酸ソーダ 30g/L 塩化鉛 5mg/L
(Comparative Example 2) (Ni-P electroless plating) Electroless plating was performed in the same manner as in Example 1 except that an electroless plating bath having the following plating solution composition was used. 40 after plating
Heat treatment was performed at 0 ° C. for 2 hours. Plating solution composition Nickel sulfate 10 g / L Sodium hypophosphite 15 g / L Sodium citrate 30 g / L Lead chloride 5 mg / L

【0024】(比較例3)(Ni−P/SiC無電解め
っき) 下記のめっき液組成の無電解めっき浴を用いた以外は実
施例1と同様に無電解めっきを行った。めっき後、50
0℃、2時間熱処理した。 めっき液組成 硫酸ニッケル 10g/L 次亜燐酸ナトリウム 15g/L クエン酸ソーダ 30g/L 塩化鉛 5mg/L 炭化珪素微粉末 10g/L
(Comparative Example 3) (Ni-P / SiC electroless plating) Electroless plating was performed in the same manner as in Example 1 except that an electroless plating bath having the following plating solution composition was used. 50 after plating
Heat treatment was performed at 0 ° C. for 2 hours. Plating solution composition Nickel sulfate 10 g / L Sodium hypophosphite 15 g / L Sodium citrate 30 g / L Lead chloride 5 mg / L Silicon carbide fine powder 10 g / L

【0025】(比較例4)(Ni−P/テフロン無電解
めっき) 下記のめっき液組成の無電解めっき浴を用いた以外は実
施例1と同様に無電解めっきを行った。めっき後、30
0℃、2時間熱処理した。 めっき液組成 硫酸ニッケル 10g/L 次亜燐酸ナトリウム 15g/L クエン酸ソーダ 30g/L 塩化鉛 5mg/L テフロン微粉末 20g/L
(Comparative Example 4) (Ni-P / Teflon electroless plating) Electroless plating was performed in the same manner as in Example 1 except that an electroless plating bath having the following plating solution composition was used. 30 after plating
Heat treatment was performed at 0 ° C. for 2 hours. Plating solution composition Nickel sulfate 10 g / L Sodium hypophosphite 15 g / L Sodium citrate 30 g / L Lead chloride 5 mg / L Teflon fine powder 20 g / L

【0026】次にこれらの皮膜の耐摩耗性と耐食性を評
価した。 摩耗試験方法;スガ式摩耗試験器でテストを行った。摩
耗輪に上記試験片を取り付け、相手材としてガラス繊維
含有量35wt%のポリエステル系FRP板を使用し
た。荷重3.0kgにて摩耗回数1000回と4000
回時に摩耗前との比較を行った。 耐摩耗性の評価 相手材がFRPなので摩耗量がかなり少なく、不均一で
あるので、耐摩耗性を重量減で測定するのは誤差が大き
く困難であった。そこで耐摩耗性を中心線平均粗さR
a、および最大表面粗さRmaxの増加量で評価した。
(試験数n=6の平均値で表した)。摩耗回数と中心線
平均粗さRa[μm]の増加量の関係をまとめて表1と
図1に示す。摩耗回数と最大表面粗さRmax[μm]
の増加量の関係をまとめて表2と図2に示す。
Next, the abrasion resistance and corrosion resistance of these coatings were evaluated. Abrasion test method: A Suga abrasion tester was used for the test. The test piece was attached to a wear wheel, and a polyester FRP plate having a glass fiber content of 35 wt% was used as a counterpart material. 1,000 cycles of wear and 4000 with a load of 3.0 kg
At the time of rotation, comparison was made with before wear. Evaluation of wear resistance Since the mating material was FRP, the amount of wear was considerably small and non-uniform, so it was difficult to measure the wear resistance by reducing the weight because of a large error. Therefore, wear resistance is determined by center line average roughness R
It was evaluated by a and the increase amount of the maximum surface roughness Rmax.
(Represented by the average value of the number of tests n = 6). The relationship between the number of times of wear and the increase amount of the center line average roughness Ra [μm] is summarized in Table 1 and FIG. Wear frequency and maximum surface roughness Rmax [μm]
Table 2 and Fig. 2 collectively show the relationship between the increase amounts.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 これらの結果から、実施例1(N−W−P/SiC無電
解めっき)が比較例の場合と比較して優れていることを
確認することができた。
[Table 2] From these results, it could be confirmed that Example 1 (N-W-P / SiC electroless plating) was superior to the comparative example.

【0029】耐食試験 各皮膜についての耐食性について非常に腐食雰囲気の激
しい場合を想定して塩酸浸漬テストを実施した。 テスト条件 浸漬液 35% HCl 温度 20℃ 浸漬時間 24Hr 各テストピースの腐食重量減で耐食性を評価した結果を
表3に示す。
Corrosion Resistance Test Regarding the corrosion resistance of each film, a hydrochloric acid immersion test was carried out assuming a case where a corrosive atmosphere is extremely severe. Test conditions Immersion liquid 35% HCl temperature 20 ° C Immersion time 24Hr Table 3 shows the results of evaluation of corrosion resistance by reducing the corrosion weight of each test piece.

【0030】[0030]

【表3】 以上の結果から耐食性についても実施例1が優れている
ことがわかる。
[Table 3] From the above results, it can be seen that Example 1 is also excellent in corrosion resistance.

【0031】[0031]

【発明の効果】本発明の無電解複合めっき浴及びそれを
用いためっき方法を用いることにより、被めっき物表面
に、従来の無電解複合ニッケルめっきに比べ耐摩耗性、
耐食性に優れた無電解複合めっき皮膜を形成することが
できる。
EFFECT OF THE INVENTION By using the electroless composite plating bath of the present invention and the plating method using the same, the wear resistance on the surface of the object to be plated as compared with the conventional electroless composite nickel plating,
It is possible to form an electroless composite plating film having excellent corrosion resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】 摩耗回数と平均粗さの関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the number of times of wear and average roughness.

【図2】 摩耗回数と最大粗さの関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the number of times of wear and the maximum roughness.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル及びタングステンの金属塩を次
亜リン酸塩を還元剤としてニッケル−タングステン−リ
ンの合金を析出させる無電解めっき浴に、炭化珪素微粒
子を添加したことを特徴とする無電解複合めっき浴。
1. Electroless electroless plating characterized in that fine particles of silicon carbide are added to an electroless plating bath for depositing a nickel-tungsten-phosphorus alloy using nickel and tungsten metal salts with hypophosphite as a reducing agent. Complex plating bath.
【請求項2】 請求項1記載の無電解複合めっき浴中に
被めっき物を浸漬して被めっき物表面に炭化珪素微粒子
を分散共析させることを特徴とする無電解複合めっき方
法。
2. An electroless composite plating method, which comprises immersing an object to be plated in the electroless composite plating bath according to claim 1 to disperse and co-deposit silicon carbide fine particles on the surface of the object to be plated.
JP4242600A 1992-08-20 1992-08-20 Electroless composite plating bath and plating method Pending JPH0665751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4242600A JPH0665751A (en) 1992-08-20 1992-08-20 Electroless composite plating bath and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4242600A JPH0665751A (en) 1992-08-20 1992-08-20 Electroless composite plating bath and plating method

Publications (1)

Publication Number Publication Date
JPH0665751A true JPH0665751A (en) 1994-03-08

Family

ID=17091460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4242600A Pending JPH0665751A (en) 1992-08-20 1992-08-20 Electroless composite plating bath and plating method

Country Status (1)

Country Link
JP (1) JPH0665751A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935337A (en) * 1995-04-20 1999-08-10 Ebara Corporation Thin-film vapor deposition apparatus
JP2005256170A (en) * 2004-02-12 2005-09-22 National Institute Of Advanced Industrial & Technology Electroless nickel plating method and plated product thereby
EP1627098A1 (en) * 2003-05-09 2006-02-22 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
WO2010128809A2 (en) * 2009-05-06 2010-11-11 한국생산기술연구원 Nickel-phosphorus-tungsten ternary alloy electroless plating solution, electroless plating process using same, and nickel-phosphorus-tungsten ternary alloy film produced by same
KR101138427B1 (en) * 2009-10-27 2012-04-26 강성택 The nickel-phosphorus-tungsten combined type electroless plating solution and the plating method using same
WO2012144518A1 (en) 2011-04-19 2012-10-26 日本パーカライジング株式会社 Corrosion-resistant alloy coating film for metal materials and method for forming same
JP2016188397A (en) * 2015-03-30 2016-11-04 株式会社 コーア Electroless plating liquid, and electroless plating method
IT201800020827A1 (en) * 2018-12-21 2020-06-21 Gianluca Taroni CODEPOSITE NICKEL AND SILICON CARBIDE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258473A (en) * 1984-06-06 1985-12-20 C Uyemura & Co Ltd Manufacture of corrosion resistant film
JPS61149499A (en) * 1984-12-25 1986-07-08 Suzuki Motor Co Ltd Dispersion-plated film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258473A (en) * 1984-06-06 1985-12-20 C Uyemura & Co Ltd Manufacture of corrosion resistant film
JPS61149499A (en) * 1984-12-25 1986-07-08 Suzuki Motor Co Ltd Dispersion-plated film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935337A (en) * 1995-04-20 1999-08-10 Ebara Corporation Thin-film vapor deposition apparatus
EP1627098A1 (en) * 2003-05-09 2006-02-22 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
JP2006526070A (en) * 2003-05-09 2006-11-16 ビーエーエスエフ アクチェンゲゼルシャフト Composition for electroless plating of ternary materials for use in the semiconductor industry
US7850770B2 (en) 2003-05-09 2010-12-14 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
US9062378B2 (en) 2003-05-09 2015-06-23 Basf Aktiengesellschaft Compositions for the currentless deposition of ternary materials for use in the semiconductor industry
JP2005256170A (en) * 2004-02-12 2005-09-22 National Institute Of Advanced Industrial & Technology Electroless nickel plating method and plated product thereby
WO2010128809A2 (en) * 2009-05-06 2010-11-11 한국생산기술연구원 Nickel-phosphorus-tungsten ternary alloy electroless plating solution, electroless plating process using same, and nickel-phosphorus-tungsten ternary alloy film produced by same
WO2010128809A3 (en) * 2009-05-06 2011-03-03 한국생산기술연구원 Nickel-phosphorus-tungsten ternary alloy electroless plating solution, electroless plating process using same, and nickel-phosphorus-tungsten ternary alloy film produced by same
KR101138427B1 (en) * 2009-10-27 2012-04-26 강성택 The nickel-phosphorus-tungsten combined type electroless plating solution and the plating method using same
WO2012144518A1 (en) 2011-04-19 2012-10-26 日本パーカライジング株式会社 Corrosion-resistant alloy coating film for metal materials and method for forming same
JP2016188397A (en) * 2015-03-30 2016-11-04 株式会社 コーア Electroless plating liquid, and electroless plating method
IT201800020827A1 (en) * 2018-12-21 2020-06-21 Gianluca Taroni CODEPOSITE NICKEL AND SILICON CARBIDE

Similar Documents

Publication Publication Date Title
US4833041A (en) Corrosion/wear-resistant metal alloy coating compositions
JP2004502871A (en) Electroless silver plating
JP2004537647A (en) Paint containing nickel, boron and particles
US6066406A (en) Coating compositions containing nickel and boron
US3562000A (en) Process of electrolessly depositing metal coatings having metallic particles dispersed therethrough
US3723078A (en) Electroless alloy coatings having metallic particles dispersed therethrough
US5019163A (en) Corrosion/wear-resistant metal alloy coating compositions
JPH0665751A (en) Electroless composite plating bath and plating method
CN1896309A (en) Direct chemical nickeling process for pressed-cast aluminum alloy
US6391477B1 (en) Electroless autocatalytic platinum plating
EP1297198B1 (en) Electroless platinum-rhodium alloy plating
JP2001192850A (en) Surface treating solution for sliding parts, surface treating method for sliding parts and sliding parts
US5188643A (en) Method of applying metal coatings on cubic boron nitride and articles made therefrom
EP0359784A1 (en) Stabilized electroless baths for wear-resistant metal coatings
AU757657B2 (en) Coating compositions containing nickel and boron
US6455175B1 (en) Electroless rhodium plating
EP0679736B1 (en) Improvement of properties of the surface of a titanium alloy engine valve
US3060059A (en) Electroless nickel-phosphorous alloy plating bath and method
JP2560842B2 (en) Method for manufacturing corrosion resistant film
JP3023738B2 (en) Surface modification method of titanium engine valve
JPH01502678A (en) Corrosion-resistant/wear-resistant metal coating compositions
EP1371753A1 (en) Pretreating method before plating and composites having a plated coat
Kalantary et al. Effects of Agitation on Conventional Electroless Plating: Implications for Production of Ni--P Composite Coatings
KR20220168479A (en) Method for electroless plating using precipitation method and stirring method
JPH0319922A (en) Metallic wire for spinning machine