JPH0665669A - Heat resistant mg alloy and its production - Google Patents

Heat resistant mg alloy and its production

Info

Publication number
JPH0665669A
JPH0665669A JP22551492A JP22551492A JPH0665669A JP H0665669 A JPH0665669 A JP H0665669A JP 22551492 A JP22551492 A JP 22551492A JP 22551492 A JP22551492 A JP 22551492A JP H0665669 A JPH0665669 A JP H0665669A
Authority
JP
Japan
Prior art keywords
alloy
heat
resistant
weight
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22551492A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Sakae Tsunashima
栄 綱島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22551492A priority Critical patent/JPH0665669A/en
Publication of JPH0665669A publication Critical patent/JPH0665669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a heat resistant Mg alloy in which fine intermetallic compounds having low specific gravity and a high m.p. are uniformly dispersed by successively executing an LDC process and plastic working to the stock having the compsn. of an Mg alloy contg. a specified amt. of alloy elements AE such as Si. CONSTITUTION:The stock having the compsn. of an Mg alloy contg. at least one kind of alloy element AE selected from Si, Ge and Sb by 1.3<=AE<=20wt.% is subjected to an LDC process to produce a porous intermediate body. Then, this porous intermediate body is subjected to plastic working to produce the heat resistat Mg alloy. In this way, the heat resistant Mg alloy in which fine intermetallic compounds having low specific gravity and a high m.p. are uniformly dispersed and capable of easily satisfying the heat resistant strength to be required can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱Mg合金、特に、低
比重で、且つ高融点の金属間化合物をMgマトリックス
に分散させた耐熱Mg合金に関する。
TECHNICAL FIELD The present invention relates to a heat-resistant Mg alloy, and more particularly to a heat-resistant Mg alloy in which an intermetallic compound having a low specific gravity and a high melting point is dispersed in a Mg matrix.

【0002】[0002]

【従来の技術】従来、この種耐熱Mg合金としては、前
記金属間化合物であるMg2 Siを含有し、鋳造法によ
って製造されたものが知られている(例えば、特公昭4
3−20892号公報参照)。
2. Description of the Related Art Heretofore, as this kind of heat-resistant Mg alloy, there has been known one containing the above-mentioned intermetallic compound Mg 2 Si and manufactured by a casting method (for example, Japanese Patent Publication No.
3-20892).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鋳造法
によるMg2 Siの微細化には限界があり、例えば、よ
り一層の耐熱強度の向上を狙ってSi含有量を20重量
%程度と高く設定してMg2 Siの晶出量を増すと、そ
の微細化および均一分散を十分に達成することができな
い場合があった。
However, there is a limit to the refining of Mg 2 Si by the casting method, and for example, the Si content is set as high as about 20% by weight in order to further improve the heat resistance strength. If the amount of Mg 2 Si crystallized is increased by such a method, it may not be possible to sufficiently achieve fineness and uniform dispersion.

【0004】本発明は前記に鑑み、前記金属間化合物の
微細化と均一分散とを達成すると共にその金属間化合物
の含有範囲を拡張し、これにより要求耐熱強度を容易に
満たすことができるようにした前記耐熱Mg合金および
その製造方法を提供することを目的とする。
In view of the above, the present invention achieves miniaturization and uniform dispersion of the intermetallic compound and expands the content range of the intermetallic compound so that the required heat resistance strength can be easily satisfied. It is an object of the present invention to provide the above heat-resistant Mg alloy and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明に係る耐熱Mg合
金は、LDCプロセス、それに次ぐ塑性加工法の適用下
で製造され、Si、GeおよびSbから選択される少な
くとも一種の合金元素AEの含有量が1.3重量%≦A
E≦20重量%であって、その合金元素AEおよびMg
よりなる低比重で、且つ高融点の微細金属間化合物が均
一に分散していることを特徴とする。
The heat-resistant Mg alloy according to the present invention is produced under the application of the LDC process and the subsequent plastic working method, and contains at least one alloy element AE selected from Si, Ge and Sb. The amount is 1.3% by weight ≦ A
E ≦ 20% by weight and its alloying elements AE and Mg
It is characterized in that a fine intermetallic compound having a low specific gravity and a high melting point is uniformly dispersed.

【0006】本発明に係る耐熱Mg合金の製造方法は、
Si、GeおよびSbから選択される少なくとも一種の
合金元素AEを1.3重量%≦AE≦20重量%含有す
るMg合金組成の素材を用いてLDCプロセスを行うこ
とにより多孔性中間体を製造し、次いでその多孔性中間
体に塑性加工を施すことを特徴とする。
The method for producing a heat-resistant Mg alloy according to the present invention comprises:
A porous intermediate is manufactured by performing an LDC process using a material of a Mg alloy composition containing 1.3% by weight ≦ AE ≦ 20% by weight of at least one alloying element AE selected from Si, Ge and Sb. Then, the porous intermediate is subjected to plastic working.

【0007】[0007]

【作用】LDC(liquid dynamic compaction)プロセス
とは、例えば溶湯より溶滴流を形成してその溶滴流を所
定の速度で落下させ、下方に設置されたコレクタ内にお
ける溶滴の衝突、溶着および再凝固による堆積作用によ
って多孔性金属塊を得る方法であって、このプロセスに
はオスプレイ(Osprey)プロセス、VADER(vacuum ar
c double electrode remelting) プロセス等が含まれ
る。
In the LDC (liquid dynamic compaction) process, for example, a droplet flow is formed from a molten metal, the droplet flow is dropped at a predetermined speed, and the droplets collide, weld and collide in a collector installed below. A method for obtaining a porous metal mass by a deposition action by resolidification, which includes an Osprey process and a VADER (vacuum ar) process.
c double electrode remelting) process etc. are included.

【0008】LDCプロセスによれば、溶滴の再凝固が
急速に行われるので、金属間化合物がデンドライト状に
晶出することがない。また多孔性金属塊は溶滴の集合物
であるから、その金属塊における金属間化合物の分散が
均一となる。このような金属塊に塑性加工を施すと、製
品の高密度化が達成される。
According to the LDC process, the re-solidification of the droplets is carried out rapidly, so that the intermetallic compound does not crystallize in a dendrite form. Further, since the porous metal block is an aggregate of droplets, the intermetallic compound is uniformly dispersed in the metal block. By subjecting such a metal block to plastic working, high density of the product is achieved.

【0009】前記耐熱Mg合金は前記のような方法によ
って得られたものであるから、それに含有される金属間
化合物は微細であり、その分散も均一となる。また前記
合金元素AEとMgよりなる微細金属間化合物は低比重
で、且つ高融点である。その上、合金元素AEの含有範
囲、したがって微細金属間化合物の含有範囲が拡張され
ているので、耐熱Mg合金に対する要求耐熱強度を容易
に満たすことが可能である。
Since the heat-resistant Mg alloy is obtained by the above method, the intermetallic compound contained therein is fine and the dispersion thereof is uniform. Further, the fine intermetallic compound composed of the alloy elements AE and Mg has a low specific gravity and a high melting point. In addition, since the content range of the alloy element AE, that is, the content range of the fine intermetallic compound is expanded, it is possible to easily satisfy the required heat resistance strength for the heat resistant Mg alloy.

【0010】ただし、合金元素AEの含有量がAE<
1.3重量%では微細金属間化合物の含有量が少なくな
って十分な耐熱強度を得ることができず、一方、AE>
20重量%では素材の融点が上昇するため製法上の困難
が生じたり、また金属間化合物の含有量が過大となって
室温下でのMg合金の靱性が低下する。
However, if the content of the alloy element AE is AE <
If it is 1.3% by weight, the content of the fine intermetallic compound is small and sufficient heat resistance cannot be obtained. On the other hand, AE>
If the content is 20% by weight, the melting point of the material rises, which causes difficulties in the manufacturing method, and the content of the intermetallic compound becomes excessive, so that the toughness of the Mg alloy at room temperature decreases.

【0011】[0011]

【実施例】耐熱Mg合金の製造に当っては、Si、Ge
およびSbから選択される少なくとも一種の合金元素A
Eを1.3重量%≦AE≦20重量%含有するMg合金
組成の素材を溶製する工程と、その素材を用いてLDC
プロセスとしてのオスプレイプロセスを行うことにより
多孔性中間体を製造する工程と、その中間体の外周部に
切削加工を施して所定の寸法に仕上げる工程と、中間体
に塑性加工としての熱間押出し加工を施す工程とを順次
行うものである。
[Example] In manufacturing a heat-resistant Mg alloy, Si, Ge
And at least one alloying element A selected from Sb
A step of smelting a material of a Mg alloy composition containing 1.3% by weight ≦ AE ≦ 20% by weight of E, and an LDC using the material
The process of manufacturing a porous intermediate body by performing the Osprey process as a process, the step of cutting the outer periphery of the intermediate body to finish it to a predetermined size, and the hot extrusion process as a plastic working on the intermediate body And the step of applying are sequentially performed.

【0012】素材において、合金元素AEであるSi、
GeおよびSbは、Mgに殆ど固溶しないことからMg
と化合して低比重で、且つ高融点の金属間化合物(以
下、IMCと称す)を形成する。そのIMCは、Siの
場合Mg2 Si(比重1.9、融点1102℃)であ
り、Geの場合Mg2 Ge(比重3.1、融点1115
℃)であり、Sbの場合α−Mg3 Sb2 (比重4.
1、融点930℃)である。
In the material, Si, which is the alloying element AE,
Ge and Sb do not form a solid solution with Mg, so Mg
To form an intermetallic compound having a low specific gravity and a high melting point (hereinafter referred to as IMC). The IMC is Mg 2 Si (specific gravity 1.9, melting point 1102 ° C.) in the case of Si, and Mg 2 Ge (specific gravity 3.1, melting point 1115 in the case of Ge).
C), and in the case of Sb α-Mg 3 Sb 2 (specific gravity 4.
1, melting point 930 ° C.).

【0013】オスプレイプロセスは、図1に示すような
装置を用いて行われる。即ち、溶解炉1内で素材を溶解
して溶湯2を調製する、溶解炉1底部外面に付設された
霧化機構3のガス導入管4に高圧N2 ガスを導入し、そ
のN2 ガスと共に溶湯2をノズル5から下向きに噴出さ
せることによって溶滴流6を形成する、その溶滴流6を
コレクタ7によって受容する、コレクタ7内における堆
積物量に応じてそのコレクタ7を昇降台8を介して下降
させ、所定の体積をもつ多孔性中間体9を得る。図中、
10はノックアウト用ピン孔である。
The Osprey process is carried out using a device as shown in FIG. That is, high-pressure N 2 gas is introduced into the gas introduction pipe 4 of the atomization mechanism 3 attached to the outer surface of the bottom of the melting furnace 1 for preparing the molten metal 2 by melting the raw material in the melting furnace 1 and together with the N 2 gas. A droplet stream 6 is formed by jetting the molten metal 2 downward from a nozzle 5, the droplet stream 6 is received by a collector 7, and the collector 7 is passed through an elevator 8 according to the amount of deposits in the collector 7. Then, the porous intermediate body 9 having a predetermined volume is obtained. In the figure,
10 is a pin hole for knockout.

【0014】このようなプロセスによると溶滴の冷却速
度は102 〜103 ℃/sec といったように高められる
ので、その溶滴の再凝固に際し、IMCがデンドライト
状に成長することがなく、これにより微細IMCを均一
に分散させた多孔性中間体9が得られる。
According to such a process, the cooling rate of the droplets can be increased to 10 2 to 10 3 ° C / sec, so that upon resolidification of the droplets, the IMC does not grow in the form of dendrite. Thus, a porous intermediate body 9 in which fine IMCs are uniformly dispersed is obtained.

【0015】以下、具体例について説明する。A specific example will be described below.

【0016】純度99.99%のMgインゴットおよび
純度99.7%のSiフレークをArガス雰囲気下で高
周波溶解し、次いでCu製金型を用いて鋳込作業を行う
ことにより、Si含有量を0.5〜25.0重量%の範
囲で調節された複数のMg合金組成の素材を溶製した。
A Mg ingot having a purity of 99.99% and a Si flake having a purity of 99.7% were subjected to high-frequency melting under an Ar gas atmosphere, and then a casting operation was carried out using a Cu mold to reduce the Si content. A plurality of Mg alloy composition materials adjusted in the range of 0.5 to 25.0% by weight were melted.

【0017】各素材を用いてオスプレイプロセスを行う
ことにより、直径50mm、長さ60mmの多孔性中間体を
製造した。オスプレイプロセスの条件は、溶湯温度75
0℃、N2 ガスの圧力5kgf/cm2 、ノズルおよびコレ
クタ(または堆積物)間の距離30mm、冷却速度5×1
2 ℃/sec に設定された。
An Osprey process was performed using each material to produce a porous intermediate body having a diameter of 50 mm and a length of 60 mm. The conditions for the Osprey process are a melt temperature of 75
0 ° C., N 2 gas pressure 5 kgf / cm 2 , distance between nozzle and collector (or deposit) 30 mm, cooling rate 5 × 1
It was set to 0 2 ° C / sec.

【0018】各中間体の外周部に切削加工を施して直径
を40mmに仕上げ、その中間体に押出し温度350℃、
押出し比16の条件下で熱間押出し加工を施して直径1
0mmの丸棒状をなすMg−Si系合金(1)〜(10)
を得た。
The outer periphery of each intermediate body is cut to a diameter of 40 mm, and the intermediate body is extruded at a temperature of 350 ° C.
Hot extrusion under conditions of extrusion ratio 16 and diameter 1
0 mm round bar Mg-Si alloys (1) to (10)
Got

【0019】比較のため、前記MgインゴットおよびS
iフレークを用い、溶解および鋳造を行うことによって
Si含有量を異にする直径10mmの丸棒状をなす2種の
Mg−Si系合金(11),(12)を得た。この場合
の冷却速度は100 〜101℃/sec であった。
For comparison, the Mg ingot and S
Two types of Mg-Si alloys (11) and (12) in the form of round rods having different Si contents and having a diameter of 10 mm were obtained by melting and casting using i-flakes. The cooling rate in this case was 10 0 ~10 1 ℃ / sec.

【0020】各Mg−Si系合金(1)〜(12)につ
いて、IMCの粒径Dおよび体積分率Vfを調べ、また
室温および200℃において引張り試験を行って引張強
さTS、耐力YSおよび伸びEL を測定したところ、表
1の結果が得られた。表中、評価の欄において、「○」
印は耐熱Mg合金として適当であることを、また「×」
印は耐熱Mg合金として不適当であることをそれぞれ示
す。この評価は以下の各表について同じである。
For each of the Mg-Si alloys (1) to (12), the grain size D and volume fraction Vf of IMC were examined, and a tensile test was conducted at room temperature and 200 ° C. to obtain tensile strength TS, yield strength YS and When the elongation E L was measured, the results shown in Table 1 were obtained. In the evaluation column of the table, "○"
The mark indicates that it is suitable as a heat-resistant Mg alloy, and "X"
The marks indicate that the heat-resistant Mg alloy is unsuitable. This evaluation is the same for each table below.

【0021】[0021]

【表1】 表1から明らかなように、Mg−Si系合金(3)〜
(9)はSi含有量が前記範囲に収められており、また
オスプレイプロセスを適用されたことから、適当量の微
細IMCの均一分散が図られ、その上熱間押出し加工に
よって高密度化が達成されているので、優れた耐熱強度
を有する。
[Table 1] As is clear from Table 1, Mg-Si alloys (3)-
In (9), the Si content is within the above range, and since the Osprey process was applied, an appropriate amount of fine IMC was uniformly dispersed, and hot extrusion was performed to achieve high density. Therefore, it has excellent heat resistance.

【0022】表2は、Mg−Ge系合金(13)〜(2
3)の組成、IMCの粒径D、その体積分率Vfならび
に室温および200℃における引張り試験結果を示す。
合金(13)〜(21)はオスプレイプロセスおよび熱
間押出し加工を適用されたものであり、また合金(2
2),(23)は前記同様の鋳造法により得られたもの
である。
Table 2 shows Mg-Ge alloys (13) to (2).
3) The composition of 3), the particle size D of IMC, its volume fraction Vf, and the tensile test results at room temperature and 200 ° C. are shown.
Alloys (13)-(21) have been subjected to the Osprey process and hot extrusion, and alloys (2)
2) and (23) are obtained by the same casting method as described above.

【0023】[0023]

【表2】 表3は、オスプレイプロセスおよび熱間押出し加工を適
用されたMg−Sb系合金(24)〜(30)の組成、
IMCの粒径D、その体積分率Vfならびに室温および
200℃における引張り試験結果を示す。
[Table 2] Table 3 shows the composition of the Mg-Sb based alloys (24) to (30) that have been subjected to the Osprey process and hot extrusion.
The particle diameter D of IMC, its volume fraction Vf, and the tensile test result in room temperature and 200 degreeC are shown.

【0024】[0024]

【表3】 表4は、オスプレイプロセスおよび熱間押出し加工を適
用されたMg−Si−Ge系合金(31)〜(40)の
組成、IMCの粒径D、その体積分率Vfならびに室温
および200℃における引張り試験結果を示す。
[Table 3] Table 4 shows the composition of the Mg-Si-Ge based alloys (31) to (40) subjected to the Osprey process and the hot extrusion process, the grain size D of IMC, the volume fraction Vf thereof, and the tensile strength at room temperature and 200 ° C. The test results are shown.

【0025】[0025]

【表4】 表5は、オスプレイプロセスおよび熱間押出し加工を適
用されたMg−Si−Ge−Sb系合金(41)〜(4
4)の組成、IMCの粒径D、その体積分率Vfならび
に室温および200℃における引張り試験結果を示す。
[Table 4] Table 5 shows the Mg-Si-Ge-Sb based alloys (41) to (4) that have been subjected to the Osprey process and hot extrusion.
4) The composition of 4), the particle size D of IMC, its volume fraction Vf, and the tensile test results at room temperature and 200 ° C. are shown.

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【発明の効果】請求項1記載の発明によれば、低比重
で、且つ高融点の特定金属間化合物の微細化と均一分散
とを達成すると共にその微細金属間化合物の含有範囲を
拡張し、これにより要求耐熱強度を容易に満たすことが
可能な耐熱Mg合金を提供することができる。
According to the invention of claim 1, the specific intermetallic compound having a low specific gravity and high melting point can be finely divided and uniformly dispersed, and the content range of the fine intermetallic compound can be expanded. This makes it possible to provide a heat-resistant Mg alloy that can easily satisfy the required heat-resistant strength.

【0028】請求項3記載の発明によれば、前記耐熱M
g合金を容易に量産することができる。
According to the invention of claim 3, the heat-resistant M
The g alloy can be easily mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】オスプレイプロセスの概略説明図である。FIG. 1 is a schematic explanatory diagram of an Osprey process.

【符号の説明】[Explanation of symbols]

1 溶解炉 2 溶湯 3 霧化機構 4 ガス導入管 5 ノズル 6 溶滴流 7 コレクタ 8 多孔性中間体 1 Melting Furnace 2 Molten Metal 3 Atomization Mechanism 4 Gas Introducing Pipe 5 Nozzle 6 Droplet Flow 7 Collector 8 Porous Intermediate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 LDCプロセス、それに次ぐ塑性加工法
の適用下で製造され、Si、GeおよびSbから選択さ
れる少なくとも一種の合金元素AEの含有量が1.3重
量%≦AE≦20重量%であって、その合金元素AEお
よびMgよりなる低比重で、且つ高融点の微細金属間化
合物が均一に分散していることを特徴とする耐熱Mg合
金。
1. An LDC process, which is manufactured under the application of a plastic working method subsequent to the LDC process, and the content of at least one alloying element AE selected from Si, Ge and Sb is 1.3% by weight ≦ AE ≦ 20% by weight. A heat-resistant Mg alloy, characterized in that a fine intermetallic compound having a low specific gravity and a high melting point, which is composed of the alloy elements AE and Mg, is uniformly dispersed.
【請求項2】 前記微細金属間化合物の粒径DがD≦1
0μmである、請求項1記載の耐熱Mg合金。
2. The particle size D of the fine intermetallic compound is D ≦ 1.
The heat-resistant Mg alloy according to claim 1, which has a thickness of 0 μm.
【請求項3】 Si、GeおよびSbから選択される少
なくとも一種の合金元素AEを1.3重量%≦AE≦2
0重量%含有するMg合金組成の素材を用いてLDCプ
ロセスを行うことにより多孔性中間体を製造し、次いで
その多孔性中間体に塑性加工を施すことを特徴とする耐
熱Mg合金の製造方法。
3. At least one alloy element AE selected from Si, Ge and Sb is 1.3% by weight ≦ AE ≦ 2.
A method for producing a heat-resistant Mg alloy, which comprises subjecting a porous intermediate to a LDC process using a Mg alloy composition containing 0% by weight, and then subjecting the porous intermediate to plastic working.
JP22551492A 1992-08-25 1992-08-25 Heat resistant mg alloy and its production Pending JPH0665669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22551492A JPH0665669A (en) 1992-08-25 1992-08-25 Heat resistant mg alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22551492A JPH0665669A (en) 1992-08-25 1992-08-25 Heat resistant mg alloy and its production

Publications (1)

Publication Number Publication Date
JPH0665669A true JPH0665669A (en) 1994-03-08

Family

ID=16830512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22551492A Pending JPH0665669A (en) 1992-08-25 1992-08-25 Heat resistant mg alloy and its production

Country Status (1)

Country Link
JP (1) JPH0665669A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853632B4 (en) * 1997-11-20 2006-10-26 Ricoh Co., Ltd. Image processing device
JP2011074469A (en) * 2009-09-30 2011-04-14 Fuji Heavy Ind Ltd Method for producing silicon added magnesium alloy
CN102978494A (en) * 2012-12-13 2013-03-20 北京大学 Mg-Ge magnesium alloy and preparation method thereof
JP2017179541A (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Magnesium alloy for casting and magnesium alloy cast

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853632B4 (en) * 1997-11-20 2006-10-26 Ricoh Co., Ltd. Image processing device
JP2011074469A (en) * 2009-09-30 2011-04-14 Fuji Heavy Ind Ltd Method for producing silicon added magnesium alloy
CN102978494A (en) * 2012-12-13 2013-03-20 北京大学 Mg-Ge magnesium alloy and preparation method thereof
JP2017179541A (en) * 2016-03-31 2017-10-05 アイシン・エィ・ダブリュ株式会社 Magnesium alloy for casting and magnesium alloy cast

Similar Documents

Publication Publication Date Title
US3845805A (en) Liquid quenching of free jet spun metal filaments
US5213148A (en) Production process of solidified amorphous alloy material
EP0200349B1 (en) Improved method of manufacture of metal products
US5336342A (en) Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof
JPH0347941A (en) High strength magnesium base alloy
JPH0328341A (en) Aluminum-strontium mother alloy
JP4217997B2 (en) Soft magnetic alloy powder
JP2705996B2 (en) High strength magnesium based alloy
US5344508A (en) Flow forming of aluminum alloy products
US5318642A (en) High-strength rolled sheet of aluminum alloy and process for producing the same
EP0132371B1 (en) Process for making alloys having a coarse elongated grain structure
JPH0665669A (en) Heat resistant mg alloy and its production
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JPH05179383A (en) Aluminum alloy having fine crystallized grain manufacture by spray deposition method
US5196074A (en) Copper alloys capable of spinodal decomposition and a method of obtaining such alloys
US3960200A (en) Apparatus for liquid quenching of free jet spun metal
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
US3177573A (en) Method of die-expressing an aluminum-base alloy
RU2215059C2 (en) Method of manufacturing products from refractory nickel alloy
US4060430A (en) Production of filaments of hexagonal close-packed metals and alloys thereof
JPH05195130A (en) Aluminum alloy containing fine crystallized matter
US2659136A (en) Composite alloy
KR20030049866A (en) Ductile Particle Reinforced Amorphous Matrix Composite and Method for Making the Same
JP2752971B2 (en) High strength and heat resistant aluminum alloy member and method of manufacturing the same