JPH0665640B2 - Semiconductor single crystal manufacturing apparatus and manufacturing method - Google Patents

Semiconductor single crystal manufacturing apparatus and manufacturing method

Info

Publication number
JPH0665640B2
JPH0665640B2 JP1100084A JP10008489A JPH0665640B2 JP H0665640 B2 JPH0665640 B2 JP H0665640B2 JP 1100084 A JP1100084 A JP 1100084A JP 10008489 A JP10008489 A JP 10008489A JP H0665640 B2 JPH0665640 B2 JP H0665640B2
Authority
JP
Japan
Prior art keywords
raw material
single crystal
crucible
pulling
supply mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1100084A
Other languages
Japanese (ja)
Other versions
JPH02279582A (en
Inventor
正人 今井
博行 野田
裕 白石
Original Assignee
コマツ電子金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ電子金属株式会社 filed Critical コマツ電子金属株式会社
Priority to JP1100084A priority Critical patent/JPH0665640B2/en
Publication of JPH02279582A publication Critical patent/JPH02279582A/en
Publication of JPH0665640B2 publication Critical patent/JPH0665640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原料をるつぼ内に連続的に供給し、均質な半
導体単結晶を連続的に製造する技術に関するものであ
る。
TECHNICAL FIELD The present invention relates to a technique of continuously supplying a raw material into a crucible and continuously producing a homogeneous semiconductor single crystal.

[従来の技術] 半導体単結晶の育成には、るつぼ内の原料融液から円柱
状の結晶を育成するCZ法が用いられている。この技術
は、育成される単結晶の抵抗率を制御するために、るつ
ぼ内の原料融液にドーパントと呼ばれる不純物元素を添
加する。しかしながらドーパントは一般に偏析係数が1
でないため、通常のCZ法では、結晶の長さが長くなる
につれ結晶中の濃度が変化する。これは、ドーパント濃
度で抵抗率の制御を行なう半導体単結晶の製造において
問題となっている。
[Prior Art] A CZ method for growing a columnar crystal from a raw material melt in a crucible is used for growing a semiconductor single crystal. This technique adds an impurity element called a dopant to the raw material melt in the crucible in order to control the resistivity of the grown single crystal. However, the dopant generally has a segregation coefficient of 1
Therefore, in the usual CZ method, the concentration in the crystal changes as the length of the crystal becomes longer. This is a problem in the production of semiconductor single crystals in which the resistivity is controlled by the dopant concentration.

この問題を解決するために、原料をるつぼ内に連続的に
供給し、原料融液中のドーパント濃度を一定に保つ連続
チャージ法や二重るつぼを用いた技術(特開昭63-7979
0)が提案されている。連続チャージ法における原料供
給手段としては、原料溶解場所と単結晶育成場所を分離
し、輸送するもの(特開昭52-58080,特開昭56-16409
7)、棒状の原料を用いるもの(特開昭56-84397,特開
昭62-105992)等の提案がある。
In order to solve this problem, a technique using a continuous charging method or a double crucible in which the raw material is continuously supplied into the crucible and the dopant concentration in the raw material melt is kept constant (JP-A-63-7979).
0) is proposed. As a raw material supply means in the continuous charging method, a raw material melting place and a single crystal growing place are separated and transported (Japanese Patent Laid-Open Nos. 52-58080 and 56-16409).
7), those using rod-shaped raw materials (JP-A-56-84397, JP-A-62-105992) and the like.

[発明が解決しようとする課題] 先にあげた連続チャージ技術のうち、前二者のものは、
原料溶解用るつぼと結晶育成用るつぼを要し、構造的に
複雑となり、また、供給量の制御が難しいという問題が
ある。後二者のものは、棒状原料をるつぼ内の融液によ
り溶解するために、るつぼ内の結晶育成場所と原料溶解
場所の温度勾配を大きくする必要があり、結晶育成中に
原料溶解可能な温度勾配を実現することは非常に困難で
ある。さらに、後二者のうちのさらに後者は、原料の予
備加熱に高周波を用いているが、たとえば、単結晶シリ
コンの育成に用いられている減圧炉では放電する危険性
が高く実用的でない。また、二重るつぼによるものは、
内壁から多結晶が発生しやすく成長速度の低下を余儀無
くされる。しかも、るつぼ材からの不純物混入量が増大
するという問題もある。
[Problems to be Solved by the Invention] Of the continuous charge technologies mentioned above, the former two are:
There are problems that the crucible for melting the raw material and the crucible for growing the crystal are required, the structure becomes complicated, and the supply amount is difficult to control. In the latter two, in order to melt the rod-shaped raw material by the melt in the crucible, it is necessary to increase the temperature gradient between the crystal growing place and the raw material melting place in the crucible. Achieving the gradient is very difficult. Furthermore, the latter of the latter two uses high frequency for preheating the raw material, but for example, in a decompression furnace used for growing single crystal silicon, there is a high risk of electric discharge and it is not practical. Also, the double crucible,
Polycrystals are easily generated from the inner wall, and the growth rate is unavoidably reduced. Moreover, there is a problem that the amount of impurities mixed from the crucible material increases.

[課題を解決するための手段] 本発明は、従来の連続チャージ技術の問題点を解決し、
長さ方向にわたって不純物濃度がほぼ均一な単結晶を連
続的に製造することを可能にするもので、引上装置内の
るつぼ内融液充填域に先端部を開放した保護筒内に、保
護筒先端部より上方に抵抗加熱ヒータを設け、抵抗加熱
ヒータを下部程高温で原料溶融可能に温度設定できる構
成とし、単結晶引上時には、融液中に前記保護筒の先端
部が位置することにより、保護筒内の気相部と引上装置
内の気相部とが融液により隔てられて、互いに独立する
とともに、保護筒内に装填した原料多結晶棒が抵抗加熱
ヒータにより保護筒内下部で溶融されつつるつぼ内融液
面に供給されるされるよう構成したこと及び、単結晶引
上時にその気相部が装置内気相部に対して独立する構成
の原料供給機構から新たな原料を溶融供給しつつ、単結
晶の引上を連続的に行なうことを特徴としている。
[Means for Solving the Problems] The present invention solves the problems of the conventional continuous charging technique,
It makes it possible to continuously produce single crystals with almost uniform impurity concentration over the length direction.The protective cylinder is placed inside the crucible inside the pulling device and the tip is open in the melt filling area. A resistance heater is provided above the tip, and the temperature of the resistance heater is set so that the raw material can be melted at a higher temperature in the lower part.When the single crystal is pulled up, the tip of the protective cylinder is positioned in the melt. , The vapor phase portion in the protective cylinder and the vapor phase portion in the pulling device are separated from each other by the melt and are independent of each other, and the raw material polycrystalline rod loaded in the protective cylinder is in the lower portion of the protective cylinder by the resistance heater. It is configured to be supplied to the melt surface in the crucible that is being melted by, and a new raw material is supplied from the raw material supply mechanism whose vapor phase part is independent of the vapor phase part in the apparatus when pulling the single crystal. Continuous single crystal pulling while melting and feeding And characterized by performing.

本発明においては、単結晶の育成に伴うるつぼ内の融液
減少量に応じて、原料棒の送りを制御する原料棒送りを
原料供給機構に備えると、安定な単結晶の連続育成が可
能となる。
In the present invention, according to the melt reduction amount in the crucible accompanying the growth of the single crystal, if the raw material supply mechanism is equipped with a raw material feed to control the feed of the raw material rod, it is possible to continuously grow a stable single crystal. Become.

また、抵抗加熱ヒータを筒型らせん状にすると、原料の
溶融部を融液面に近づけることができる。
Further, when the resistance heater is formed in a tubular spiral shape, the molten portion of the raw material can be brought close to the melt surface.

さらにまた、保護筒及び抵抗加熱ヒータを下に向かって
縮径させると原料供給量の制御が容易になる。
Furthermore, if the diameter of the protective cylinder and the resistance heater are reduced downward, it becomes easy to control the raw material supply amount.

また、原料供給機構内に50cc/min.・cm2以上の不活性ガ
スを流すことで一酸化シリコンの滞留を防いで、ヒータ
の寿命を延ばすことができる。
Further, by flowing an inert gas of 50 cc / min.cm 2 or more in the raw material supply mechanism, the retention of silicon monoxide can be prevented and the life of the heater can be extended.

本発明では、放電を防ぐため、抵抗加熱ヒータにより融
液面直上で、棒状の原料を溶解する構成を採用した。原
料棒は、ドーパント濃度が成長単結晶と等しいものを用
いる。その送り速度または送り重量は、たとえば、単結
晶の引上げ速度または単結晶重量に基づいて調整し、さ
らに必要により抵抗加熱ヒータへの電力量の調節によっ
ても制御する。こうして引上量に見合う分だけを新たに
るつぼ内の融液中に供給していく。さらに、供給原料融
液の落下による振動や落下異物の成長単結晶への付着を
防ぐため、先端にたとえば円筒状石英を備えた保護筒で
抵抗加熱ヒータ全面を覆い、その先端部を原料融液中に
浸漬し、原料供給機構内気相部と引上装置内気相部を互
いに隔離した。
In the present invention, in order to prevent discharge, a configuration is adopted in which a rod-shaped raw material is melted just above the melt surface by a resistance heater. As the raw material rod, one having a dopant concentration equal to that of the grown single crystal is used. The feed rate or feed weight is adjusted based on, for example, the pulling rate of the single crystal or the single crystal weight, and is also controlled by adjusting the amount of electric power to the resistance heater, if necessary. In this way, only the amount corresponding to the pulling amount is newly supplied into the melt in the crucible. Further, in order to prevent vibration due to the fall of the feed material melt and adhesion of foreign particles to the growing single crystal, the entire surface of the resistance heater is covered with a protective cylinder equipped with, for example, cylindrical quartz at the tip, and the tip is melted with the raw material melt. The inside of the raw material supply mechanism and the inside of the pulling apparatus were separated from each other by immersing in the inside.

また、抵抗加熱ヒータを筒型らせん状に構成すれば、コ
ンパクトになる。
Further, if the resistance heater is formed in a tubular spiral shape, it becomes compact.

さらに、保護筒にガス供給管及び系外への排気管を設け
れば、保護筒内への不活性ガスの供給も可能になる。
Further, if the protective cylinder is provided with a gas supply pipe and an exhaust pipe to the outside of the system, it is possible to supply an inert gas into the protective cylinder.

[作用] 本発明においては、引上開始と同時に、るつぼ内融液の
減少が始まっても、この減少量に見合うよう、原料棒の
送り速度を調整し、さらに抵抗加熱ヒータへの電力を制
御して原料棒を溶融して、連続的に原料を供給してい
く。抵抗加熱ヒータは、下部ほど高温になるよう構成さ
れているから、原料棒の溶融は下部のみで起こる。ま
た、保護筒の先端部はるつぼ内融液中に維持されている
ため、溶融原料は保護筒内の融液面に落ちる。落下異物
があってもこの保護筒内に留まる。
[Operation] In the present invention, even if the melt in the crucible begins to decrease at the same time as the start of pulling, the feed rate of the raw material rod is adjusted to meet this decrease, and the electric power to the resistance heater is controlled. Then, the raw material rod is melted and the raw material is continuously supplied. Since the resistance heater is configured so that the temperature becomes higher toward the lower part, melting of the raw material bar occurs only in the lower part. Further, since the tip of the protective cylinder is maintained in the melt in the crucible, the molten raw material falls on the melt surface in the protective cylinder. Even if there is a falling foreign object, it will remain in this protective cylinder.

本発明を、以下にその一実施例である図を用いてさらに
詳説する。
The present invention will be described in more detail below with reference to the drawings which are one embodiment thereof.

第1図は、本発明の一実施例の単結晶製造装置を、第3
図は、本発明の別の一実施例の単結晶製造装置を示し、
第4図は、本発明の一実施例の抵抗加熱ヒータ部分を示
している。
FIG. 1 shows a single crystal manufacturing apparatus according to an embodiment of the present invention.
The figure shows a single crystal manufacturing apparatus of another embodiment of the present invention,
FIG. 4 shows a resistance heater part of an embodiment of the present invention.

本発明の実施例においては原料供給機構200は、抵抗加
熱ヒータ11、絶縁管18、保温筒10、保護筒9、保
持管150及び原料棒送り20(第3図参照)より成って
いる。
In the embodiment of the present invention, the raw material supply mechanism 200 comprises a resistance heater 11, an insulating tube 18, a heat insulating tube 10, a protective tube 9, a holding tube 150 and a raw material feed 20 (see FIG. 3).

第4図に示したように、抵抗加熱ヒータ11は、育成単
結晶への熱的影響をできるだけ抑えるため絶縁管18を
介して保温筒10に保持され、さらにこの保温筒10
は、保護筒9内に納められている。したがって、抵抗加
熱ヒータ11、絶縁管18及び保温筒10は、保護筒9
内に保持されている。さらに保護筒9は、第1図に示す
ように、その上端部で単結晶製造装置180内に設けられ
た保持管150に気密に固定され、先端部はるつぼの原料
融液充填域に位置している。このため、単結晶育成時に
は、前記保護筒9の先端部は融液100中に常時あり、原
料供給機構内気相部102と、単結晶製造装置内気相部101
とは、互いに独立するようになる。また、このように保
護筒の先端部を融液100中に位置させることで、原料棒
13の溶融により液滴が落下しても、るつぼ融液100中
に生ずる温度の不均一や、液面振動を抑え、またこの液
面振動、さらには落下異物が育成単結晶6に達すること
も防止している。
As shown in FIG. 4, the resistance heater 11 is held by the heat insulating cylinder 10 via the insulating tube 18 in order to suppress the thermal influence on the grown single crystal as much as possible.
Are stored in the protective cylinder 9. Therefore, the resistance heater 11, the insulating tube 18, and the heat insulating cylinder 10 are connected to the protective cylinder 9
Held in. Further, as shown in FIG. 1, the protective cylinder 9 is hermetically fixed to the holding tube 150 provided in the single crystal manufacturing apparatus 180 at the upper end thereof, and the distal end thereof is located in the raw material melt filling region of the crucible. ing. Therefore, when growing the single crystal, the tip of the protective cylinder 9 is always in the melt 100, and the vapor phase portion 102 in the raw material supply mechanism and the vapor phase portion 101 in the single crystal manufacturing apparatus are kept.
And become independent of each other. Further, by arranging the tip of the protective tube in the melt 100 in this way, even if a droplet drops due to the melting of the raw material rod 13, the temperature unevenness in the crucible melt 100 and the liquid level The vibration is suppressed, and the liquid surface vibration and the falling foreign matter are prevented from reaching the grown single crystal 6.

抵抗加熱ヒータ11は、第4図に示すように左右に分離
した筒状を呈し、加熱部170が二重らせん構造であり、
上端がそれぞれの電極160になっている。原料棒13
は、原料融液100の量を一定に保つよう育成単結晶6の
重量と連動して抵抗加熱ヒータ11中に送り込まれ、加
熱部170の下部で溶融状態になり、原料融液100中に供給
される。
As shown in FIG. 4, the resistance heater 11 has a tubular shape separated into right and left, and the heating unit 170 has a double-helix structure,
The upper end is each electrode 160. Raw material bar 13
Is fed into the resistance heater 11 in conjunction with the weight of the grown single crystal 6 so as to keep the amount of the raw material melt 100 constant, becomes a molten state under the heating section 170, and is supplied into the raw material melt 100. To be done.

また、原料供給機構を単結晶引上域を外して第1図のよ
うに二箇所かそれ以上に設ければ、一方の原料棒が消耗
した場合、あらかじめ装填してあった他方の原料棒を供
給し、その間、ゲートバルブ17を閉じて、消耗した原
料棒を新しい原料棒と交換することができる。この作業
を繰り返せば半導体単結晶を連続的に育成することがで
きる。
Further, if the raw material supply mechanism is provided at two or more places as shown in FIG. 1 by removing the single crystal pulling region, when one raw material rod is consumed, the other raw material rod previously loaded is replaced. It is possible to supply, while the gate valve 17 is closed, to replace the consumed raw material rod with a new raw material rod. By repeating this operation, a semiconductor single crystal can be continuously grown.

なお、第5図に第1図、第2図及び第3図中のA−A線
に沿う横断面図を示した。
Incidentally, FIG. 5 shows a cross-sectional view taken along the line AA in FIG. 1, FIG. 2 and FIG.

[実施例1] 本発明の一実施例を示す第1図の単結晶製造装置を用い
てシリコン単結晶の育成を行なった。単結晶育成時の条
件は、石英るつぼ4の直径16インチ、石英るつぼ内の融
液量15kg、原料棒13の直径が50mm、育成単結晶6の直
径4インチ、抵抗率(リンドープ)10Ω・cm、引上げ速
度1mm/min.である。原料棒の送り速度と抵抗加熱ヒータ
の電力には第6図に示すような関係がある。本実施例に
おいては、原料棒13の送り速度4mm/min.、抵抗加熱
ヒータ11の電力7kwで行なった。
Example 1 A silicon single crystal was grown using the single crystal manufacturing apparatus of FIG. 1 showing an example of the present invention. The conditions for growing a single crystal are as follows: the diameter of the quartz crucible 4 is 16 inches, the amount of melt in the quartz crucible is 15 kg, the diameter of the raw material rod 13 is 50 mm, the diameter of the grown single crystal 6 is 4 inches, and the resistivity (phosphorus-doped) is 10 Ω · cm. , The pulling speed is 1 mm / min. The feed rate of the raw material rod and the electric power of the resistance heater have a relationship as shown in FIG. In this example, the feed rate of the raw material rod 13 was 4 mm / min., And the electric power of the resistance heater 11 was 7 kw.

育成した単結晶の軸方向の抵抗率変化を第7図に示す。
参考のために、るつぼ内の融液量が同一の場合の通常の
CZ法の結果を同時に示す。通常のCZ法では、成長と
ともに抵抗率が大きく変化するのに対して、本発明を用
いて育成した単結晶ではほぼ一定である。また、軸方向
の酸素濃度変化を第8図に示す。育成条件は同一であ
る。本発明を用いて育成した単結晶は、軸方向で均一
で、しかも、通常のCZ法よりも低酸素濃度である。二
重るつぼ法と比べると1/2以下である。これにより、酸
素濃度の制御範囲を広げることが可能となる。
FIG. 7 shows the change in the axial resistivity of the grown single crystal.
For reference, the results of the ordinary CZ method when the amount of melt in the crucible is the same are shown at the same time. In the usual CZ method, the resistivity changes greatly with growth, whereas it is almost constant in the single crystal grown using the present invention. Further, FIG. 8 shows changes in the oxygen concentration in the axial direction. The raising conditions are the same. The single crystal grown by using the present invention is uniform in the axial direction and has a lower oxygen concentration than the usual CZ method. It is less than 1/2 compared with the double crucible method. This makes it possible to widen the control range of the oxygen concentration.

なお、本発明においては、種々の応用例、例えば、シリ
コン以外の単結晶の育成、磁場の印加や粒状原料の使用
等が考えられることは明らかであろう。
In the present invention, it will be apparent that various application examples are conceivable, for example, growth of single crystals other than silicon, application of a magnetic field, use of granular raw materials, and the like.

[実施例2] 次に第2図に示す本発明の異なる実施例につき説明す
る。
Second Embodiment Next, a different embodiment of the present invention shown in FIG. 2 will be described.

なお、この実施例の説明に当たって前記本発明の実施例
1と同一構成部分には同一符号を付し、重複する説明を
省略する。
In the description of this embodiment, the same components as those in the first embodiment of the present invention are designated by the same reference numerals, and the duplicated description will be omitted.

第2図の実施例において、前記本発明の実施例1と異な
る主な点は、原料供給機構内への給気装置(図示せず)
及び融液100と抵抗加熱ヒータ11先端部間の保護筒9
の側壁に装置系外への排気管300とを設けていることで
ある。これにより、原料供給機構内気相部102にたとえ
ば不活性ガスを供給することができる。
In the embodiment of FIG. 2, the main difference from the first embodiment of the present invention is an air supply device (not shown) into the raw material supply mechanism.
And a protective cylinder 9 between the melt 100 and the tip of the resistance heater 11
The exhaust pipe 300 to the outside of the system is provided on the side wall of the. Thereby, for example, an inert gas can be supplied to the vapor phase part 102 in the raw material supply mechanism.

第2図に示した装置を用いて、原料供給機構200内にア
ルゴンガスを50cc/min.・cm2流しつつ、排気管300より排
気しながら実施例1と同一の条件でシリコン単結晶の育
成を行なった。
Using the apparatus shown in FIG. 2 , a silicon single crystal was grown under the same conditions as in Example 1 while flowing argon gas at 50 cc / min.cm 2 in the raw material supply mechanism 200 and exhausting from the exhaust pipe 300. Was done.

育成した単結晶の特性は、実施例1によるものと同様で
あったが、抵抗加熱ヒータ特にその下端部に、実施例1
で生じていた炭化シリコンの生成は認められず、抵抗加
熱ヒータの劣化防止に効果のあることが確認された。こ
れは、アルゴンガスを流すことにより、融液面から立ち
上るシリコン蒸気や一酸化シリコンが、抵抗加熱ヒータ
に接触する前に装置系外へ運び去られるためだと考えら
れる。
The characteristics of the grown single crystal were similar to those of Example 1, except that the resistance heater, especially the lower end portion of Example 1,
No generation of silicon carbide was observed, which was confirmed to be effective in preventing deterioration of the resistance heater. It is considered that this is because by flowing the argon gas, silicon vapor and silicon monoxide rising from the melt surface are carried out of the system before contacting the resistance heater.

[発明の効果] 本発明においては、原料棒の溶融用ヒータに抵抗加熱ヒ
ータを用いていることから、単結晶製造装置内での放電
発生が防止され、しかも、二重らせん構造を採用すれ
ば、形状をコンパクトにでき、原料融液直上で溶解する
ことが可能となる。
[Effects of the Invention] In the present invention, since the resistance heating heater is used as the heater for melting the raw material rod, the occurrence of discharge in the single crystal production apparatus is prevented, and if the double helix structure is adopted. The shape can be made compact and it is possible to dissolve the raw material melt directly above.

また、単結晶製造装置内気相部と原料供給機構内気相部
とを完全に隔離するために、抵抗加熱ヒータ全面を被覆
し、先端部が融液中に位置する保護筒を採用しているか
ら、落下した異物が結晶育成部に到達することを防ぐこ
とができるし、原料供給による融液面の振動も抑えるこ
とができる。また振動そのものも保護筒内に留まり、融
液面全面に伝播することはない。しかも二重るつぼによ
るものに較べ、るつぼ材からの不純物混入量の低減、高
速成長が可能となる。従来の原料供給機構を有したこう
した装置は、単結晶製造装置本体内気相部と原料供給機
構内気相部とが互いに独立していないため、原料供給機
構内で生じたSiO等が、原料供給機構の内圧により融
液面に落下して、単結晶化が阻害される問題があった
が、本発明によるとこのようなこともない。
Further, in order to completely separate the vapor phase portion in the single crystal manufacturing apparatus and the vapor phase portion in the raw material supply mechanism, the entire surface of the resistance heating heater is covered and a protective cylinder whose tip is located in the melt is adopted. Further, it is possible to prevent the falling foreign matter from reaching the crystal growth portion, and it is possible to suppress the vibration of the melt surface due to the supply of the raw material. Further, the vibration itself remains in the protective cylinder and does not propagate to the entire melt surface. Moreover, as compared with the double crucible, it is possible to reduce the amount of impurities mixed from the crucible material and achieve high-speed growth. In such an apparatus having a conventional raw material supply mechanism, since the vapor phase part inside the main body of the single crystal manufacturing apparatus and the vapor phase part inside the raw material supply mechanism are not independent from each other, SiO and the like generated in the raw material supply mechanism are There was a problem that the internal pressure of the solution dropped to the surface of the melt to hinder the crystallization, but according to the present invention, there is no such case.

抵抗加熱ヒータ下端部と融液面間の保護筒に排気管を設
け、不活性ガスを原料供給機構内に流すことにより、一
酸化シリコンの滞留を防ぎ、かつ、抵抗加熱ヒータに付
着する炭化シリコンの量を低減できる。これは、抵抗加
熱ヒータの劣化を防止する効果がある。なお、この場合
の不活性ガスの流量は50cc/min.・cm2以上が好ましい。
An exhaust pipe is provided in the protective cylinder between the lower end of the resistance heater and the melt surface, and an inert gas is allowed to flow into the raw material supply mechanism to prevent retention of silicon monoxide and to attach silicon carbide to the resistance heater. Can be reduced. This has the effect of preventing deterioration of the resistance heater. The flow rate of the inert gas in this case is preferably 50 cc / min.cm 2 or more.

また、抵抗加熱ヒータを筒型二重らせん状にすると、き
わめてコンパクトで効率の良いものにすることができる
とともに、ヒータ最先端の温度を最高温度に設定でき、
それにより原料の溶融部を融液面に近づけることができ
る。
Also, if the resistance heating heater is made into a tubular double helix, it can be made extremely compact and efficient, and the temperature at the tip of the heater can be set to the maximum temperature.
Thereby, the molten portion of the raw material can be brought close to the melt surface.

さらにまた、保護筒及び抵抗加熱ヒータを下に向かって
縮径させると原料供給量の制御が容易になる。
Furthermore, if the diameter of the protective cylinder and the resistance heater are reduced downward, it becomes easy to control the raw material supply amount.

保護筒は、単結晶育成域を外して引上げ装置内に設けら
れているから引上げの障害になることはない。
Since the protective cylinder is provided inside the pulling device outside the single crystal growth region, it does not hinder pulling.

以上のような効果により、本発明では、連続チャージ式
半導体単結晶製造装置において最大の問題である原料供
給が、育成中の単結晶に悪影響を与えることなく可能と
なる。その結果、るつぼ内の原料融液中のドーパント濃
度が制御でき、単結晶の軸方向の抵抗率は一定となる。
これにより、製造された半導体単結晶の製品歩留は大幅
に向上する。
With the above effects, the present invention enables the supply of the raw material, which is the biggest problem in the continuous charge type semiconductor single crystal manufacturing apparatus, without adversely affecting the single crystal being grown. As a result, the dopant concentration in the raw material melt in the crucible can be controlled, and the axial resistivity of the single crystal becomes constant.
As a result, the product yield of the manufactured semiconductor single crystal is significantly improved.

本発明の装置において、保護筒の材質としては石英、カ
ーボンが望ましいが、特にその先端部の融液に触れる部
分については高純度の石英にすると良い。また抵抗加熱
ヒータは、通常のカーボンヒータに用いられている材質
のもので良い。また保温筒については、カーボン、炭化
シリコン等を使用することができる。
In the apparatus of the present invention, quartz and carbon are desirable as the material of the protective cylinder, but it is preferable to use high-purity quartz particularly for the portion of the tip portion that comes into contact with the melt. Further, the resistance heater may be made of a material used for a normal carbon heater. Further, carbon, silicon carbide or the like can be used for the heat insulating cylinder.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す単結晶製造装置の縦
断面図。 第2図は、本発明の他の実施例を示す単結晶製造装置の
縦断面図。 第3図は、本発明のさらに他の実施例を示す単結晶製造
装置の縦断面図。 第4図は、抵抗加熱ヒータの縦断面図。 第5図は、第1図、第2図及び第3図中のA−A線に沿
う横断面図。 第6図は、原料送り速度、溶解電力、原料直径の関係を
示す図。 第7図は、本発明の一実施例による育成単結晶の重量と
抵抗率の関係を示す図。 第8図は、本発明の一実施例による育成単結晶の重量と
酸素濃度の関係を示す図。 1……ヒータ、11……抵抗加熱ヒータ 3……黒鉛るつぼ、13……原料棒構内気相部 4……石英るつぼ、14……種結晶 6……育成単結晶、17……ゲートバルブ 8……カバー、18……絶縁管 9……保護筒、19……ペディスタル 10……保温筒、20……原料棒送り 100……原料融液 101……単結晶製造装置内気相部 102……原料供給機 180……単結晶製造装置 300……排気管
FIG. 1 is a vertical sectional view of a single crystal manufacturing apparatus showing an embodiment of the present invention. FIG. 2 is a longitudinal sectional view of a single crystal manufacturing apparatus showing another embodiment of the present invention. FIG. 3 is a longitudinal sectional view of a single crystal manufacturing apparatus showing still another embodiment of the present invention. FIG. 4 is a vertical sectional view of the resistance heater. FIG. 5 is a cross-sectional view taken along the line AA in FIGS. 1, 2, and 3. FIG. 6 is a diagram showing the relationship among the feed rate of the raw material, the melting power, and the diameter of the raw material. FIG. 7 is a diagram showing the relationship between the weight and the resistivity of a grown single crystal according to an example of the present invention. FIG. 8 is a diagram showing the relationship between the weight and oxygen concentration of a grown single crystal according to an example of the present invention. 1 ... Heater, 11 ... Resistance heating heater 3 ... Graphite crucible, 13 ... Vapor phase part in raw material rod 4 ... Quartz crucible, 14 ... Seed crystal 6 ... Growing single crystal, 17 ... Gate valve 8 …… Cover, 18 …… Insulation tube 9 …… Protective cylinder, 19 …… Pedestal 10 …… Insulation cylinder, 20 …… Raw material feed 100 …… Raw material melt 101 …… Single crystal production equipment gas phase section 102 …… Raw material feeder 180 …… Single crystal manufacturing equipment 300 …… Exhaust pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】原料を充填するるつぼと、該るつぼの周囲
にあってるつぼ内の原料を溶融する加熱ヒータと、るつ
ぼ内の溶融原料に種結晶を浸漬して単結晶を引上げる引
上機構とを有する半導体単結晶製造装置において、るつ
ぼの原料融液充填域に先端部が開口して、この先端部に
おいてのみ引上装置内と連通する保護筒と、保護筒先端
部より上方の該保護筒内に設けられ、下方程高温度で、
下部が半導体原料溶融可能に温度維持制御される抵抗加
熱ヒータとから成る原料供給機構を、単結晶引上域を外
れて装置内に設置し、単結晶引上時には、前記保護筒の
先端部が原料融液中に浸漬されることにより、引上装置
内気相部と、前記保護筒内気相部とが互いに独立するよ
う構成されたことを特徴とする半導体単結晶製造装置。
1. A crucible for filling a raw material, a heater for melting the raw material in a crucible around the crucible, and a pulling mechanism for pulling a single crystal by immersing a seed crystal in the molten raw material in the crucible. In the semiconductor single crystal manufacturing apparatus having the above, a tip is opened in the raw material melt filling region of the crucible, and a protective cylinder communicating only with the tip at the tip and communicating with the inside of the pulling device; It is installed inside the cylinder, and the higher the temperature,
A raw material supply mechanism composed of a resistance heater whose lower part is controlled to maintain the temperature so that the semiconductor raw material can be melted is installed inside the apparatus outside the single crystal pulling region. An apparatus for producing a semiconductor single crystal, wherein the vapor phase portion in the pulling apparatus and the vapor phase portion in the protective cylinder are configured to be independent of each other by being immersed in the raw material melt.
【請求項2】原料供給機構は、るつぼ内の原料融液の減
少量に応じて送り量を制御する原料棒送りを備えたこと
を特徴とする請求項1記載の半導体単結晶製造装置。
2. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the raw material supply mechanism comprises a raw material rod feed for controlling the feed amount according to the amount of reduction of the raw material melt in the crucible.
【請求項3】抵抗加熱ヒータは、らせん構造の筒状であ
ることを特徴とする請求項1または2記載の半導体単結
晶製造装置。
3. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the resistance heater has a spiral cylindrical shape.
【請求項4】保護筒及び抵抗加熱ヒータは、下方に行く
に従がい縮径したことを特徴とする請求項1乃至3のい
ずれか一項に記載の半導体単結晶製造装置。
4. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the protective cylinder and the resistance heater are reduced in diameter as they go downward.
【請求項5】るつぼ内に充填された原料融液面に種結晶
を浸漬して徐々に引上げることにより単結晶を育成する
半導体単結晶の製造方法において、単結晶引上時にその
気相部が装置内気相部に対し独立した構成の原料供給機
構から新たな原料を供給し、かつこの原料供給機構上部
より不活性ガスを供給するとともに、該原料供給機構下
部であって原料融液浸漬域より上部に設けた排気管より
排気しつつ、単結晶の引上げを連続的に行なうことを特
徴とする半導体単結晶の製造方法。
5. A method for producing a semiconductor single crystal in which a single crystal is grown by immersing a seed crystal in a raw material melt surface filled in a crucible and gradually pulling it up, and a vapor phase portion thereof during pulling up the single crystal. Supplies a new raw material to the gas phase part in the apparatus from an independent raw material supply mechanism, and supplies an inert gas from the upper part of the raw material supply mechanism, and at the lower part of the raw material supply mechanism, the raw material melt immersion area A method for producing a semiconductor single crystal, wherein pulling of the single crystal is continuously performed while exhausting from an exhaust pipe provided at an upper portion.
【請求項6】原料供給機構内に、50cc/min.・cm2以上の
不活性ガスを流すことを特徴とする請求項5記載の半導
体単結晶の製造方法。
6. The method for producing a semiconductor single crystal according to claim 5, wherein an inert gas of 50 cc / min.cm 2 or more is flowed in the raw material supply mechanism.
JP1100084A 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JPH0665640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100084A JPH0665640B2 (en) 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100084A JPH0665640B2 (en) 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH02279582A JPH02279582A (en) 1990-11-15
JPH0665640B2 true JPH0665640B2 (en) 1994-08-24

Family

ID=14264574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100084A Expired - Fee Related JPH0665640B2 (en) 1989-04-21 1989-04-21 Semiconductor single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JPH0665640B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711177Y2 (en) * 1990-11-30 1995-03-15 コマツ電子金属株式会社 Raw material supply mechanism for semiconductor single crystal manufacturing equipment
JPH089169Y2 (en) * 1992-02-18 1996-03-13 コマツ電子金属株式会社 Single crystal manufacturing equipment
JP6369352B2 (en) * 2015-02-20 2018-08-08 信越半導体株式会社 Crystal growth method
CN113061978A (en) * 2021-03-22 2021-07-02 上海引万光电科技有限公司 Molten silicon feeder for continuous Czochralski single crystal pulling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137891A (en) * 1983-12-24 1985-07-22 Sumitomo Electric Ind Ltd Method and apparatus for pulling compound semiconductor single crystal

Also Published As

Publication number Publication date
JPH02279582A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
JP5163386B2 (en) Silicon melt forming equipment
US5427056A (en) Apparatus and method for producing single crystal
TW202217085A (en) Method for producing silicon single crystal
US5488923A (en) Method for producing single crystal
JPH0665640B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
US5840116A (en) Method of growing crystals
JPH089169Y2 (en) Single crystal manufacturing equipment
JPH01317189A (en) Production of single crystal of silicon and device therefor
JP2000007496A (en) Single crystal pulling-up equipment and single crystal pulling-up method using the same
JPH0524969A (en) Crystal growing device
JPH03215383A (en) Raw material-supplying device
JP2747626B2 (en) Single crystal manufacturing equipment
JPH0711177Y2 (en) Raw material supply mechanism for semiconductor single crystal manufacturing equipment
JPH0259494A (en) Production of silicon single crystal and apparatus
WO2002027076A1 (en) Apparatus and method for producing semiconductor single crystal
JPH09208360A (en) Growth of single crystal
JP2000072587A (en) Device for pulling single silicon crystal and pulling of the crystal
JP3860255B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal
JP2821962B2 (en) Single crystal manufacturing equipment
JPH08208371A (en) Apparatus for growing single crystal
JPH09208367A (en) Initial charging of silicon material into double-layered crucible
JPH09235181A (en) Pulling of single crystal and single crystal pull apparatus
JPH07300389A (en) Production of semiconductor single crystal
JPH0745355B2 (en) Crystal growth method and apparatus
JPH05270970A (en) Method for crystal growth

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees