JPH0665601B2 - Hydrocarbon steam reforming method - Google Patents

Hydrocarbon steam reforming method

Info

Publication number
JPH0665601B2
JPH0665601B2 JP59245260A JP24526084A JPH0665601B2 JP H0665601 B2 JPH0665601 B2 JP H0665601B2 JP 59245260 A JP59245260 A JP 59245260A JP 24526084 A JP24526084 A JP 24526084A JP H0665601 B2 JPH0665601 B2 JP H0665601B2
Authority
JP
Japan
Prior art keywords
steam
temperature
gas
steam reformer
temperature steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59245260A
Other languages
Japanese (ja)
Other versions
JPS61122102A (en
Inventor
孝 佐々木
正雄 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP59245260A priority Critical patent/JPH0665601B2/en
Publication of JPS61122102A publication Critical patent/JPS61122102A/en
Publication of JPH0665601B2 publication Critical patent/JPH0665601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はLPG、ナフサなどを原料炭化水素とし、これ
を断熱型の反応器で低温水蒸気改質した後、その生成ガ
スを外部直接加熱型の多管式反応器で高温水蒸気改質す
ることにより、水素リツチガスを製造する方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses LPG, naphtha, and the like as raw material hydrocarbons, which are subjected to low-temperature steam reforming in an adiabatic reactor, and the produced gas is then used in an external direct heating multitubular reactor. The present invention relates to an improvement in a method for producing hydrogen-rich gas by reforming with high temperature steam.

LPG、ナフサなどの原料炭化水素を水蒸気改質して水
素リツチガスを製造する方法のひとつとして、原料炭化
水素と水蒸気を断熱型低温水蒸気改質器でまずメタンリ
ツチガスに転化させ、次いでこのガスを外部加熱型高温
水蒸気改質器で水素リツチガスに転化させる2段式水蒸
気改質法が知られている。この方法は原料炭化水素を一
挙に水素リツチガスに転化させる1段式水蒸気改質法に
比較して、使用触媒への炭素析出が格段に少ない点で優
れているが、系内に供給された熱が必ずしも有用に利用
されていない点で、改良の余地がある。
As one of the methods for producing hydrogen-rich gas by steam reforming raw hydrocarbons such as LPG and naphtha, the raw hydrocarbons and steam are first converted into methane rich gas in an adiabatic low-temperature steam reformer, and then this gas is converted into this gas. A two-stage steam reforming method is known in which an external heating type high-temperature steam reformer is used to convert hydrogen into a hydrogen-rich gas. This method is superior to the one-stage steam reforming method in which raw material hydrocarbons are converted into hydrogen-rich gas all at once, but carbon deposition on the catalyst used is significantly less, but the heat supplied to the system is reduced. There is room for improvement in that it is not always usefully used.

すなわち、水素リツチガスの製造を目的とする2段式水
蒸気改質法にあつては、化学平衡のうえから後段の水蒸
気改質器を高温に維持することが好ましく、従つて複数
のバーナーによる輻射伝熱にて当該反応器を直接加熱す
る関係でこの直接加熱炉の煙道には高温800℃〜1200℃
のかなりの熱量を保有する燃焼廃ガスが排出される。こ
のため、従来は前段の断熱型低温水蒸気改質器に供給さ
れる原料炭化水素とスチームの予熱に、前記の煙道ガス
を利用する方式が採用されている。しかしながら、通常
400〜500℃の低温領域で運転される低温水蒸気改質器で
のオレフイン生成ないしは炭素析出を回避するには、予
熱温度の上限を520℃程度に制限せざるを得ないため、
上記の方式では煙道ガスが保有する熱を充分に回収する
ことができない。尤も、熱の回収率だけを問題にするの
なら、前記の煙道ガスを熱源に用いて水蒸気を発生させ
ることにより、熱回収率の向上を図ることは、必ずしも
不可能ではない。しかし、水蒸気改質プロセスの性能
は、煙道ガスの熱回収率で評価されるよりも、むしろ直
接加熱炉の熱料消費量で評価される関係で、余分な燃料
を消費してまで水蒸気を発生させることは推奨できな
い。
That is, in the two-stage steam reforming method for the purpose of producing hydrogen-rich gas, it is preferable to keep the steam reformer in the latter stage at a high temperature from the viewpoint of chemical equilibrium, and accordingly, the radiation transmission by a plurality of burners is performed. Due to the fact that the reactor is directly heated by heat, the flue of this direct heating furnace has a high temperature of 800 ° C to 1200 ° C.
The combustion waste gas that has a considerable amount of heat is discharged. Therefore, conventionally, a method of using the above flue gas for preheating the raw material hydrocarbons and steam supplied to the adiabatic low temperature steam reformer in the preceding stage has been adopted. However, usually
In order to avoid olefin formation or carbon precipitation in the low temperature steam reformer operated in the low temperature range of 400 to 500 ° C, the upper limit of the preheating temperature must be limited to about 520 ° C.
The above method cannot sufficiently recover the heat of the flue gas. However, if only the heat recovery rate is a problem, it is not always impossible to improve the heat recovery rate by using the flue gas as a heat source to generate water vapor. However, the performance of the steam reforming process is evaluated not by the heat recovery rate of the flue gas but by the heat consumption of the direct heating furnace. It is not recommended to generate it.

特に最近の水蒸気改質プロセスでは、製品ガスの精製に
複数基の吸着塔を用いた圧力変換吸着法(Pressure Swi
ng Adsorption、通称PSA法)が採用できるようにな
つて来たため、高温水蒸気器に使用する改質用水蒸気量
は一層低減され、このこともまた煙道ガスによる水蒸気
の発生を魅力ないものにしている。ちなみに、メタネー
ターと湿式炭酸ガス吸収塔の組合せで製品を精製する場
合、高温水蒸気改質器のスチーチ比(モル/炭素1原
子)は4〜5程度であるが、PSA法では3程度が最適
条件となる。従つて、加熱炉煙道ガスから熱を回収して
水蒸気を発生させるよりも、加熱炉自体の燃料消費量の
低減を図る方が望ましいのである。
Particularly in the recent steam reforming process, pressure conversion adsorption method (Pressure Swi
ng Adsorption, commonly known as PSA method), the amount of reforming steam used in high temperature steamers is further reduced, which also makes steam generation by flue gas unattractive. There is. By the way, when the product is refined with a combination of a methanator and a wet carbon dioxide absorption tower, the steam ratio of the high temperature steam reformer is about 4-5, but in the PSA method, about 3 is the optimum condition. Becomes Therefore, it is desirable to reduce the fuel consumption of the heating furnace itself rather than recovering the heat from the heating furnace flue gas to generate steam.

また、高温水蒸気改質器からの出口ガスについて言え
ば、このガスは700〜900℃の高温度にあるため、専ら改
質用水蒸気を発生させるための熱源として使用されてい
るが、必要水蒸気量は低減化の傾向にあるため、前記出
口ガスの熱回収方法についても、その見直しが追られて
いる。
Regarding the outlet gas from the high-temperature steam reformer, this gas is at a high temperature of 700 to 900 ° C, so it is used exclusively as a heat source for generating reforming steam. Since there is a tendency toward reduction, the heat recovery method for the outlet gas is being reviewed.

本発明は上記した2段式水蒸気改質法に於て、原料炭化
水素及び水蒸気の予熱に、後段の高温水蒸気改質反応器
から流出する水素リツチガスを使用し、前段の低温水蒸
気改質器から流出するメタンリツチガスを、高温水蒸気
改質器が収められる直接加熱炉の煙道ガスにて昇温させ
ることにより、前記加熱炉に要する熱負荷を換言すれば
燃料消費量を軽減させることを目的とする。
In the two-stage steam reforming method described above, the present invention uses the hydrogen-rich gas discharged from the high-temperature steam reforming reactor in the latter stage to preheat the raw material hydrocarbons and steam, and By raising the temperature of the methane gas that flows out by the flue gas of the direct heating furnace in which the high-temperature steam reformer is housed, the heat load required for the heating furnace, in other words, the fuel consumption is reduced. And

すなわち、本発明に係る炭化水素の水蒸気改質法は、原
料炭化水素と水蒸気を断熱型低温水蒸気改質器に供給し
てメタンリツチガスを生成させ、この生成ガスを高温水
蒸気改質器に供給して水素リツチガスを生成させる炭化
水素の水蒸気改質法に於て、(a)原料炭化水素と水蒸気
を断熱型低温水蒸気改質器に供給するのに先立つて、そ
の混合蒸気を高温水蒸気改質器で得られた水素リツチガ
スと熱交換させて予熱し、(b)断熱型低温水蒸気改質器
で得られたメタンリツチガスを、高温水蒸気改質器に供
給するのに先立つて、高温水蒸気改質器に熱を供給する
ための直接加熱炉の煙道ガスと熱交換させて予熱するこ
とを特徴とする。
That is, in the steam reforming method for hydrocarbons according to the present invention, raw material hydrocarbons and steam are supplied to an adiabatic low temperature steam reformer to generate methane lit gas, and the generated gas is supplied to the high temperature steam reformer. In the steam reforming method of hydrocarbons that produces hydrogen-rich gas by (a) feed hydrocarbons and steam to the adiabatic low-temperature steam reformer, the mixed steam is reformed at high temperature. (B) Methane gas obtained from the adiabatic low-temperature steam reformer is preheated by exchanging heat with the hydrogen-rich gas obtained in the high-temperature steam reformer. It is characterized in that it is preheated by exchanging heat with the flue gas of a direct heating furnace for supplying heat to the quality device.

以下、添付図面にそつて本発明の方法をさらに詳述する
と、LPG、ナフサなどの原料炭化水素蒸気はライン1
から系内に供給される。図示の態様では、ライン2を流
れる水蒸気が、加熱炉3の煙道4で或る程度昇温され、
ライン1から原料予熱器13及び脱硫器14を経て送ら
れる原料炭化水素と混合される。この混合蒸気は次いで
熱交換器5に被加熱流体として供給される。熱交換器5
には加熱流体として、後述の高温水蒸気改質器7から流
出する水素リツチガスが、一般的には廃熱ボイラー8経
由で供給される。熱交換器5に於て、原料炭化水素と水
蒸気の混合蒸気は、水素リツチガスと間接的に熱交換す
ることにより、低温改質に必要な温度まで予熱される。
この予熱温度は断熱型水蒸気改質器6でのオレフイン生
成ないしは炭素析出を抑制するために、その上限を52
0℃程度にするのが好ましい。
Hereinafter, the method of the present invention will be described in more detail with reference to the accompanying drawings. The raw material hydrocarbon vapor such as LPG and naphtha is contained in line 1
Is supplied to the system. In the illustrated embodiment, the steam flowing in the line 2 is heated to some extent in the flue 4 of the heating furnace 3,
The raw material hydrocarbons sent from the line 1 through the raw material preheater 13 and the desulfurizer 14 are mixed. This mixed vapor is then supplied to the heat exchanger 5 as a fluid to be heated. Heat exchanger 5
As a heating fluid, hydrogen-rich gas flowing out from a high-temperature steam reformer 7, which will be described later, is generally supplied as a heating fluid via a waste heat boiler 8. In the heat exchanger 5, the mixed vapor of the raw material hydrocarbon and steam is indirectly preheated to a temperature required for low temperature reforming by indirectly exchanging heat with the hydrogen rich gas.
The preheating temperature has an upper limit of 52 in order to suppress olefin formation or carbon deposition in the adiabatic steam reformer 6.
It is preferably about 0 ° C.

所望温度に予熱された原料炭化水素と水蒸気は、次いで
断熱型低温水蒸気改質器6に供給され、低温改質条件下
に改質触媒と接触することにより、CH4を主成分とし、H
2,H2O,CO,CO2を含有するメタンリツチガスに転化する。
低温改質条件及び改質触媒には、メタンリツチガスの取
得を目的とする通常の低温水蒸気改質法で採用される改
質条件及び改質触媒が使用可能であつて、改質条件とし
ては400〜500℃の温度、10〜40kg/cm2Gの圧力、1.5
〜3.0のスチーム比(モル/炭素1原子)及び2000〜600
0hr-1のGHSVが一般に採用され、触媒には多孔性物
質を担体としたニツケル系触媒が典型的には使用され
る。
The raw material hydrocarbons and steam preheated to a desired temperature are then supplied to the adiabatic low-temperature steam reformer 6 and contacted with the reforming catalyst under low-temperature reforming conditions so that CH 4 is the main component and H 2
It is converted to methane rich gas containing 2 , H 2 O, CO and CO 2 .
As the low-temperature reforming conditions and the reforming catalyst, the reforming conditions and reforming catalysts used in the ordinary low-temperature steam reforming method for the purpose of obtaining methane gas can be used. 400 ~ 500 ℃ temperature, 10 ~ 40kg / cm 2 G pressure, 1.5
~ 3.0 steam ratio (mol / carbon 1 atom) and 2000 ~ 600
GHSV of 0 hr −1 is generally adopted, and a nickel-based catalyst having a porous material as a carrier is typically used as the catalyst.

断熱型低温水蒸気改質器6から流出するメタンリツチガ
スは、本発明の方法では従来法とは対照的に、加熱炉3
の煙道4に於て、燃焼廃ガスたる煙道ガスとの熱交換に
より昇温せしめられて高温水蒸気改質反応器7に供給さ
れるが、LPG、ナフサなどの炭化水素は既に低温改質
されてすべてがメタンに転化しているので、高温水蒸気
改質器での多量のオレフイン生成ないしは炭素析出を懸
念せずに、620℃程度まで昇温させることができる。
高温水蒸気改質器7は加熱炉3内に設置された複数個の
バーナーの輻射伝熱によつて必要熱量が供給され、反応
器出口温度が700〜900℃に保持されるよう加熱される
が、その改質器7に供給されたメタンリツチガスは、高
温改質条件下に改質触媒と接触して、水素濃度が50モ
ル%以上である水素リツチガスに転化する。高温改質条
件としては700〜900℃の温度、10〜40kg/cm2Gの圧
力、2.0〜5.0のスチーム比(モル/炭素1原子)、2000
〜6000hr-1のGHSVが一般に採用され、触媒には多孔
性担体にニツケルを担持させた触媒が典型的には使用さ
れる。
In the method of the present invention, the methane rich gas flowing out from the adiabatic low-temperature steam reformer 6 is heated by the heating furnace 3 as opposed to the conventional method.
In the flue 4, the temperature is raised by heat exchange with the flue gas, which is combustion exhaust gas, and the temperature is supplied to the high-temperature steam reforming reactor 7, but hydrocarbons such as LPG and naphtha are already low-temperature reformed. Since all of this is converted to methane, it is possible to raise the temperature to about 620 ° C. without concern about a large amount of olefin formation or carbon precipitation in the high temperature steam reformer.
The high temperature steam reformer 7 is heated so that a required amount of heat is supplied by radiant heat transfer of a plurality of burners installed in the heating furnace 3 and the reactor outlet temperature is maintained at 700 to 900 ° C. The methane rich gas supplied to the reformer 7 comes into contact with the reforming catalyst under high temperature reforming conditions and is converted into hydrogen rich gas having a hydrogen concentration of 50 mol% or more. As high temperature reforming conditions, a temperature of 700 to 900 ° C., a pressure of 10 to 40 kg / cm 2 G, a steam ratio of 2.0 to 5.0 (mol / carbon 1 atom), 2000
GHSV of ˜6000 hr −1 is generally adopted, and a catalyst in which nickel is supported on a porous carrier is typically used as the catalyst.

高温水蒸気改質器7から流出する水素リツチガスは、既
述した通り、一般には廃熱ボイラー8を経由させて熱交
換器5に供給し、加熱流体として利用した後、製品とし
て回収される。
As described above, the hydrogen rich gas flowing out from the high temperature steam reformer 7 is generally supplied to the heat exchanger 5 via the waste heat boiler 8 and used as a heating fluid, and then recovered as a product.

尚、図示の水蒸気改質法で消費される水蒸気は、ライン
11から水蒸気ドラム10に供給される水を、廃熱ボイ
ラー8で水蒸気とし、これを水蒸気ドラム10に戻して
ここから水蒸気をライン2に供給することで賄うことが
でき、余剰水蒸気はライン12から系外に取出される。
As for the steam consumed by the steam reforming method shown in the figure, the water supplied from the line 11 to the steam drum 10 is turned into steam in the waste heat boiler 8 and is returned to the steam drum 10 to generate steam from the line 2. The excess steam is taken out of the system through the line 12.

周知の通り、メタンリツチガスを水素リツチガスに改質
するための高温水蒸気改質器は、化学平衡上高温に維持
する必要があり、当該反応器から流出する水素リツチガ
スの組成は、専らその反応器の出口温度に支配される。
このため高水素濃度のガスを取得するには、それに見合
う出口温度が維持できるよう、加熱炉によつて高温水蒸
気改質器を加熱しなければならない。この場合、高温水
蒸気改質器に供給されるメタンリツチガスの温度が低け
れば、それだけ加熱炉の熱負荷が増大する。然るに本発
明の方法によれば、メタンリツチガスを加熱炉の煙道で
昇温させてから高温水蒸気改質器に供給することができ
るので、その分だけ加熱炉に要する熱負荷を軽減させる
ことができる。これに加えて、本発明の水蒸気改質法
は、原料炭化水素及び水蒸気の予熱に、高温水蒸気改質
器から流出する水素リツチガスを利用するが、その分廃
熱ボイラー8での水蒸気発生量を軽減させることがで
き、またライン12に流れる余剰水蒸気を低減させるこ
とができる。さらに、前記水素リツチガスの反応器出口
温度は900℃程度と高温であるので、この水素リツチ
ガスを一旦廃熱ボイラーに通してから上記の予熱に利用
することができ、しかも原料炭化水素及び水蒸気と、水
素リツチガスとの熱交換には、極くありふれた多管式熱
交換器を使用できる利点もある。
As is well known, the high temperature steam reformer for reforming methane gas to hydrogen gas must be maintained at a high temperature in terms of chemical equilibrium, and the composition of the hydrogen gas discharged from the reactor is exclusively the reactor. Controlled by the outlet temperature of.
Therefore, in order to obtain a gas having a high hydrogen concentration, the high temperature steam reformer must be heated by a heating furnace so that the outlet temperature corresponding to it can be maintained. In this case, if the temperature of the methane rich gas supplied to the high temperature steam reformer is low, the heat load of the heating furnace is increased accordingly. However, according to the method of the present invention, the methane gas can be heated in the flue of the heating furnace and then supplied to the high temperature steam reformer, so that the heat load required for the heating furnace can be reduced accordingly. You can In addition to this, in the steam reforming method of the present invention, the hydrogen-rich gas flowing out from the high temperature steam reformer is used for preheating the raw material hydrocarbons and steam, but the steam generation amount in the waste heat boiler 8 is correspondingly increased. It is possible to reduce the amount, and it is possible to reduce the excess steam flowing in the line 12. Furthermore, since the reactor outlet temperature of the hydrogen-rich gas is as high as about 900 ° C., this hydrogen-rich gas can be used for the above preheating after being once passed through the waste heat boiler, and the raw material hydrocarbons and steam are also added, The heat exchange with hydrogen-rich gas also has the advantage that very common shell-and-tube heat exchangers can be used.

進んで実施例を示し、本発明の効果をさらに具体的に説
明する。
The effects of the present invention will be described more concretely with reference to Examples.

実施例 第1図に示すフローに従つて、脱硫LPG5800kg/hrと
改質用水蒸気21624kg/hrの混合蒸気を熱交換器5で450
℃に予熱し、断熱型低温水蒸気改質器6に供給した。反
応器6の改質条件を入口温度450℃、出口温度453
℃、圧力16kg/cm2Gとすることにより、表1のA欄に
示す組成のメタンリツチガスを得た。次にこのガスを煙
道4で加熱炉3からの燃焼廃ガス(温度1000℃)にて昇
温させて高温水蒸気改質器7に供給し、入口温度600
℃、出口温度830℃、圧力15kg/cm2Gで処理したとこ
ろ、表1のB欄に示す水素リツチガスを28740Nm3/hr得
た。この2段式水蒸気改質処理に於て、高温水蒸気改質
器7を所望温度に保持するために必要な加熱炉3の熱負
荷(改質器の吸熱量)は16.6×106Kcal/hrであつた。
尚、ライン12から取出される余剰水蒸気は9900kg/hr
であつた。
Example According to the flow shown in FIG. 1, a mixed vapor of desulfurization LPG 5800 kg / hr and reforming steam 21624 kg / hr is heated in the heat exchanger 5 to 450
It was preheated to ℃ and supplied to the adiabatic low temperature steam reformer 6. The reforming conditions of the reactor 6 are set to an inlet temperature of 450 ° C. and an outlet temperature of 453.
By setting the temperature to 16 ° C. and the pressure to 16 kg / cm 2 G, a methane lit gas having the composition shown in column A of Table 1 was obtained. Next, this gas is heated in the flue 4 by the combustion waste gas (temperature 1000 ° C.) from the heating furnace 3 and supplied to the high temperature steam reformer 7, and the inlet temperature 600
When treated at a temperature of ℃, an outlet temperature of 830 ° C. and a pressure of 15 kg / cm 2 G, 28740 Nm 3 / hr of hydrogen-rich gas shown in column B of Table 1 was obtained. In this two-stage steam reforming process, the heat load of the heating furnace 3 (the endothermic amount of the reformer) required to maintain the high temperature steam reformer 7 at a desired temperature is 16.6 × 10 6 Kcal / hr. It was.
The excess steam extracted from line 12 is 9900 kg / hr.
It was.

比較のため、低温水蒸気改質器6からのメタンリツチガ
スを煙道4で昇温させることなく高温水蒸気改質器7に
供給した以外は、上記したところと全く同一の条件で2
段式水蒸気改質法を実施したところ、表1のB欄に示す
組成の水素リツチガスを得るためには、加熱炉3の熱負
荷を18.9×106Kcal/hrとする必要があつた。
For comparison, the methane gas from the low temperature steam reformer 6 was supplied to the high temperature steam reformer 7 without being heated in the flue 4 under the same conditions as above.
When the stepwise steam reforming method was carried out, it was necessary to set the heat load of the heating furnace 3 to 18.9 × 10 6 Kcal / hr in order to obtain the hydrogen-rich gas having the composition shown in the column B of Table 1.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法のフローシートの一例を示すもので
ある。 1:原料炭化水素導入ライン、2:水蒸気導入ライン 3:加熱炉、4:煙道、5:熱交換器 6:断熱型低温水蒸気改質器、7:高温水蒸気改質器 8:廃熱ボイラー、9:バーナー 10:水蒸気ドラム、11:供給水 12:余剰水蒸気、13:原料予熱器 14:脱硫器
FIG. 1 shows an example of the flow sheet of the method of the present invention. 1: Raw material hydrocarbon introduction line 2: Steam introduction line 3: Heating furnace, 4: Flue, 5: Heat exchanger 6: Adiabatic low temperature steam reformer, 7: High temperature steam reformer 8: Waste heat boiler , 9: Burner 10: Steam drum, 11: Supply water 12: Excess steam, 13: Raw material preheater 14: Desulfurizer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原料炭化水素と水蒸気を断熱型低温水蒸気
改質器に供給してメタンリツチガスを生成させ、この生
成ガスを高温水蒸気改質器に供給して水素リツチガスを
生成させる炭化水素の水蒸気改質法に於て、 (a)原料炭化水素と水蒸気を断熱型低温水蒸気改質器に
供給するのに先立つて、その混合蒸気を高温水蒸気改質
器で得られた水素リツチガスと熱交換させて予熱し、 (b)断熱型低温水蒸気改質器で得られたメタンリツチガ
スを、高温水蒸気改質器に供給するのに先立つて、該高
温水蒸気改質器に熱を供給するための直接加熱炉の煙道
ガスと熱交換させて予熱する、 ことを特徴とする前記炭化水素の水蒸気改質法。
1. A hydrocarbon for producing a hydrogen-rich gas by supplying a raw material hydrocarbon and steam to an adiabatic low-temperature steam reformer to generate a methane lit gas, and supplying the produced gas to a high temperature steam reformer. In the steam reforming method, (a) prior to supplying the raw material hydrocarbons and steam to the adiabatic low temperature steam reformer, heat exchange of the mixed steam with the hydrogen-rich gas obtained in the high temperature steam reformer. (B) the methane rich gas obtained in the adiabatic low-temperature steam reformer for supplying heat to the high-temperature steam reformer prior to being supplied to the high-temperature steam reformer. The steam reforming method of the above hydrocarbon, characterized in that it is preheated by directly exchanging heat with the flue gas of a heating furnace.
JP59245260A 1984-11-20 1984-11-20 Hydrocarbon steam reforming method Expired - Lifetime JPH0665601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245260A JPH0665601B2 (en) 1984-11-20 1984-11-20 Hydrocarbon steam reforming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245260A JPH0665601B2 (en) 1984-11-20 1984-11-20 Hydrocarbon steam reforming method

Publications (2)

Publication Number Publication Date
JPS61122102A JPS61122102A (en) 1986-06-10
JPH0665601B2 true JPH0665601B2 (en) 1994-08-24

Family

ID=17131034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245260A Expired - Lifetime JPH0665601B2 (en) 1984-11-20 1984-11-20 Hydrocarbon steam reforming method

Country Status (1)

Country Link
JP (1) JPH0665601B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632557B2 (en) * 1988-09-02 1997-07-23 東洋エンジニアリング株式会社 Reformer
JP2812486B2 (en) * 1989-05-15 1998-10-22 大阪瓦斯株式会社 Hydrocarbon steam reforming method
JPH0444328U (en) * 1990-08-10 1992-04-15
JP4781652B2 (en) 2004-10-13 2011-09-28 日揮株式会社 Syngas production method and production equipment
US7037485B1 (en) * 2004-11-18 2006-05-02 Praxair Technology, Inc. Steam methane reforming method
GB2575269A (en) * 2018-07-03 2020-01-08 Automotive Fusion Ltd Tyre

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2263343C2 (en) * 1972-12-23 1983-05-05 Metallgesellschaft Ag, 6000 Frankfurt Process for generating a reducing gas
US4079017A (en) * 1976-11-19 1978-03-14 Pullman Incorporated Parallel steam reformers to provide low energy process
JPS59100190A (en) * 1982-11-30 1984-06-09 Ishii Tekkosho:Kk Combustible gas producing equipment

Also Published As

Publication number Publication date
JPS61122102A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
JP4422029B2 (en) Production of hydrocarbons
US4985231A (en) Production of hydrogen-containing gas streams
AU742314B2 (en) Steam reforming
EP0437059B2 (en) Steam reforming
JP2003502812A (en) Method for providing a pure hydrogen stream for a fuel cell
JPS6261521B2 (en)
US20230174378A1 (en) Process for producing hydrogen
KR20210103677A (en) Hydrogen Reforming System
NO851811L (en) HYDROCARBON VAMP REFORM AT AA USE AND SERIES OF VAPOR HEATERS.
JP3771357B2 (en) Hydrogen production method
US20230339747A1 (en) Syngas stage for chemical synthesis plant
JPH0665601B2 (en) Hydrocarbon steam reforming method
JPS61127602A (en) Steam reforming of hydrocarbon
JP4256013B2 (en) Environmentally friendly hydrogen production method
JPS6197105A (en) Steam reforming process of hydrocarbon
JPS6148810B2 (en)
JPS5823168A (en) Fuel cell power generating system
JPH0345003B2 (en)
KR100570375B1 (en) Synthesis gas production system and method
CN115707648B (en) Process for producing H2 and synthesis gas
JPH0524802A (en) Production of reducing gas and apparatus for production
JPH0317762B2 (en)
JPH0726271A (en) Production of sng
KR960003232B1 (en) Auto thermal steam reforming process
JP2002338205A (en) Producing method for synthetic gas