JPH0665032B2 - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH0665032B2
JPH0665032B2 JP60177667A JP17766785A JPH0665032B2 JP H0665032 B2 JPH0665032 B2 JP H0665032B2 JP 60177667 A JP60177667 A JP 60177667A JP 17766785 A JP17766785 A JP 17766785A JP H0665032 B2 JPH0665032 B2 JP H0665032B2
Authority
JP
Japan
Prior art keywords
zinc
lead
magnesium
weight
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60177667A
Other languages
Japanese (ja)
Other versions
JPS6240161A (en
Inventor
暢順 笠原
豊秀 植村
恵市 賀川
良二 岡崎
寛治 高田
晃 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60177667A priority Critical patent/JPH0665032B2/en
Publication of JPS6240161A publication Critical patent/JPS6240161A/en
Publication of JPH0665032B2 publication Critical patent/JPH0665032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくは鉛とマグネ
シウムとビスマス、タリウム、カドミウムより選ばれる
1種以上を特定範囲で含有した亜鉛合金をそのまま、も
しくは汞化して電池用負極活物質として用いた亜鉛アル
カリ電池に関する。
Description: FIELD OF THE INVENTION The present invention relates to a zinc alkaline battery, and more specifically, a zinc alloy containing lead and magnesium, and one or more selected from bismuth, thallium, and cadmium in a specific range, as it is, or in addition. The present invention relates to a zinc-alkaline battery which is used as a negative electrode active material for a battery.

(発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
(Background of the Invention) In an alkaline battery or the like using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, and therefore the battery must be sealed. This sealing of the battery is particularly important for miniaturization of the battery, but at the same time, it confine hydrogen gas generated by corrosion of zinc during battery storage. Therefore, the gas pressure inside the battery increases during long-term storage, and there is a danger of explosion and the like if the sealing is perfect.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は5〜10重
量%程度の多量の水銀を含有しており、社会的ニーズと
して、より低水銀のもの、あるいは無水銀の電池の開発
が強く期待されるようになってきた。
As a countermeasure against this, research has been conducted to prevent corrosion of zinc, which is the negative electrode active material, to reduce the generation of hydrogen gas inside the battery, and to use zinc hydride, which utilizes the hydrogen overvoltage of mercury, as the negative electrode active material. Has been done. For this reason, the negative electrode active materials for alkaline batteries that are commercially available today contain a large amount of mercury of about 5 to 10% by weight, and as a social need, the development of batteries with lower mercury or mercury-free batteries is required. It has become strongly expected.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉
末、あるいは本発明者等による亜鉛に鉛とインジウムを
添加した亜鉛合金粉末(特開昭58-181266号公報)等が
ある。しかし、これらの亜鉛合金粉末はある程度のガス
発生抑制効果を奏するが、まだ十分とは言えない。
Therefore, various proposals have been made regarding a zinc alloy powder in which various metals are added to zinc in order to reduce the mercury content in the battery. For example, there is a zinc alloy powder in which lead is added to zinc, or a zinc alloy powder in which lead and indium are added to zinc by the present inventors (JP-A-58-181266). However, although these zinc alloy powders have some gas generation suppressing effect, they are not yet sufficient.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生量を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery that reduces the amount of hydrogen gas generated while keeping the zinc alloy powder, which is the negative electrode active material, at a low level and maintains the discharge performance, which is the battery performance, at a high level has not yet been obtained.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the present circumstances, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces the content of mercury, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to do.

(発明の経緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、鉛とマグネシウムとビスマ
ス、タリウム、カドミウムより選ばれる1種以上を特定
範囲の量添加することにより、これら添加元素の相乗的
な効果によって、従来の低汞化した亜鉛合金粉末よりも
更に水素ガス発生量を低下させ、しかも放電性能に優れ
た亜鉛アルカリ電池が得られることを見出し本発明に到
達した。
(Background of the Invention) The inventors of the present invention have conducted extensive studies in accordance with this object, and as a result, in the negative electrode active material made of zinc, at least one selected from lead and magnesium, bismuth, thallium, and cadmium is added in a specific range. According to the present invention, it is found that the synergistic effect of these additional elements further reduces the hydrogen gas generation amount as compared with the conventional low-alloyed zinc alloy powder, and that a zinc alkaline battery having excellent discharge performance can be obtained. Reached

(発明の構成) すなわち本発明は、鉛を0.01〜0.5重量%、マグネシウ
ムを0.005〜0.5重量%、ビスマス、タリウム、カドミウ
ムより選ばれる1種以上の合計量を0.01〜0.5重量%含
有する亜鉛合金を負極活物質として用いたことを特徴と
する亜鉛アルカリ電池にある。
(Structure of the Invention) That is, the present invention is a zinc alloy containing 0.01 to 0.5% by weight of lead, 0.005 to 0.5% by weight of magnesium, and 0.01 to 0.5% by weight of a total amount of at least one selected from bismuth, thallium and cadmium. Is used as a negative electrode active material.

本発明において、鉛とマグネシウムとビスマス、タリウ
ム、カドミウムより選ばれる1種以上とを特定量添加し
た亜鉛合金は、そのまま負極活物質として用いるか、亜
鉛合金を汞化した後に負極活物質として用いる。汞化す
る場合の水銀含有率は、従来の負極活物質の水銀含有率
よりも少ない量、すなわち5.0重量%未満であるが、よ
り汞化率を低くし、低公害性を考慮すると3.0重量%以
下である。また、1.0重量%前後またはそれ以下の少量
であってもガス発生を抑制することが可能である。特
に、排気機構を備えた空気電池や水素吸収機構を備えた
亜鉛アルカリ電池等においては、水素ガスの発生許容量
は比較的大きいので、このような電池に本発明を適用す
る場合は、1.0重量%以下の低汞化率または無汞化の亜
鉛合金が負極活物質として好ましく用いられる。
In the present invention, a zinc alloy to which a specific amount of lead, magnesium, and one or more selected from bismuth, thallium, and cadmium is added is used as the negative electrode active material as it is, or is used as the negative electrode active material after the zinc alloy is selectively converted. The mercury content in the case of tarification is less than the mercury content of conventional negative electrode active materials, that is, less than 5.0% by weight, but 3.0% by weight in consideration of the lowering of the tarification rate and low pollution. It is the following. Further, it is possible to suppress gas generation even with a small amount of around 1.0% by weight or less. In particular, in an air battery provided with an exhaust mechanism, a zinc alkaline battery provided with a hydrogen absorption mechanism, etc., since the allowable generation amount of hydrogen gas is relatively large, when applying the present invention to such a battery, 1.0 wt. A low alloying ratio or less alloying zinc alloy is preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金の鉛の含有率は0.
01〜0.5重量%、マグネシウムの含有率は0.005〜0.5重
量%、ビスマス、タリウム、カドミウムより選ばれる1
種以上の合計量の含有率は0.01〜0.5重量%と少量で添
加効果が発揮される。鉛とマグネシウムとビスマス、タ
リウム、カドミウムより選ばれる1種以上の含有率がそ
れぞれ下限未満では本発明の効果が得られず、上限を越
えると、不純物を含有した亜鉛のように、自己放電が進
み、ガス発生抑制および放電性能にとって良好な結果が
得られない。
The lead content of the zinc alloy used for this negative electrode active material is 0.
01 to 0.5% by weight, magnesium content 0.005 to 0.5% by weight, selected from bismuth, thallium and cadmium 1
The content of the total amount of at least one species is 0.01 to 0.5% by weight, and the addition effect is exhibited even if the content is small. If the content of one or more selected from lead, magnesium, bismuth, thallium and cadmium is less than the respective lower limits, the effect of the present invention cannot be obtained, and if the content exceeds the upper limit, self-discharge proceeds like zinc containing impurities. However, good results cannot be obtained for suppressing gas generation and discharging performance.

なお、マグネシウムの含有率は0.005〜0.2重量%の範囲
が特に好ましく、0.2重量%を越えた場合にはそれほど
の含有効果は見られない。
The magnesium content is particularly preferably in the range of 0.005 to 0.2% by weight, and when it exceeds 0.2% by weight, such a content effect is not observed.

これら各添加元素の作用効果は充分に解明されていない
が、推定するに亜鉛合金中に含まれている鉛およびビス
マス、タリウム、カドミウムは水素過電圧を高める作用
あるいはアルカリ電解液中での亜鉛の腐食を抑制する作
用を有すると考えられる。一方、マグネシウムは亜鉛合
金表面を平滑化させる効果があり、これによって反応表
面積を減少させ、耐食性の向上に役立つと考えられる。
Although the action and effect of each of these additional elements have not been sufficiently clarified, it is presumed that lead, bismuth, thallium, and cadmium contained in zinc alloys have the action of increasing hydrogen overvoltage or corrosion of zinc in alkaline electrolyte. Is considered to have the action of suppressing On the other hand, magnesium has the effect of smoothing the surface of the zinc alloy, which is thought to reduce the reaction surface area and help improve the corrosion resistance.

本発明は、これら各作用の相乗効果により、放電特性を
劣化させることなく、耐食性のよい亜鉛合金が得られた
ものである。
The present invention provides a zinc alloy having good corrosion resistance without deteriorating discharge characteristics due to the synergistic effect of each of these actions.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、負極活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
Thus, the zinc-alkaline battery of the present invention uses caustic potash as an electrolytic solution, an aqueous alkaline solution containing caustic soda as a main component, the above-mentioned zinc alloy or delayed zinc alloy as the negative electrode active material, and manganese dioxide as the positive electrode active material. It can be obtained by using silver oxide, oxygen or the like.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Explanation of Examples) Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.

実施例1〜11および比較例1〜11 純度99.997%以上の亜鉛地金を約500℃で溶融し、これ
に第1表に示すごとく鉛、マグネシウム、ビスマスの含
有率がそれぞれ0.05重量%となるように添加して亜鉛合
金を作成し、これを高圧アルゴンガス(噴出圧5kg/cm
2)を使って粉体化した。次に水酸化カリウム10%のア
ルカリ性溶液中にて上記粉末に1.0重量%になるように
水銀を添加して、汞化処理を行ない亜鉛合金粉末(実施
例1)を得た。
Examples 1 to 11 and Comparative Examples 1 to 11 Zinc ingots having a purity of 99.997% or more are melted at about 500 ° C., and the contents of lead, magnesium and bismuth are 0.05% by weight, respectively, as shown in Table 1. To make a zinc alloy, and add this to high pressure argon gas (jet pressure 5 kg / cm
2 ) was used to make powder. Next, mercury was added to the above powder in an alkaline solution of 10% potassium hydroxide so as to be 1.0% by weight, and a grading treatment was performed to obtain a zinc alloy powder (Example 1).

また、第1表に示すごとく、下記の組成でそれぞれ、 1)鉛0.05重量%、マグネシウム0.05重量%、タリウム
0.05重量%(実施例2) 2)鉛0.05重量%、マグネシウム0.05重量%、カドミウ
ム0.05重量%(実施例3) 3)鉛0.01重量%、マグネシウム0.01重量%、ビスマス
0.01重量%(実施例4) 4)鉛0.01重量%、マグネシウム0.01重量%、タリウム
0.01重量%(実施例5) 5)鉛0.01重量%、マグネシウム0.01重量%、カドミウ
ム0.01重量%(実施例6) 6)鉛0.5重量%、マグネシウム0.2重量%、ビスマス0.
5重量%(実施例7) 7)鉛0.5重量%、マグネシウム0.2重量%、タリウム0.
5重量%(実施例8) 8)鉛0.5重量%、マグネシウム0.2重量%、カドミウム
0.5重量%(実施例9) 9)鉛0.5重量%、マグネシウム0.2重量%、ビスマス0.
1重量%、タリウム0.1重量%、カドミウム0.3重量%
(実施例10) 10)鉛0.5重量%、マグネシウム0.5重量%、ビスマス0.
5重量%(実施例11) 11)鉛0.05重量%(比較例1) 12)鉛0.05重量%、マグネシウム0.05重量%(比較例
2) 13)鉛0.05重量%、ビスマス0.05重量%(比較例3) 14)鉛0.05重量%、タリウム0.05重量%(比較例4) 15)鉛0.005重量%、マグネシウム0.05重量%、ビスマ
ス0.05重量%(比較例5) 16)鉛1.0重量%、マグネシウム0.05重量%、ビスマス
0.05重量%(比較例6) 17)鉛0.05重量%、マグネシウム0.001重量%、ビスマ
ス0.05重量%(比較例7) 18)鉛0.05重量%、マグネシウム1.0重量%、ビスマス
0.05重量%(比較例8) 19)鉛0.05重量%、マグネシウム0.05重量%、タリウム
0.005重量%(比較例9) 20)鉛0.05重量%、マグネシウム0.05重量%、タリウム
1.0重量%(比較例10) 21)鉛0.05重量%、マグネシウム0.05重量%、カドミウ
ム1.0重量%(比較例11) からなる亜鉛合金をそれぞれ作成し、これを前記と同様
な方法で粉体化し、汞化処理を行なって水銀含有率が1.
0重量%の亜鉛合金粉末(実施例2〜11および比較例1
〜11)を得た。
In addition, as shown in Table 1, the following compositions are respectively used: 1) Lead 0.05% by weight, magnesium 0.05% by weight, thallium
0.05 wt% (Example 2) 2) Lead 0.05 wt%, magnesium 0.05 wt%, cadmium 0.05 wt% (Example 3) 3) Lead 0.01 wt%, magnesium 0.01 wt%, bismuth
0.01 wt% (Example 4) 4) 0.01 wt% lead, 0.01 wt% magnesium, thallium
0.01 wt% (Example 5) 5) 0.01 wt% lead, 0.01 wt% magnesium, 0.01 wt% cadmium (Example 6) 6) 0.5 wt% lead, 0.2 wt% magnesium, 0.2 bismuth.
5% by weight (Example 7) 7) 0.5% by weight of lead, 0.2% by weight of magnesium, 0.
5 wt% (Example 8) 8) 0.5 wt% lead, 0.2 wt% magnesium, cadmium
0.5 wt% (Example 9) 9) 0.5 wt% lead, 0.2 wt% magnesium, 0.2 bismuth.
1% by weight, thallium 0.1% by weight, cadmium 0.3% by weight
(Example 10) 10) Lead 0.5 wt%, magnesium 0.5 wt%, bismuth 0.
5 wt% (Example 11) 11) Lead 0.05 wt% (Comparative Example 1) 12) Lead 0.05 wt%, Magnesium 0.05 wt% (Comparative Example 2) 13) Lead 0.05 wt%, Bismuth 0.05 wt% (Comparative Example 3) ) 14) Lead 0.05 wt%, thallium 0.05 wt% (Comparative Example 4) 15) Lead 0.005 wt%, magnesium 0.05 wt%, Bismuth 0.05 wt% (Comparative Example 5) 16) Lead 1.0 wt%, magnesium 0.05 wt%, Bismuth
0.05 wt% (Comparative Example 6) 17) Lead 0.05 wt%, Magnesium 0.001 wt%, Bismuth 0.05 wt% (Comparative Example 7) 18) Lead 0.05 wt%, Magnesium 1.0 wt%, Bismuth
0.05 wt% (Comparative Example 8) 19) Lead 0.05 wt%, magnesium 0.05 wt%, thallium
0.005% by weight (Comparative Example 9) 20) Lead 0.05% by weight, magnesium 0.05% by weight, thallium
1.0 wt% (Comparative Example 10) 21) A zinc alloy consisting of 0.05 wt% lead, 0.05 wt% magnesium, and 1.0 wt% cadmium (Comparative Example 11) was prepared and powdered by the same method as described above. The mercury content is 1.
0% by weight of zinc alloy powder (Examples 2 to 11 and Comparative Example 1)
~ 11) was obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カリ
ウム水溶液に酸化亜鉛を飽和させたものを5ml用い、亜
鉛合金粉末を10g用いて45℃で50日間のガス発生量(ml
/g)を測定した。
A hydrogen gas generation test was performed using the zinc alloy powder thus obtained, and the results are shown in Table 1. In the gas generation test, 5 ml of a 40 wt% potassium hydroxide aqueous solution saturated with zinc oxide was used as an electrolytic solution, and 10 g of zinc alloy powder was used at 45 ° C. for 50 days to generate a gas (ml).
/ G) was measured.

また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、負極3、セパレーター4、封口体5、負極底板6、
負極集電体7、キャップ8、熱収縮性樹脂チューブ9、
絶縁リング10,11、外装缶12で構成されている。このア
ルカリマンガン電池を用いて放電負荷4Ω、20℃の放電
条件により終止電圧0.9Vまでの放電持続時間を測定
し、従来の負極活物質を用いた後述する比較例12の測定
値を100とした指数で示した。結果を第1表に示す。
In addition, the battery performance was evaluated using the alkaline manganese battery shown in FIG. 1 with these zinc alloy powders as the negative electrode active material. The alkaline manganese battery of FIG. 1 includes a positive electrode can 1, a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6,
Negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9,
It is composed of insulating rings 10 and 11 and an outer can 12. Using this alkaline manganese battery, the discharge duration to a final voltage of 0.9 V was measured under a discharge load of 4Ω and a discharge condition of 20 ° C., and the measured value of Comparative Example 12 described below using the conventional negative electrode active material was set to 100. It is shown by an index. The results are shown in Table 1.

比較例12 実施例1と同様の方法で亜鉛に水銀を5.0重量%添加し
た従来より用いられている汞化亜鉛合金粉末(比較例1
2)を得た。これを実施例1と同様の方法で水素ガス発
生試験と電池性能試験を行ない、その結果を第1表に示
した。
Comparative Example 12 In the same manner as in Example 1, 5.0% by weight of mercury was added to zinc, which has been conventionally used.
2) got. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛に鉛とマグネシウムとビ
スマス、タリウム、カドミウムより選ばれる1種以上を
特定量添加して汞化させた汞化亜鉛合金粉末を負極活物
質に用いた実施例1〜11は、比較例1〜11や亜鉛に水銀
のみを添加した従来より用いられている汞化亜鉛合金粉
末を負極活物質に用いた比較例12に比べて、水素ガス発
生抑制効果が大きく、放電性能も優れていることがわか
る。
As shown in Table 1, Example 1 in which a zinc halide alloy powder prepared by adding a specific amount of at least one selected from lead, magnesium, bismuth, thallium, and cadmium to zinc was used as a negative electrode active material 〜 11, compared with Comparative Example 12 using the zinc halide alloy powder that has been conventionally used in which only mercury is added to Comparative Examples 1 to 11 and zinc as the negative electrode active material, the hydrogen gas generation suppressing effect is large, It can be seen that the discharge performance is also excellent.

(発明の効果) 以上説明のごとく、鉛とマグネシウムとビスマス、タリ
ウム、カドミウムより選ばれる1種以上を特定範囲で含
有した亜鉛合金をそのまま、もしくは汞化して負極活物
質として用いた本発明の亜鉛アルカリ電池は、水素ガス
発生率を抑制しつつ、電池性能を向上させることが可能
であり、また水銀が低含有率もしくは含有しないことか
ら、社会的ニーズにも沿ったものである。従って、本発
明の亜鉛アルカリ電池は広範な用途に使用可能である。
(Effects of the Invention) As described above, the zinc of the present invention used as a negative electrode active material as a zinc alloy containing lead, magnesium, and one or more kinds selected from bismuth, thallium, and cadmium in a specific range as it is or after being selectively used. The alkaline battery can improve the battery performance while suppressing the hydrogen gas generation rate, and has a low content rate of mercury or does not contain mercury, and thus meets social needs. Therefore, the zinc alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。 1:正極缶、2:正極、3:負極、 4:セパレーター、5:封口体、6:負極底板、 7:負極集電体、8:キャップ、 9:熱収縮性樹脂チューブ、 10,11:絶縁リング、12:外装缶。
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: Positive electrode can, 2: Positive electrode, 3: Negative electrode, 4: Separator, 5: Sealing body, 6: Negative electrode bottom plate, 7: Negative electrode current collector, 8: Cap, 9: Heat-shrinkable resin tube, 10, 11: Insulation ring, 12: outer can.

フロントページの続き (72)発明者 岡崎 良二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高田 寛治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 三浦 晃 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Ryoji Okazaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor, Kanji Takada, 1006 Kadoma, Kadoma City, Osaka Prefecture (72) Invention Akira Miura 1006 Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉛を0.01〜0.5重量%、マグネシウムを0.0
05〜0.5重量%、ビスマス、タリウム、カドミウムより
選ばれる1種以上の合計量を0.01〜0.5重量%含有する
亜鉛合金を負極活物質として用いたことを特徴とする亜
鉛アルカリ電池。
1. Lead in an amount of 0.01 to 0.5% by weight and magnesium in an amount of 0.0
A zinc-alkaline battery comprising a zinc alloy containing 05 to 0.5% by weight and 0.01 to 0.5% by weight of a total amount of at least one selected from bismuth, thallium and cadmium as a negative electrode active material.
【請求項2】前記亜鉛合金が汞化されている前記特許請
求の範囲第1項記載の亜鉛アルカリ電池。
2. The zinc alkaline battery according to claim 1, wherein the zinc alloy is modified.
JP60177667A 1985-08-14 1985-08-14 Zinc alkaline battery Expired - Lifetime JPH0665032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177667A JPH0665032B2 (en) 1985-08-14 1985-08-14 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177667A JPH0665032B2 (en) 1985-08-14 1985-08-14 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS6240161A JPS6240161A (en) 1987-02-21
JPH0665032B2 true JPH0665032B2 (en) 1994-08-22

Family

ID=16034999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177667A Expired - Lifetime JPH0665032B2 (en) 1985-08-14 1985-08-14 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH0665032B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU86939A1 (en) * 1987-07-13 1989-03-08 Metallurgie Hoboken ZINC POWDER FOR ALKALINE BATTERIES
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143662A (en) * 1980-04-07 1981-11-09 Tamagawa Kikai Kinzoku Kk High strength zinc alloy for dry cell
JPS60105169A (en) * 1983-11-10 1985-06-10 Dowa Mining Co Ltd Zinc anode material for alkaline dry battery
JPS61131365A (en) * 1984-11-30 1986-06-19 Fuji Elelctrochem Co Ltd Alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143662A (en) * 1980-04-07 1981-11-09 Tamagawa Kikai Kinzoku Kk High strength zinc alloy for dry cell
JPS60105169A (en) * 1983-11-10 1985-06-10 Dowa Mining Co Ltd Zinc anode material for alkaline dry battery
JPS61131365A (en) * 1984-11-30 1986-06-19 Fuji Elelctrochem Co Ltd Alkaline battery

Also Published As

Publication number Publication date
JPS6240161A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
JPH0371737B2 (en)
JPH0421310B2 (en)
JPH0371738B2 (en)
JPH0375985B2 (en)
JPH0622122B2 (en) Zinc alkaline battery
JPH0418671B2 (en)
JPH0665032B2 (en) Zinc alkaline battery
JPH0628160B2 (en) Zinc alkaline battery
JPH0665031B2 (en) Zinc alkaline battery
JPH0624117B2 (en) Zinc alkaline battery
JPH0619995B2 (en) Zinc alkaline battery
JPH0619993B2 (en) Zinc alkaline battery
JPH0619991B2 (en) Zinc alkaline battery
JPH0619992B2 (en) Zinc alkaline battery
JPH0622123B2 (en) Zinc alkaline battery
JPH0619994B2 (en) Zinc alkaline battery
JPH0628159B2 (en) Zinc alkaline battery
JPH0628158B2 (en) Zinc alkaline battery
JPH0418674B2 (en)
JPH0375983B2 (en)
JPH0371739B2 (en)
JPH0375982B2 (en)
JPS62123655A (en) Zinc-alkaline battery
JPH0418673B2 (en)
JPH0418672B2 (en)