JPH0662870A - Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region - Google Patents

Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region

Info

Publication number
JPH0662870A
JPH0662870A JP4219481A JP21948192A JPH0662870A JP H0662870 A JPH0662870 A JP H0662870A JP 4219481 A JP4219481 A JP 4219481A JP 21948192 A JP21948192 A JP 21948192A JP H0662870 A JPH0662870 A JP H0662870A
Authority
JP
Japan
Prior art keywords
leu
gene
glu
arg
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4219481A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Tomohiko Kato
友彦 加藤
Emiko Ito
恵美子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK
Original Assignee
MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK filed Critical MITSUI GIYOUSAI SHOKUBUTSU BIO KENKYUSHO KK
Priority to JP4219481A priority Critical patent/JPH0662870A/en
Publication of JPH0662870A publication Critical patent/JPH0662870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide a DNA sequence capable of promoting the expression of a plant gene. CONSTITUTION:A sequence coding a protein is linked to a promoter region of a soybean phosphoenolpyruvate carboxylase gene. As an alternative, a promoter which can be expressed in a plant is linked to the total or a part of the 5'-nontranslating region of the gene and a structure gene coding a protein. These sequences are introduced into a plant cell to promote the expression of the sequence coding a protein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大豆ホスホエノールピ
ルビン酸カルボキシラーゼ遺伝子のプロモーター領域及
び5’非翻訳領域に関し、詳しくは、植物遺伝子の発現
を増強することが可能なDNA配列を提供するものであ
る。
TECHNICAL FIELD The present invention relates to a promoter region and a 5 ′ untranslated region of a soybean phosphoenolpyruvate carboxylase gene, and more specifically, to provide a DNA sequence capable of enhancing the expression of a plant gene. is there.

【0002】[0002]

【従来の技術】植物で遺伝子を発現させる際に、プロモ
ーターに目的の遺伝子を接続させるだけでなく、さら
に、第一イントロンをこれらの間に挿入すると、発現が
強化される例が報告されている。
2. Description of the Related Art It has been reported that, when a gene is expressed in a plant, not only is the gene of interest connected to a promoter but also the first intron is inserted between these to enhance the expression. .

【0003】例えば、トウモロコシのアルコールデヒド
ロゲナーゼ遺伝子(D. Mascarenhasら、Plant Mol. Bio
l. 15, 913-920, 1990)や、ヒマのカタラーゼ遺伝子
(A. Tanakaら、Nucleic Acids Res. 18, 6767-6770, 1
990)の場合には、第一イントロンは、タンパク質をコ
ードする領域に存在する。このイントロンの下流に他の
遺伝子を連結すると、これらの遺伝子の発現量が増加す
る。
For example, the maize alcohol dehydrogenase gene (D. Mascarenhas et al., Plant Mol. Bio
l. 15 , 913-920, 1990) and the castor catalase gene of castor (A. Tanaka et al., Nucleic Acids Res. 18 , 6,767-6770, 1).
990), the first intron is in the protein coding region. When other genes are linked downstream of this intron, the expression levels of these genes increase.

【0004】また、トウモロコシのSh1遺伝子の場合
(C. Maasら、Plant Mol. Biol. 16, 199-207, 1991)
には、5’非翻訳領域にある第一イントロンが用いられ
ている。このように、5’非翻訳領域に第一イントロン
が存在する場合には、その下流に容易に目的の遺伝子を
接続することができる。
In the case of the maize Sh1 gene (C. Maas et al., Plant Mol. Biol. 16 , 199-207, 1991)
Uses the first intron in the 5'untranslated region. Thus, when the first intron is present in the 5'untranslated region, the gene of interest can be easily connected to the downstream thereof.

【0005】しかし、単子葉植物遺伝子の5’非翻訳領
域の第一イントロンを用いた例は報告されているが、双
子葉植物遺伝子の5’非翻訳領域にある第一イントロン
での遺伝子発現の強化に関しては報告されていない。
However, although an example using the first intron of the 5'untranslated region of the monocotyledonous plant gene has been reported, the expression of the gene in the first intron in the 5'untranslated region of the dicotyledonous plant gene has been reported. There are no reports of strengthening.

【0006】ところで、植物のホスホエノールピルビン
酸カルボキシラーゼ(以下、PEPCと略す)遺伝子に
ついて、現在までに種々の研究がなされている。PEP
C遺伝子のcDNAとしては、トウモロコシ(Izuiら、
Nucleic Acids Res. 14, 1615-1628, 1986)、ソルガム
(Thomasら、Plant Sci. Lett. 69, 65-78, 1990)、タ
バコ(Koizumiら、Plant Mol. Biol. 17, 535-539, 199
1)、アイスプラント(Rickersら、Mol. Gen. Genet. 2
15, 447-454, 1989)から単離が報告されている。 一
方、ゲノム遺伝子は、トウモロコシ( Yanagisawaら、
J.Biochem. 106,982-987, 1989、Matsuokaら、Eur. J.
Biochem. 181, 593-598, 1989、Hudspethら、Plant Mo
l. Biol. 12, 579-589, 1989)、ソルガム(Cretinら、
Gene 99,87-94, 1991)から単離されているが、大豆で
はゲノム遺伝子の単離は報告されていない。尚、トウモ
ロコシ、ソルガムのゲノム遺伝子の場合には5’非翻訳
領域にイントロンが存在するという報告はなされていな
い。
[0006] By the way, various studies have been conducted to date on the plant phosphoenolpyruvate carboxylase (hereinafter abbreviated as PEPC) gene. PEP
The C gene cDNA includes maize (Izui et al.,
Nucleic Acids Res. 14 , 1615-1628, 1986), sorghum (Thomas et al., Plant Sci. Lett. 69 , 65-78, 1990), tobacco (Koizumi et al., Plant Mol. Biol. 17 , 535-539, 199).
1), Ice plant (Rickers et al., Mol. Gen. Genet. 2
15 , 447-454, 1989). On the other hand, the genomic gene is corn (Yanagisawa et al.
J. Biochem. 106 , 982-987, 1989, Matsuoka et al., Eur. J.
Biochem. 181 , 593-598, 1989, Hudspeth et al., Plant Mo.
l. Biol. 12 , 579-589, 1989), sorghum (Cretin et al.,
Gene 99 , 87-94, 1991), but no isolation of genomic gene has been reported in soybean. In the case of the maize and sorghum genomic genes, it has not been reported that an intron exists in the 5'untranslated region.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記観点か
らなされたものであり、植物の登熟種子で発現している
遺伝子のプロモーター領域、特に、PEPC遺伝子の発
現を制御する領域の単離、および、植物のプロモーター
活性を増強させる因子の単離を課題とする。
The present invention has been made from the above point of view, and isolation of a promoter region of a gene expressed in ripened seeds of plants, particularly a region controlling the expression of PEPC gene. , And isolation of a factor that enhances plant promoter activity.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究を行った結果、大豆登熟種子で
発現しているプロモーター領域、特にPEPC遺伝子の
発現を制御している領域、及び植物プロモーター活性を
増加させる因子の単離に成功し、さらに、この遺伝子の
5’非翻訳領域にはイントロン配列が存在していること
を見出し、本発明に至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor regulates the expression of the promoter region expressed in soybean ripened seeds, especially the PEPC gene. The present inventors succeeded in isolating a region and a factor that increases plant promoter activity, and further found that an intron sequence is present in the 5'untranslated region of this gene, and completed the present invention.

【0009】すなわち本発明は、配列番号1に示す塩基
配列を有するホスホエノールピルビン酸カルボキシラー
ゼ遺伝子のプロモーター領域及び/又は5’非翻訳領域
の全部又は一部である。また、本発明は、植物で発現可
能なプロモーターと、前記5’非翻訳領域の全部又は一
部と、タンパクをコードする構造遺伝子を連結して得ら
れる配列を植物細胞に導入することにより、前記構造遺
伝子の発現を増強させる方法、さらに、植物で発現可能
なプロモーターと、前記5’非翻訳領域の全部又は一部
と、タンパクをコードする構造遺伝子とを連結して得ら
れる配列を導入した植物細胞を提供する。
That is, the present invention is the whole or a part of the promoter region and / or 5'untranslated region of the phosphoenolpyruvate carboxylase gene having the base sequence shown in SEQ ID NO: 1. The present invention also provides a plant-expressing promoter, all or part of the 5 ′ untranslated region, and a sequence obtained by linking a structural gene encoding a protein, to a plant cell, Method for enhancing expression of structural gene, and plant introduced with sequence obtained by linking plant-expressible promoter, all or part of 5'untranslated region and structural gene encoding protein Provide cells.

【0010】以下本発明を、詳細に説明する。 <1>PEPC遺伝子の単離 精製したPEPCから決定したアミノ酸配列をもとに作
製したプローブあるいは、cDNAをプローブに用い、
プラークハイブリダイゼーション等を行うことにより、
染色体DNAライブラリーからPEPC遺伝子を得るこ
とができる。
The present invention will be described in detail below. <1> Isolation of PEPC gene A probe prepared based on the amino acid sequence determined from purified PEPC or cDNA is used as a probe,
By performing plaque hybridization, etc.,
The PEPC gene can be obtained from a chromosomal DNA library.

【0011】PEPCcDNAは、同様にPEPCのア
ミノ酸配列をもとに作製したプローブを用いて、cDN
Aライブラリーから取得することができる。また、発現
ベクターを用いてcDNAライブラリーを作製し、PE
PCに対する抗体を用いてスクリーニングすることがで
きる。
Similarly, PEPC cDNA was prepared by using a probe prepared on the basis of the amino acid sequence of PEPC to obtain cDNA.
It can be obtained from the A library. In addition, a cDNA library was prepared using the expression vector, and PE
It can be screened using an antibody against PC.

【0012】クローン化されたPEPC遺伝子の塩基配
列の決定は、Maxam-Gilbert法あるいは、ダイデオキシ
法により行う。ダイデオキシ法による塩基配列の決定
は、市販されているキットを用いて行うことができ、配
列決定を自動的に行うオートシークエンサーを使用して
もよい。
The nucleotide sequence of the cloned PEPC gene is determined by the Maxam-Gilbert method or the dideoxy method. The nucleotide sequence can be determined by the dideoxy method using a commercially available kit, and an autosequencer for automatically performing the sequence determination may be used.

【0013】このようにして得られた大豆PEPC遺伝
子クローンを解析した結果、1つのクローン(λPEP
G16と命名)には、PEPC遺伝子の上流領域が含ま
れていることが明かとなった。この塩基配列を決定した
結果、PEPC遺伝子の5’非翻訳領域とその上流のプ
ロモーター領域を見出すことができた。また、5’非翻
訳領域にはイントロン配列が存在していることが明かと
なった。
As a result of analyzing the soybean PEPC gene clone thus obtained, one clone (λPEP
It was revealed that the upstream region of the PEPC gene was contained in G16). As a result of determining this base sequence, a 5'untranslated region of the PEPC gene and a promoter region upstream thereof could be found. It was also revealed that an intron sequence was present in the 5'untranslated region.

【0014】<2>遺伝子の発現を増強する方法 PEPC遺伝子は、大豆の各種の組織で発現してるた
め、PEPC遺伝子の発現制御領域に他の有用な遺伝子
を接続させれば、その遺伝子を大豆や他の植物で効率よ
く発現させることができる。また、この発現制御領域の
非翻訳領域にはイントロン配列が存在し、この配列を利
用すれば、既知の植物プロモーターの活性を増強させる
ことができる。実施例に示したように、このイントロン
を植物で発現するカリフラワーモザイクウイルスの35
Sプロモーターと接続させて、タバコ及びイネの培養細
胞で発現させたところ、このイントロンの挿入によって
プロモーター活性を増強させることに成功した。
<2> Method for enhancing gene expression Since the PEPC gene is expressed in various tissues of soybean, if another useful gene is connected to the expression control region of the PEPC gene, the gene will be converted into soybean. And can be efficiently expressed in other plants. In addition, an intron sequence exists in the untranslated region of this expression control region, and by using this sequence, the activity of a known plant promoter can be enhanced. As shown in the Examples, 35 of the cauliflower mosaic virus expressing this intron in plants.
When linked to the S promoter and expressed in cultured cells of tobacco and rice, the insertion of this intron succeeded in enhancing the promoter activity.

【0015】PEPC遺伝子の発現制御領域は、本来、
大豆のPEPC遺伝子を制御するものであり、この遺伝
子は、大豆種子でのタンパクの生産増大に関わってい
る。そこで、この領域を用い、PEPC遺伝子発現の組
織特異性、時期特異性等を利用すれば、タンパク質含量
の高い大豆その他の植物を生産することができ、一方遺
伝子の発現を抑制すれば大豆その他の植物での脂肪の生
産増大が図られ、本発明を利用すれば、所望する性質を
有する大豆その他の各種の植物の育種が極めて効率的に
行なわれる。
The expression control region of the PEPC gene is originally
It regulates the soybean PEPC gene, which is involved in increased protein production in soybean seeds. Therefore, by using the tissue-specificity, time-specificity, etc. of PEPC gene expression in this region, soybeans and other plants with high protein content can be produced, while suppressing the gene expression can improve soybean and other plants. The production of fat in plants is increased, and the use of the present invention enables very efficient breeding of soybeans and other various plants having desired properties.

【0016】本発明により、目的の遺伝子の発現を増強
するには、植物で発現可能なプロモーター、PEPC遺
伝子の5’非翻訳領域の全部又は一部、及び目的の遺伝
子、すなわちタンパクをコードする構造遺伝子を連結す
る。これらのうち、プロモーターとしては、PEPC遺
伝子のプロモーターも含まれる。したがって、PEPC
遺伝子の5’非翻訳領域の全部又は一部を利用する態様
としては、以下のものがある。
According to the present invention, in order to enhance the expression of a gene of interest, a plant-expressible promoter, all or part of the 5'untranslated region of the PEPC gene, and a structure encoding the gene of interest, that is, a protein. Connect genes. Among these, the promoter of the PEPC gene is also included as the promoter. Therefore, PEPC
The following are modes of using all or part of the 5'untranslated region of a gene.

【0017】(1)PEPC遺伝子のプロモーター領域及
び5’非翻訳領域の下流に目的の遺伝子を連結する。 (2)植物で発現可能な他のプロモーターと、PEPC遺
伝子の5’非翻訳領域の全部又は一部と、目的の遺伝子
とを連結する。 (3)プロモーターを含む他の遺伝子の、プロモーターと
コード領域との間に、PEPC遺伝子の5’非翻訳領域
の全部又は一部を挿入する。
(1) The gene of interest is ligated downstream of the promoter region and 5'untranslated region of the PEPC gene. (2) The other gene that can be expressed in plants, all or part of the 5'untranslated region of the PEPC gene, and the gene of interest are ligated. (3) All or part of the 5'untranslated region of the PEPC gene is inserted between the promoter and the coding region of another gene containing the promoter.

【0018】ここで、5’非翻訳領域の全部又は一部と
は、第一イントロン(配列番号1中、塩基番号953〜
1235)と、その両側の近接部位とを少なくとも含む
ことを意味する。
Here, the whole or a part of the 5'untranslated region means the first intron (in SEQ ID NO: 1, base number 953 to
1235) and adjacent portions on both sides thereof are included.

【0019】本発明のプロモーター領域及び/又は5’
非翻訳領域に他の遺伝子を連結したものを含むDNA
を、植物細胞に導入するには、プロトプラストへのエレ
クトロポレーション(電気的穿孔法)、あるいはアグロ
バクテリウムのTiプラスミドを利用する方法が挙げら
れる。
The promoter region and / or 5'of the present invention
DNA containing a non-translated region linked to another gene
In order to introduce Escherichia coli into plant cells, electroporation into protoplasts (electroporation method) or a method using a Ti plasmid of Agrobacterium can be mentioned.

【0020】以下に、イネにおける、プロトプラストの
調製、エレクトロポレーションによるプロトプラストへ
のDNAの導入、及び形質転換細胞の植物体への再生法
の一例を説明する。
An example of the method for preparing protoplasts, introducing DNA into protoplasts by electroporation, and regenerating transformed cells into plants in rice will be described below.

【0021】イネのプロトプラストの調製は、例えば以
下のようにして行う。イネの種子未成熟胚から形成させ
たカルスを、R2無機塩(Ohira, K. et al.Plant Cell
Physiol. 14, 1113 (1973))、B5ビタミン(Gambor
g, O. et al.Expt. Cell Res. 50, 151 (1968))、0.
3%カゼイン水解物、1ppmの2,4−D、及び3%
スクロースを含む液体培地に移し、25℃、500ルク
スの蛍光灯光の照射下で、60rpmに設定したロータリ
ーシェーカーで培養する。
Preparation of rice protoplasts is carried out, for example, as follows. Callus formed from immature embryos of rice seeds was treated with R2 inorganic salt (Ohira, K. et al. Plant Cell
Physiol. 14 , 1113 (1973)), B5 vitamin (Gambor
g, O. et al . Expt. Cell Res. 50 , 151 (1968)), 0.
3% casein hydrolyzate, 1 ppm 2,4-D, and 3%
Transfer to a liquid medium containing sucrose, and cultivate on a rotary shaker set at 60 rpm under irradiation with fluorescent light of 500 lux at 25 ° C.

【0022】一週毎に、新鮮な上記培地でサブカルチャ
ーを行い、サブカルチャー5日目の細胞1gを、1%マ
セロザイム(Macerozyme)R10、4%セルラーゼRS
(以上、(株)近畿ヤクルト製)、0.5% CaCl2・2H2
O、0.5% デキストラン硫酸カリウム、0.4M マ
ンニトールを含む10mlの酵素溶液と混合する。
Each week, subculture is performed in the above-mentioned fresh medium, and 1 g of cells on the 5th day of subculture are treated with 1% Macerozyme R10 and 4% cellulase RS.
(Above, made by Kinki Yakult Co., Ltd.), 0.5% CaCl 2 · 2H 2
Mix with 10 ml enzyme solution containing O, 0.5% potassium dextran sulfate, 0.4 M mannitol.

【0023】この溶液のpHを5.5に調整し、27℃
で3時間振盪(40rpm)し、続いて3時間静置する。
酵素処理により生じたプロトプラスト懸濁液を、40μ
mのナイロンスクリーンを通して破砕物を除く。
The pH of this solution was adjusted to 5.5 and 27 ° C.
Shake (40 rpm) for 3 hours and then leave for 3 hours.
The protoplast suspension generated by the enzyme treatment was
Debris is removed through a nylon screen of m.

【0024】このようにして得られるプロトプラスト
へ、エレクトロポレーションによりDNAを導入する方
法(Tada, Y. et al. Theor. Appl. Genet. 80, 475 (1
990))を説明する。
A method of introducing DNA into the thus obtained protoplasts by electroporation (Tada, Y. et al . Theor. Appl. Genet. 80 , 475 (1
990)) is explained.

【0025】プロトプラストを、エレクトロポレーショ
ン緩衝液(70mM KCl、5mM CaCl2、5mM 2-[モルフォリノ]エタンスル
ホン酸(MES)、0.4M マンニトール)に、2×106個/m
lとなるように懸濁し、0〜20μgのDNAを加え
る。DNAとしては、導入するDNA(澱粉合成酵素遺
伝子を含むDNA)の他にハイグロマイシン耐性遺伝子
を発現するプラスミドを加える。ハイグロマイシン耐性
遺伝子を発現するプラスミドが導入されたプロトプラス
トには、導入しようとするDNAも同時にco-transform
ationされる確率が高いので、ハイグロマイシンを用い
た選択により、効率よく形質転換細胞を選択することが
できる。
2 × 10 6 protoplasts / m in electroporation buffer (70 mM KCl, 5 mM CaCl 2 , 5 mM 2- [morpholino] ethanesulfonic acid (MES), 0.4 M mannitol)
Suspend to 1 and add 0-20 μg of DNA. As the DNA, in addition to the introduced DNA (DNA containing the starch synthase gene), a plasmid expressing the hygromycin resistance gene is added. At the same time, the DNA to be introduced is also co-transformed into the protoplast into which the plasmid expressing the hygromycin resistance gene has been introduced.
Since there is a high probability of ation, transformed cells can be efficiently selected by selection using hygromycin.

【0026】プロトプラストとDNAの混合液を0℃で
20分間放置した後、氷冷したエレクトロポレーション
・チャンバに移し、電気パルスを与える。電気パルス
は、例えば、初期電界475V/cm、時間減衰係数T
1/2が30.0ミリ秒となるように与える。エレクトロ
ポレーションには、装置が市販されているのでこれを使
用すればよい。電気パルスは、例えば、初期電界475
V/cm、時間減衰係数T1/2が30.0ミリ秒となる
ように与える。
The protoplast / DNA mixture was allowed to stand at 0 ° C. for 20 minutes, then transferred to an ice-cooled electroporation chamber, and an electric pulse was applied. The electric pulse has, for example, an initial electric field of 475 V / cm and a time attenuation coefficient T.
Give 1/2 to be 30.0 milliseconds. Since a device is commercially available for electroporation, this may be used. The electric pulse is, for example, the initial electric field 475.
V / cm and a time attenuation coefficient T 1/2 of 30.0 milliseconds are applied.

【0027】次に、上記のようにして得られた形質転換
細胞の植物体への再生法(Fujimura, T. et al. Plant
Tissue Culture Lett. 2, 74(1985))を説明する。エレ
クトロポレーションを行ったプロトプラストを、遠心分
離(50×g、5分)により、R2無機塩、0.4Mグ
ルコースを含む洗滌培地で4回洗滌した後、2ppmの
2,4−D、0.5ppmベンジルアデニン、3%スク
ロースを添加したN6培地(Chu, C.-C. Proceedings o
f Symposium on Plant Tissue Culture (Scientific Pr
ess, Peking) p.43 (1978))に懸濁し、細胞数を106
個/mlに調整して25℃、暗下で培養する。
Next, a method for regenerating the transformed cells obtained as described above into a plant (Fujimura, T. et al . Plant
Tissue Culture Lett. 2 , 74 (1985)). The electroporated protoplasts were washed 4 times with a washing medium containing R2 inorganic salt and 0.4 M glucose by centrifugation (50 × g, 5 minutes), and then 2 ppm of 2,4-D, 0. N6 medium supplemented with 5 ppm benzyladenine and 3% sucrose (Chu, C.-C. Proceedings o
f Symposium on Plant Tissue Culture (Scientific Pr
ess, Peking) p.43 (1978)) and the number of cells was 10 6
The number of cells / ml is adjusted and the cells are cultured in the dark at 25 ° C.

【0028】培養14日目に、培地にハイグロマイシン
を50μg/ml添加し、さらに2週間培養し、コロニ
ーを同濃度のハイグロマシンを含む新鮮な培地に移す。
コロニーが直径2mmまで生育したら、ハイグロマイシ
ンを含まないN6ホルモンフリー培地に移し、蛍光灯照
射下(3000ルクス)で培養して分化させる。試験管
内で高さが約10cmに生長した苗を、順化させた後に
温室内のポットに移し、植物体まで再生させる。
On the 14th day of culture, hygromycin is added to the medium in an amount of 50 μg / ml, the cells are further cultured for 2 weeks, and the colonies are transferred to a fresh medium containing hygromycin at the same concentration.
When the colony grows to a diameter of 2 mm, it is transferred to an N6 hormone-free medium containing no hygromycin, and cultured under fluorescent light irradiation (3000 lux) for differentiation. The seedlings that have grown to a height of about 10 cm in a test tube are acclimated and then transferred to a pot in a greenhouse to regenerate the plant.

【0029】PEPC遺伝子が含まれているクローンの
選択は、カルスあるいは植物体の細胞を採り、サザンハ
イブリダイゼーション等の方法で確認することにより行
えばよい。また、再生後に、植物体の葉の抽出液等のタ
ンパク中の目的のタンパク量をウエスタン解析等により
調べる一方、PEPCの発現制御領域あるいは目的の遺
伝子が導入されていることをサザン解析等により確認す
ることが好ましい。
Selection of clones containing the PEPC gene may be carried out by collecting callus or plant cells and confirming them by a method such as Southern hybridization. After regeneration, the amount of the target protein in the protein of the leaf extract of the plant body is examined by Western analysis and the like, and it is confirmed by Southern analysis that the expression control region of PEPC or the target gene is introduced. Preferably.

【0030】[0030]

【実施例】以下に、本発明の実施例を説明する。 <1>PEPC cDNAの取得 (1)大豆PEPCの精製 大豆種子(500g)を粉砕して、2lの0.1Mリン酸緩
衝液(pH6.8、25mM塩化マグネシウムを含む)を加えて
よく混合し、その上清を遠心分離によって回収した。こ
の上清から30〜50%の硫安沈澱画分を得た。この硫
安沈澱を0.1Mトリス緩衝液(pH7.5、30%硫安を含
む)に溶解したのち、同じ緩衝液を用いてブチルトヨパ
ールカラム(5×50cm)に供して、PEPC活性を
溶出した。
EXAMPLES Examples of the present invention will be described below. <1> Acquisition of PEPC cDNA (1) Purification of soybean PEPC Soybean seeds (500 g) were crushed, 2 l of 0.1 M phosphate buffer (pH 6.8, containing 25 mM magnesium chloride) was added and mixed well, The supernatant was collected by centrifugation. A 30-50% ammonium sulfate precipitate fraction was obtained from this supernatant. The ammonium sulfate precipitate was dissolved in 0.1 M Tris buffer (pH 7.5, containing 30% ammonium sulfate), and the same buffer was used for a Butyl Toyopearl column (5 × 50 cm) to elute the PEPC activity.

【0031】この溶出画分を透析した後、DEAEトヨ
パールカラム(5×50cm)に供した。このカラムよ
りPEPC活性を塩化ナトリウムの濃度勾配により溶出
した。この溶出画分を硫安沈澱させた後、セファロース
CL6Bカラム(2×90cm)を用いてゲル濾過を行
った。この画分をハイドロキシアパタイトカラム(1×
20cm)に供し、5〜100mMのリン酸緩衝液(pH6.8)
にて溶出して均一に精製されたPEPCを得た。
The eluted fraction was dialyzed and then applied to a DEAE Toyopearl column (5 × 50 cm). PEPC activity was eluted from this column by a concentration gradient of sodium chloride. After this elution fraction was ammonium sulfate precipitated, gel filtration was performed using a Sepharose CL6B column (2 × 90 cm). This fraction was added to a hydroxyapatite column (1 x
20 cm), 5-100 mM phosphate buffer (pH 6.8)
To obtain uniformly purified PEPC.

【0032】こうして得られたPEPCに対する抗血清
を、ウサギを用いて作製した。
The antiserum against PEPC thus obtained was prepared using a rabbit.

【0033】(2)大豆登熟期種子からのポリ(A)R
NAの調製 登熟期の大豆種子(50g)を液体窒素の存在下で乳鉢
を用いて、粉末状になるまで破砕し、200mlの抽出
緩衝液(20mMのバナジルコンプレックス、2%SD
S、トリス塩酸、pH8.0)を加え、500×gで遠心し
てその上清を回収した。
(2) Poly (A) R from soybean ripening seeds
Preparation of NA Soybean seeds (50 g) at the ripening stage were crushed in a mortar in the presence of liquid nitrogen until powdery, and 200 ml of extraction buffer (20 mM vanadyl complex, 2% SD
S, Tris-HCl, pH 8.0) was added and the supernatant was recovered by centrifugation at 500 × g.

【0034】この上清をフェノール抽出することにより
タンパクを変性させ、エタノール沈澱により核酸を回収
した後、さらにフェノール抽出をさらに5回繰り返し
た。得られた上清からRNAをエタノール沈澱、塩化リ
チウム沈澱により回収し、蒸留水に溶解した。このRN
A画分から、オリゴdTスピンカラム(ファルマシア社
製)を用い、このカラムの使用説明書に従ってポリ
(A)RNA 100μgを得た。
The protein was denatured by extracting the supernatant with phenol, and the nucleic acid was recovered by ethanol precipitation. Then, the phenol extraction was further repeated 5 times. RNA was recovered from the obtained supernatant by ethanol precipitation and lithium chloride precipitation, and dissolved in distilled water. This RN
From the A fraction, 100 μg of poly (A) RNA was obtained using an oligo dT spin column (Pharmacia) according to the instruction manual of this column.

【0035】(3)cDNAライブラリーの作製 上記で得られたポリ(A)RNA 5μg用い、cDNA
合成キット(ファルマシア社製)を用い、このキットの
説明書に従って、末端にEcoRIアダプターを有するcD
NAを得た。
(3) Preparation of cDNA library Using 5 μg of the poly (A) RNA obtained above, cDNA was prepared.
Using a synthesis kit (Pharmacia), follow the instructions of this kit and have a cD with an Eco RI adapter at the end.
I got NA.

【0036】これを、lacプロモーターを有する発現ベ
クターλgt11のEcoRI部位に挿入し、パッケージングキ
ット(ストラタジーン社製)を用いて、インビトロ・パ
ッケージングを行い、大腸菌Y1088株に感染させ、約1
00万クローンのcDNAライブラリーを得た。
This was inserted into the Eco RI site of the expression vector λgt11 having a lac promoter, and in vitro packaging was carried out using a packaging kit (Stratagene) to infect E. coli Y1088 strain to obtain about 1
A cDNA library of, 000,000 clones was obtained.

【0037】(4)cDNAのスクリーニング 以上のようにして得られたcDNAライブラリーに含ま
れるファージのプラークを軟寒天培地に懸濁し、シャー
レ中の寒天培地上に重層した。3時間、37℃で培養
後、10mMのIPTG溶液をしみこませてから乾燥してお
いたニトロセルロースフィルターをこの寒天培地上にか
ぶせ、さらに3時間、37℃で培養を行った。その後、
これらのフィルターを注意深く寒天培地から剥し、1%
のBSA溶液に16時間浸した。PEPCに対するウサ
ギ抗血清(0.1ml)を100mlのBSA溶液に加え
て混合したのち、この溶液に先のフィルターを浸して、
緩く揺すりながら室温で1時間抗体と反応させた。
(4) Screening of cDNA The plaques of the phage contained in the cDNA library obtained as described above were suspended in a soft agar medium and overlaid on the agar medium in a petri dish. After culturing at 37 ° C. for 3 hours, a 10 mM IPTG solution was impregnated and the dried nitrocellulose filter was covered on this agar medium, and further cultivated at 37 ° C. for 3 hours. afterwards,
Carefully remove these filters from the agar and remove 1%
It was soaked in the BSA solution for 16 hours. Rabbit antiserum against PEPC (0.1 ml) was added to 100 ml of BSA solution and mixed, and then the filter was immersed in this solution,
The antibody was allowed to react for 1 hour at room temperature with gentle shaking.

【0038】上記フィルターを、アルカリフォスファタ
ーゼ結合2次抗体を用いたエンザイムイムノブロッティ
ング法キット(プロメガ社、ピコブルー)を用いて、P
EPCを発現しているクローンのスクリーニングを行っ
た。フィルター上のポジティブスポットの位置に対応す
るプラーク中のファージを回収した。さらに2次スクリ
ーニング、3次スクリーニングを行うことによりクロー
ンを純化し、最終的に6種のファージクローンを得た。
The above filter was subjected to P using an enzyme immunoblotting method kit (Promega, Picoblue) using an alkaline phosphatase-conjugated secondary antibody.
Screening for clones expressing EPC was performed. The phage in the plaque corresponding to the position of the positive spot on the filter was recovered. The clones were further purified by performing secondary screening and tertiary screening to finally obtain 6 types of phage clones.

【0039】(5)塩基配列の決定 このようにして得られた6種のファージからGrossberge
rの方法(Nuc. AcidsRes. 15, 6737, 1987)に従って、
λDNAをそれぞれ調製した。このλDNAのEcoRIイ
ンサートを、プラスミドベクターpKS+(ストラタジーン
社)のEcoRI部位に挿入し、これを用いて大腸菌(XL1-B
lue株)を形質転換した。
(5) Determination of nucleotide sequence From the thus obtained 6 kinds of phages, Grossberge
According to the method of r (Nuc. AcidsRes. 15 , 6,737, 1987),
Each λDNA was prepared. The Eco RI insert of this λDNA was inserted into the Eco RI site of the plasmid vector pKS + (Stratagene) and used to transform E. coli (XL1-B
lue strain) was transformed.

【0040】得られたコロニーからプラスミドを調製し
て、各種の制限酵素で消化して、それぞれの制限酵素地
図を作製した。これらを比較して、PEPC cDNA
全長を含むと考えられる2種のcDNAを見いだし、そ
れぞれ、SPC1、SPC16と名付けた。これらは類
似した制限酵素地図を示すが、いくつかの点で異なって
おり、異なるPEPC遺伝子から由来していることが判
明した。これらのクローンの塩基配列は、プロメガ社の
イレース・ア・ベース・キットを用いてデリーションク
ローンを作製した後、ダイデオキシ法により決定した。
SPC16の配列を配列番号2に示す。
Plasmids were prepared from the obtained colonies and digested with various restriction enzymes to prepare respective restriction enzyme maps. Comparing these, PEPC cDNA
Two types of cDNA considered to contain the full length were found and named SPC1 and SPC16, respectively. They show similar restriction maps but differ in some respects and were found to be derived from different PEPC genes. The nucleotide sequences of these clones were determined by the dideoxy method after preparing deletion clones using the erase a base kit of Promega.
The sequence of SPC16 is shown in SEQ ID NO: 2.

【0041】<2>DNAプローブの作成 大豆ゲノムライブラリーから、PEPC遺伝子を検索す
るためのプローブとして、上記cDNA SPC16の
5’領域を使用した。5’領域を得るために、SPC1
6のインサートの3’末端側の配列を欠失させたデリー
ションクローンを作製し、SPC16の1〜234番目
の塩基配列を含むクローンSPC16Δ7をPCR法で
増幅させた。
<2> Preparation of DNA probe The 5'region of the cDNA SPC16 was used as a probe for searching the PEPC gene from the soybean genomic library. SPC1 to obtain the 5'region
A deletion clone in which the sequence on the 3'end side of the insert of 6 was deleted was prepared, and a clone SPC16Δ7 containing the nucleotide sequence at positions 1 to 234 of SPC16 was amplified by the PCR method.

【0042】PCR法は、Liangらの方法(Liangら、 Nu
cleic Acids Res. 16, 3579, 1988)で行い、配列番号
3(M4プライマー)、4(RVプライマー)に示す配
列を有する合成オリゴヌクレオチドをプライマーとして
使用した。
The PCR method is the method of Liang et al. (Liang et al., Nu.
cleic Acids Res. 16 , 3579, 1988), and a synthetic oligonucleotide having a sequence shown in SEQ ID NO: 3 (M4 primer), 4 (RV primer) was used as a primer.

【0043】PCR法で増幅させたDNA断片は、RI
標識キット(ベーリンガー・マンハイム社)と32P−d
CTPを用いて、キット添付のプロトコールに従って
5’末端を32P標識した。このようにして32P標識した
ものをPEPC検索用のプローブとした。
The DNA fragment amplified by the PCR method was RI
Labeling kit and (Boehringer Mannheim) 32 P-d
The 5'end was labeled with 32 P using CTP according to the protocol attached to the kit. The thus labeled 32 P was used as a probe for PEPC search.

【0044】<3>PEPCゲノム遺伝子の検索 λファージ・ベクターλEMBL3を用いて作製された
大豆ゲノムDNAライブラリー(クロンテック社製、製
品コード番号FL1060d)を、上記プローブを用いて、プ
ラークハイブリダイゼーションにより検索した。検索方
法は文献(Maniatisら、Molecular Clonig : A Laborat
ory Manual. Cold Spring Harbor Laboratory, Cold Sp
ring Harbor, NY, 1982)に示される方法で行った。
<3> Search of PEPC genomic gene A soybean genomic DNA library (product code No. FL1060d manufactured by Clontech) produced by using the λ phage vector λEMBL3 was searched by plaque hybridization using the above probe. did. Search method is literature (Maniatis et al., Molecular Clonig: A Laborat
ory Manual. Cold Spring Harbor Laboratory, Cold Sp
ring Harbor, NY, 1982).

【0045】ファージのプラークを、ニトロセルロース
膜(Schleicher & Schuell社製)に移し取り、アルカリ
変性後、加熱することによりファージDNAを膜に固定
した。
Phage plaques were transferred to a nitrocellulose membrane (Schleicher & Schuell), denatured with alkali, and heated to immobilize the phage DNA on the membrane.

【0046】ハイブリダイゼーションは、42℃で行っ
た。膜の洗滌は、0.1×SSC、0.1%SDSを用
い、65℃で行った。膜を洗滌、乾燥後、X線フィルム
に露出させ、オートラジオグラムを撮り、フィルム上の
ポジティブシグナルの位置から、プローブがハイブリダ
イズしたプラークを同定した。
Hybridization was carried out at 42 ° C. The membrane was washed at 65 ° C. using 0.1 × SSC and 0.1% SDS. After the membrane was washed and dried, it was exposed to X-ray film, an autoradiogram was taken, and the plaque to which the probe hybridized was identified from the position of the positive signal on the film.

【0047】約50万個の組換体から複数のλファージ
・クローンを得たが、その一つをλPEPG16と命名
し、解析を行った。
A plurality of λ phage clones were obtained from about 500,000 recombinants, one of which was named λPEPG16 and analyzed.

【0048】<4>塩基配列の決定 λPEPG16からλDNAを、Grossbergerらの方法
(Grossbergerら、Nucleic Acids Res. 15, 6737, 198
7)に従って調製した。すなわち、λPEPG16をE.
coli Y1090株に感染させ、菌体が溶菌するまで培養し、
培養上清にPEGを加えてファージ粒子を沈澱させた。
遠心によりファージを回収し、フェノール抽出によりフ
ァージDNAを得た。
<4> Determination of nucleotide sequence λDNA from λPEPG16 was subjected to the method of Grossberger et al. (Grossberger et al., Nucleic Acids Res. 15 , 6737, 198).
Prepared according to 7). That is, λPEPG16 is changed to E.
Infect the E. coli strain Y1090 and culture until the cells are lysed,
PEG was added to the culture supernatant to precipitate phage particles.
The phage was recovered by centrifugation and extracted with phenol to obtain phage DNA.

【0049】このファージDNAのサザン分析を行っ
た。ファージDNAを、クローニング部位の両外側にあ
SalIで消化し、アガロースゲル電気泳動を行った後、
ナイロン膜に移し、上記プローブを、プラークハイブリ
ダイゼーションと同様の条件でハイブリダイズさせ、膜
を洗滌、乾燥後オートラジオグラフィーを撮った。
Southern analysis of this phage DNA was performed. After the phage DNA was digested with Sal I on both sides of the cloning site and subjected to agarose gel electrophoresis,
After transferring to a nylon membrane, the above probe was hybridized under the same conditions as for plaque hybridization, the membrane was washed and dried, and then autoradiography was taken.

【0050】その結果、4kbpのDNA断片が、プローブ
にハイブリダイズした。このDNA断片をアガロースゲ
ル電気泳動により、分離、回収を行った。回収したDN
A断片を、プラスミドベクターpKS-のSalI部位にサブク
ローニングした。このプラスミドをpPEPG16sと命名し
た。
As a result, a 4 kbp DNA fragment hybridized with the probe. This DNA fragment was separated and collected by agarose gel electrophoresis. DN collected
The A fragment was subcloned into the SalI site of the plasmid vector pKS-. This plasmid was named pPEPG16s.

【0051】このプラスミドに含まれるPEPC遺伝子
部分の塩基配列の決定は、エキソヌクレアーゼを用いた
デリーションキット(プロメガ社製)を使用し、長さの
異なる欠失部分を有する複数のクローン(デリーション
クローン)を作製してから行った。得られたデリーショ
ンクローンの塩基配列は塩基配列決定キット(宝酒造
(株))を用いて行った。その結果、PEPC遺伝子の
プロモーター領域(配列番号1中、塩基番号1〜86
2)及び5’非翻訳領域(配列番号1中、863〜12
61)を含む塩基配列が明かとなった(配列番号1)。
The nucleotide sequence of the PEPC gene portion contained in this plasmid was determined using a deletion kit (Promega) using exonuclease, and a plurality of clones (deletion Clone) and then performed. The nucleotide sequence of the obtained deletion clone was determined using a nucleotide sequence determination kit (Takara Shuzo Co., Ltd.). As a result, the promoter region of the PEPC gene (in SEQ ID NO: 1, base numbers 1 to 86)
2) and 5'untranslated region (in SEQ ID NO: 1, 863-12)
The nucleotide sequence including 61) has been revealed (SEQ ID NO: 1).

【0052】<5>第一イントロンを用いた植物プロモ
ーター活性の増強 塩基配列解析の結果、単離した遺伝子の5’非翻訳領域
には第一イントロンが存在していることが明かになった
(塩基番号953〜1235)。そこで、以下に示すよ
うに、この部分を利用して植物プロモーター活性の増強
を行った。
<5> Enhancement of plant promoter activity using the first intron As a result of nucleotide sequence analysis, it was revealed that the first intron is present in the 5'untranslated region of the isolated gene ( Base number 953-1235). Therefore, as shown below, this portion was utilized to enhance the plant promoter activity.

【0053】第一イントロン部分を利用するために、ゲ
ノムDNAから第一イントロン部分を、PCR法を用い
て増幅させた。プライマーには、この領域を挟む、配列
番号5(プライマー1)、6(プライマー2)に示す配
列を有する合成オリゴヌクレオチドを使用した。尚、プ
ライマー1の8〜28番目の配列は、配列番号1の86
2〜882番目に相当し、プライマー2の9〜28番目
の配列は、1239〜1258番目の配列に相当し、各
々イントロンの外側に相当する部分に制限酵素XbaI認識
配列(TCTAGA)を有している。
In order to utilize the first intron portion, the first intron portion was amplified from genomic DNA using the PCR method. As the primers, synthetic oligonucleotides having the sequences shown in SEQ ID NOs: 5 (primer 1) and 6 (primer 2) sandwiching this region were used. The 8th to 28th sequences of primer 1 are 86 of SEQ ID NO: 1.
2 to 882nd, the 9th to 28th sequence of primer 2 corresponds to the 1239 to 1258th sequence, and each has a restriction enzyme Xba I recognition sequence (TCTAGA) in a portion corresponding to the outside of the intron. ing.

【0054】PCR反応により増幅されたDNA断片
を、XbaIで消化したのち、レポーター遺伝子(カリフラ
ワーモザイクウイルスの35Sプロモーターで制御され
るβ−グルクロニダーゼ遺伝子)を含むプラスミドpSLG
2(Katoら、Plant Mol. Biol.Rep. 9, 333-339, 1991)
XbaI部位にサブクローニングした。このプラスミドを
pSLG/PEPI(図1)と命名した。
The DNA fragment amplified by the PCR reaction was digested with Xba I, and then the plasmid pSLG containing the reporter gene (β-glucuronidase gene controlled by the 35S promoter of cauliflower mosaic virus) was digested.
2 (Kato et al., Plant Mol. Biol. Rep. 9 , 333-339, 1991)
Was subcloned into the Xba I site. This plasmid
It was named pSLG / PEPI (Fig. 1).

【0055】このプラスミドを導入した植物細胞のレポ
ーター遺伝子の発現を、イントロンを含まないプラスミ
ドpSLG2と比較した。植物細胞としてはタバコ培養細胞
BY2(ブライトイエロー品種)およびイネ培養細胞
(ニホンバレ)を用い、上述した方法により、エレクト
ロポレーション法で遺伝子導入を行った。尚、ハイグロ
マイシン耐性遺伝子を有するプラスミドとして、10μ
gのpUC19−HPTを用い、20μgのpSLG/PEPIpB
IRS3とともに、イネのプロトプラストに導入した。エレ
クトロポレーションは、タバコでは初期電圧750V/
cm、T1/2が30ミリ秒、イネでは初期電圧475V
/cm、T1/2が30ミリ秒である電気パルスを与える
ことにより行った。
The expression of the reporter gene in plant cells introduced with this plasmid was compared with the plasmid pSLG2 containing no intron. Tobacco cultured cells BY2 (bright yellow variety) and rice cultured cells (Nihonbare) were used as plant cells, and gene transfer was performed by the electroporation method according to the method described above. As a plasmid having a hygromycin resistance gene, 10 μm
g of pUC19-HPT, 20 μg of pSLG / PEPIpB
It was introduced into rice protoplasts along with IRS3. For cigarettes, the initial voltage of electroporation is 750V /
cm, T 1/2 is 30 milliseconds, rice has an initial voltage of 475V
/ Cm, T 1/2 was 30 ms.

【0056】形質転換細胞の遺伝子発現は、β−グルク
ロニダーゼ活性の測定により行った。発現の測定は文献
(Katoら、Plant Mol. Biol. Rep. 9, 333-339)に従っ
て行った。その結果、第一イントロンを含まないプラス
ミドDNA(pSLG2)で形質転換した場合に比べ
て、第一イントロンを含むものでは、タバコ、イネ両細
胞共に約3倍の活性を示すことが判明した。
Gene expression of the transformed cells was carried out by measuring β-glucuronidase activity. The expression was measured according to the literature (Kato et al., Plant Mol. Biol. Rep. 9 , 333-339). As a result, it was revealed that both tobacco and rice cells exhibited about 3 times the activity of the cells containing the first intron as compared with the case of transformation with the plasmid DNA (pSLG2) containing no first intron.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【発明の効果】大豆の登熟種子で発現しているPEPC
遺伝子は、タンパク質含量と脂肪含量の分配に関与して
おり、その発現量も多い。したがって、本発明によりP
EPC遺伝子のプロモーター領域を含むDNAが単離さ
れたことにより、大豆ばかりでなく各種の種子で強く発
現する植物ベクター用プロモーターとして利用すること
が期待できる。
EFFECT OF THE INVENTION PEPC expressed in ripened soybean seeds
Genes are involved in the distribution of protein content and fat content, and their expression levels are high. Therefore, according to the present invention, P
Since the DNA containing the promoter region of the EPC gene was isolated, it can be expected to be used as a promoter for a plant vector that is strongly expressed not only in soybean but also in various seeds.

【0059】さらに、この遺伝子の5’非翻訳領域には
第一イントロンが存在していることが判明したので、こ
の第一イントロンを植物プロモーターと接続させること
により、双子葉植物および単子葉植物で目的の遺伝子を
強く発現させることができる。
Furthermore, since it was revealed that the first intron is present in the 5'untranslated region of this gene, by connecting this first intron to a plant promoter, dicotyledonous plants and monocotyledonous plants can be obtained. The target gene can be strongly expressed.

【0060】[0060]

【配列表】[Sequence list]

【0061】配列番号:1 配列の長さ:1261 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic DNA 起源 生物名:グリシン マックス(Glycine max ) 直接の起源 ライブラリー名:大豆ゲノムDNAライブラリー クローン名:pPEPG16s 配列の特徴 特徴を示す記号:promoter 存在位置: 1..862 特徴を決定した方法: P 特徴を示す記号:TATA signal 存在位置:817..824 特徴を決定した方法: S 特徴を示す記号:repeat region 存在位置: 10..40 特徴を決定した方法: P 特徴を示す記号:repeat region 存在位置: 393..720 特徴を決定した方法: P 特徴を示す記号:5'UTR 存在位置: 863..1261 特徴を決定した方法: P 特徴を示す記号:exon 存在位置: 863..952, 954..1261 特徴を決定した方法: S 特徴を示す記号:intron 存在位置: 953..1235 特徴を決定した方法: S 配列 GTCGACAGTC TCCACCATGG CTTGCCTCCA CCATGGCTTG CCGGGCCTCT GCTTCGAGGG 60 CCAACTGCTC CGTCTCGTAG GCTGCTGCAT TGAAGGCCTT GCTGTTGTTA TTCTTCTGGT 120 TGCCGGTGGC GGCTTCCACC TTGAACCAAC TGTTGTGGGG ATTCTTTGAG AGGGAACGAA 180 GGGTGCAAAG AGAGGAGGGG TTGGAGAAGT TGGTATTGAG CATAAATGAA TGTAATAAAT 240 GGAATGCATC CATTTTACTT GAAAGAATGT TGAGTTTGGT TTCAAAATAT TTGATTTTTA 300 ATTGTATGGC TGTACTTTGT TTGGAGATGG GAGAAGAAGT AGAGGGGAAG AGAGAAACAA 360 AGGATAAAAG GATAAAATCG GAAAATAACA CAAAAATATA AAAAAAGAAA TGAAAAAAAC 420 AAAAAATGAT AGTCATTAAT TTTAAAATAA GTTAATCTAA CTATTTAAAT GTTTATTTTG 480 TACCATTTCA GATTTTTTCA CTTTTGTACT GTAAAATCAG TCTAAAGTGA CGAGGATTCG 540 AAATGAAACA AGTTGGAGAA AATATAAAAA GCGAAATGCA GGAAAACAAA AAATGATAGC 600 CATTAATTTT AAAATAAGTT AATCTCACGA TTTAAATGTT TACTTTTGTA CCATTTCAAA 660 TTTTGTCACT TTAGTATCTT AAAATGGGTC TAAAGTGACG ATGGTCGGAA ATGAAAGAAG 720 GTTTTGTAGT AGGACTTTAC TTCTACTCTT TTTTCACAAC TTTCTCTCTC TTTATTTTTT 780 TCTTTAATTT ATTGGATACG TGTCTCCTTT TTTTCCTATA TAATGACACT CTCTGCAGTG 840 CTTTGGATCT GTGACTCTAG TACTTCTCTC TCTCTCTGTC ATTGGTTTTT CTCTGGTTGA 900 CATCATCGTC ATCTACTACT TCTTCCTCTT ATCCAATTGG CCCCCAACAC TGGTACTACA 960 TTAGATCCTT ATGATTGATC CATCATGGTT TTGTCATAAA AAAGTTACAA TTGTTTTCCC 1020 TTTAATTCTA TACATGCTGT GTTTATAGGC ACTTTGTTGT TTTGCCTTCT CTACTTTGTG 1080 TCTTCCAACC ATACAGTTTT CATTGTCAAT GTCTCCATTG TAGATGATGT TGTTTTGATT 1140 TTCCTATGTT CAAGTTTTGT TTTTCTTTTT TTGTTTTTTT ATGTGGGTTT TGGTTGTTTT 1200 CGGATCTTTT GGTGTGACCC TTTCGATGTT GGCAGGTTTT GGGGTACTTT GAAAAGTTGC 1260 A 1261SEQ ID NO: 1 Sequence length: 1261 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: Genomic DNA Origin organism name: Glycine max Direct origin Live Rally name: Soybean genomic DNA library Clone name: pPEPG16s Sequence features Characteristic symbol: promoter Location: 1..862 Method of determining feature: P Characteristic symbol: TATA signal Location: 817.824 Feature Method for determining: S Characteristic symbol: repeat region Location: 10..40 Method for determining characteristic: P Characteristic symbol: repeat region Location: 393..720 Method for determining feature: P Feature Shown symbol: 5'UTR Location: 863..1261 Method by which the feature is determined: P Feature symbol: exon Location: 863..952, 954..1261 Method by which the feature is determined: S Feature symbol: intron Location: 953..1235 Method of characterizing: S Column GTCGACAGTC TCCACCATGG CTTGCCTCCA CCATGGCTTG CCGGGCCTCT GCTTCGAGGG 60 CCAACTGCTC CGTCTCGTAG GCTGCTGCAT TGAAGGCCTT GCTGTTGTTA TTCTTCTGGT 120 TGCCGGTGGC GGCTTCCACC TTGAACCAAC TGTTGTGGGG ATTCTTTGAG AGGGAACGAA 180 GGGTGCAAAG AGAGGAGGGG TTGGAGAAGT TGGTATTGAG CATAAATGAA TGTAATAAAT 240 GGAATGCATC CATTTTACTT GAAAGAATGT TGAGTTTGGT TTCAAAATAT TTGATTTTTA 300 ATTGTATGGC TGTACTTTGT TTGGAGATGG GAGAAGAAGT AGAGGGGAAG AGAGAAACAA 360 AGGATAAAAG GATAAAATCG GAAAATAACA CAAAAATATA AAAAAAGAAA TGAAAAAAAC 420 AAAAAATGAT AGTCATTAAT TTTAAAATAA GTTAATCTAA CTATTTAAAT GTTTATTTTG 480 TACCATTTCA GATTTTTTCA CTTTTGTACT GTAAAATCAG TCTAAAGTGA CGAGGATTCG 540 AAATGAAACA AGTTGGAGAA AATATAAAAA GCGAAATGCA GGAAAACAAA AAATGATAGC 600 CATTAATTTT AAAATAAGTT AATCTCACGA TTTAAATGTT TACTTTTGTA CCATTTCAAA 660 TTTTGTCACT TTAGTATCTT AAAATGGGTC TAAAGTGACG ATGGTCGGAA ATGAAAGAAG 720 GTTTTGTAGT AGGACTTTAC TTCTACTCTT TTTTCACAAC TTTCTCTCTC TTTATTTTTT 780 TCTTTAATTT ATTGGATACG TGTCTCCTTT TTTTCCTATA TAATGACACT CTCTGCAGTG 840 CTTTGGATCT GTGAC TCTAG TACTTCTCTC TCTCTCTGTC ATTGGTTTTT CTCTGGTTGA 900 CATCATCGTC ATCTACTACT TCTTCCTCTT ATCCAATTGG CCCCCAACAC TGGTACTACA 960 TTAGATCCTT ATGATTGATC CATCATGGTT TTGTCATAAA AAAGTTACAA TTGTTTTCCC 1020 TTTAATTCTA TACATGCTGT GTTTATAGGC ACTTTGTTGT TTTGCCTTCT CTACTTTGTG 1080 TCTTCCAACC ATACAGTTTT CATTGTCAAT GTCTCCATTG TAGATGATGT TGTTTTGATT 1140 TTCCTATGTT CAAGTTTTGT TTTTCTTTTT TTGTTTTTTT ATGTGGGTTT TGGTTGTTTT 1200 CGGATCTTTT GGTGTGACCC TTTCGATGTT GGCAGGTTTT GGGGTACTTT GAAAAGTTGC 1260 A 1261

【0062】配列番号:2 配列の長さ:3211 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源 生物名:グリシン マックス(Glycine max ) 直接の起源 ライブラリー名:大豆ゲノムcDNAライブラリー クローン名:SPC16 配列の特徴 特徴を示す記号: 3' UTR 存在位置: 3018..3211 特徴を決定した方法: P 配列 CTTCTCTCTC TCTCTGTCAT TGGTTTTTCT CTGGTTGACA TCATCGTCAT CTACTACTTC 60 TTCCTCTTAT CCAATTGGCC CCCAACACTG GTTTTGGGGT ACTTTGAAAA GTTGCA ATG 119 Met 1 GCG AAC AGG AAC TTG GAA AAG ATG GCA TCG ATT GAT GCT CAG CTT CGG 167 Ala Asn Arg Asn Leu Glu Lys Met Ala Ser Ile Asp Ala Gln Leu Arg 5 10 15 CTG TTG GTT CCG GCC AAA GTG AGT GAG GAT GAC AAA CTG GTT GAG TAT 215 Leu Leu Val Pro Ala Lys Val Ser Glu Asp Asp Lys Leu Val Glu Tyr 20 25 30 GAT GCT TTG CTT TTG GAT CGG TTC CTT GAT ATT CTT CAG GAT TTA CAT 263 Asp Ala Leu Leu Leu Asp Arg Phe Leu Asp Ile Leu Gln Asp Leu His 35 40 45 GGG GAG GAT CTG AAA GAA ACG GTT CAA GAG GTG TAT GAG CTT TCT GCT 311 Gly Glu Asp Leu Lys Glu Thr Val Gln Glu Val Tyr Glu Leu Ser Ala 50 55 60 65 GAG TAT GAA GGT AAG CAT GAC CCA AAG AAA CTA GAG GAA CTT GGA AAT 359 Glu Tyr Glu Gly Lys His Asp Pro Lys Lys Leu Glu Glu Leu Gly Asn 70 75 80 CTG ATA ACT AGT TTG GAT GCT GGA GAT TCC ATT GTG GTT GCC AAG TCC 407 Leu Ile Thr Ser Leu Asp Ala Gly Asp Ser Ile Val Val Ala Lys Ser 85 90 95 TTT TCC CAC ATG CTT AAC TTG GCC AAC TTA GCC GAA GAG GTC CAA ATT 455 Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu Glu Val Gln Ile 100 105 110 GCC CAC AGT CGA AGG AAC AAG TTG AAG AAA GGT GAT TTT GCT GAT GAA 503 Ala His Ser Arg Arg Asn Lys Leu Lys Lys Gly Asp Phe Ala Asp Glu 115 120 125 AAC AAT GCC ACC ACT GAA TCA GAC ATT GAA GAA ACT CTA AAG AAA CTT 551 Asn Asn Ala Thr Thr Glu Ser Asp Ile Glu Glu Thr Leu Lys Lys Leu 130 135 140 145 GTG GTG GAT ATG AAG AAG TCT CCT CAG GAA GTT TTT GAT GCA CTT AAA 599 Val Val Asp Met Lys Lys Ser Pro Gln Glu Val Phe Asp Ala Leu Lys 150 155 160 AAC CAG ACT GTT GAT CTG GTT CTT ACT GCT CAT CCT ACT CAA TCT GTC 647 Asn Gln Thr Val Asp Leu Val Leu Thr Ala His Pro Thr Gln Ser Val 165 170 175 CGT AGG TCT TTG CTT CAA AAA CAT GGA AGG ATA AGA AAT AAT TTA ACT 695 Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg Asn Asn Leu Thr 180 185 190 CAG TTG TAT GCC AAA GAC ATC ACT CCT GAT GAT AAG CAG GAA CTT GAC 743 Gln Leu Tyr Ala Lys Asp Ile Thr Pro Asp Asp Lys Gln Glu Leu Asp 195 200 205 GAG GCT CTA CAG AGG GAG ATC CAA GCT GCA TTC CGT ACT GAT GAA ATC 791 Glu Ala Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg Thr Asp Glu Ile 210 215 220 225 AGG AGG ACC CCT CCA ACC CCA CAA GAT GAG ATG AGA GCA GGG ATG AGC 839 Arg Arg Thr Pro Pro Thr Pro Gln Asp Glu Met Arg Ala Gly Met Ser 230 235 240 TAC TTC CAT GAA ACA ATT TGG AAG GGT GTA CCC ACA TTT CTA CGT CGT 887 Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Thr Phe Leu Arg Arg 245 250 255 GTT GAT ACA GCT TTG AAG AAT ATA GGG ATC AAC GAA CGT GTC CCT TAT 935 Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asn Glu Arg Val Pro Tyr 260 265 270 AAT GCT CCT CTC ATT CAA TTT TCT TCT TGG ATG GGT GGA GAT CGT GAT 983 Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly Gly Asp Arg Asp 275 280 285 GGC AAT CCA AGA GTA ACT CCT GAA GTG ACC AGA GAT GTT TGC TTA TTG 1031 Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp Val Cys Leu Leu 290 295 300 305 GCT AGA ATG ATG GCT GCT AAC TTG TAC TAC TCC CAG ATA GAG GAT CTT 1079 Ala Arg Met Met Ala Ala Asn Leu Tyr Tyr Ser Gln Ile Glu Asp Leu 310 315 320 ATG TTT GAG CTG TCA ATG TGG CGC TGC AAT GAC GAG CTA CGT GTC CGT 1127 Met Phe Glu Leu Ser Met Trp Arg Cys Asn Asp Glu Leu Arg Val Arg 325 330 335 GCA GAT GAA CTT AAC AGG TCT TCC AAG AAA AAT TCA GTC GCA AAA CAC 1175 Ala Asp Glu Leu Asn Arg Ser Ser Lys Lys Asn Ser Val Ala Lys His 340 345 350 TAC ATA GAA TTT TGG AAA GCC ATT CCT CCA AAT GAA CCA TAT CGT GTG 1223 Tyr Ile Glu Phe Trp Lys Ala Ile Pro Pro Asn Glu Pro Tyr Arg Val 355 360 365 CTA CTG GGT GAA GTA AGG AAT AGG CTT TAC CAG ACT CGT GAA CGC TCA 1271 Leu Leu Gly Glu Val Arg Asn Arg Leu Tyr Gln Thr Arg Glu Arg Ser 370 375 380 385 CGC CAT TTG CTA GCT CAC GGA TAC TCT GAC ATT CCA GAG GAA GAG ACT 1319 Arg His Leu Leu Ala His Gly Tyr Ser Asp Ile Pro Glu Glu Glu Thr 390 395 400 TTT ACC AAT GTT GAG GAG TTC TTG GAA CCC CTT GAA CTC TGT TAC AGA 1367 Phe Thr Asn Val Glu Glu Phe Leu Glu Pro Leu Glu Leu Cys Tyr Arg 405 410 415 TCA CTC TGT GCT TGT GGC GAT CGT GCA ATT GCC GAT GGA AGC CTT CTA 1415 Ser Leu Cys Ala Cys Gly Asp Arg Ala Ile Ala Asp Gly Ser Leu Leu 420 425 430 GAT TTC TTG AGA CAA GTC TCT ACT TTC GGA CTC TCC CTA GTG AGG CTT 1463 Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu Ser Leu Val Arg Leu 435 440 445 GAC ATA AGG CAA GAG TCA GAC CGC CAC ACA GAC GTC TTA GAC GCC ATC 1511 Asp Ile Arg Gln Glu Ser Asp Arg His Thr Asp Val Leu Asp Ala Ile 450 455 460 465 ACC AAA CAT TTA GAA ATA GGC TCA TAC CAG GAA TGG TCG GAG GAA AAA 1559 Thr Lys His Leu Glu Ile Gly Ser Tyr Gln Glu Trp Ser Glu Glu Lys 470 475 480 CGG CAG CAA TGG CTT TTA TCT GAG TTG AGT GGC AAA CGG CCC CTA TTC 1607 Arg Gln Gln Trp Leu Leu Ser Glu Leu Ser Gly Lys Arg Pro Leu Phe 485 490 495 GGC CCT GAT CTT CCC CAA ACC GAA GAA ATC AGA GAC GTG TTG GAG ACA 1655 Gly Pro Asp Leu Pro Gln Thr Glu Glu Ile Arg Asp Val Leu Glu Thr 500 505 510 TTC CAT GTC ATA GCA GAG CTT CCA CTA GAC AAC TTT GGA GCA TAC ATC 1703 Phe His Val Ile Ala Glu Leu Pro Leu Asp Asn Phe Gly Ala Tyr Ile 515 520 525 ATC TCA ATG GCA ACT GCA CCT TCT GAT GTG CTT GCA GTT GAG CTT CTG 1751 Ile Ser Met Ala Thr Ala Pro Ser Asp Val Leu Ala Val Glu Leu Leu 530 535 540 545 CAG CGC GAA TGC CAT GTC AAG CAT CCA CTA AGA GTT GTG CCA TTG TTT 1799 Gln Arg Glu Cys His Val Lys His Pro Leu Arg Val Val Pro Leu Phe 550 555 560 GAG AAG CTA GCT GAT CTA GAA GCA GCA CCG GCC GCG TTG GCG CGA TTG 1847 Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala Ala Leu Ala Arg Leu 565 570 575 TTC TCT GTA GAC TGG TAC AGA AAC AGG ATC AAT GGG AAG CAG GAA GTG 1895 Phe Ser Val Asp Trp Tyr Arg Asn Arg Ile Asn Gly Lys Gln Glu Val 580 585 590 ATG ATA GGC TAT TCT GAT TCT GGC AAA GAT GCT GGA AGG TTT TCA GCT 1943 Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala Gly Arg Phe Ser Ala 595 600 605 GCA TGG CAG CTG TAT AAG GCT CAG GAG GAG CTT ATA ATG GTG GCT AAG 1991 Ala Trp Gln Leu Tyr Lys Ala Gln Glu Glu Leu Ile Met Val Ala Lys 610 615 620 625 CAG TAT GGT GTG AAG CTG ACA ATG TTC CAT GGT CGT GGA GGG ACA GTT 2039 Gln Tyr Gly Val Lys Leu Thr Met Phe His Gly Arg Gly Gly Thr Val 630 635 640 GGA AGA GGA GGT GGT CCA ACT CAC CTT GCT ATT CTG TCT CAG CCT CCT 2087 Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile Leu Ser Gln Pro Pro 645 650 655 GAA ACC ATT CAT GGA TCG CTG CGC GTG ACT GTC CAA GGT GAA GTT ATT 2135 Glu Thr Ile His Gly Ser Leu Arg Val Thr Val Gln Gly Glu Val Ile 660 665 670 GAG CAA TCG TTT GGA GAG CAG CAC TTG TGC TTC AGA ACG CTT CAA AGG 2183 Glu Gln Ser Phe Gly Glu Gln His Leu Cys Phe Arg Thr Leu Gln Arg 675 680 685 TTC ACT GCA GCT ACT CTA GAA CAT GGA ATG CAC CCT CCA ATT TCT CCT 2231 Phe Thr Ala Ala Thr Leu Glu His Gly Met His Pro Pro Ile Ser Pro 690 695 700 705 AAA CCG GAA TGG AGG GCT TTG ATG GAT GAG ATG GCT GTC ATT GCC ACT 2279 Lys Pro Glu Trp Arg Ala Leu Met Asp Glu Met Ala Val Ile Ala Thr 710 715 720 GAG GAG TAC CGG TCC ATT GTG TTC AAA GAA CCA CGA TTT GTT GAG TAT 2327 Glu Glu Tyr Arg Ser Ile Val Phe Lys Glu Pro Arg Phe Val Glu Tyr 725 730 735 TTC CGC CTG GCC ACA CCT GAG TTG GAG TAC GGG AGG ATG AAC ATT GGA 2375 Phe Arg Leu Ala Thr Pro Glu Leu Glu Tyr Gly Arg Met Asn Ile Gly 740 745 750 AGT CGA CCA GCA AAG AGG AGG CCA AGT GGA GGT ATT GAG ACA CTC CGT 2423 Ser Arg Pro Ala Lys Arg Arg Pro Ser Gly Gly Ile Glu Thr Leu Arg 755 760 765 GCC ATA CCT TGG ATC TTT GCC TGG ACA CAA ACA AGG TTC CAT CTT CCA 2471 Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr Arg Phe His Leu Pro 770 775 780 785 GTG TGG CTA GGC TTT GGT GCA GCA TTC AAA CAT GTT ATT GAG AAG GAT 2519 Val Trp Leu Gly Phe Gly Ala Ala Phe Lys His Val Ile Glu Lys Asp 790 795 800 GTT AGG AAT ATT CAT GTG CTG CAG GAG ATG TAC AAT CAA TGG CCT TTC 2567 Val Arg Asn Ile His Val Leu Gln Glu Met Tyr Asn Gln Trp Pro Phe 805 810 815 TTT AGG GTC ACT ATT GAT TTA GTG GAA ATG GTG TTT GCC AAA GGA GAC 2615 Phe Arg Val Thr Ile Asp Leu Val Glu Met Val Phe Ala Lys Gly Asp 820 825 830 CCA GGG ATA GCT GCT CTT TAT GAT AGG CTC CTT GTT TCA GAG GAT CTG 2663 Pro Gly Ile Ala Ala Leu Tyr Asp Arg Leu Leu Val Ser Glu Asp Leu 835 840 845 TGG TCA TTT GGG GAG CAG TTG AGG ACC ATG TAC GAA GAA ACC AAG GAA 2711 Trp Ser Phe Gly Glu Gln Leu Arg Thr Met Tyr Glu Glu Thr Lys Glu 850 855 860 865 CTC CTC CTT CAG GTG GCT GGC CAT AGG GAT CTT CTT GAA GGA GAT CCA 2759 Leu Leu Leu Gln Val Ala Gly His Arg Asp Leu Leu Glu Gly Asp Pro 870 875 880 TAC TTG AAG CAA AGA CTG CGC TTG CGT GAT TCT TAT ATT ACT ACC CTA 2807 Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ser Tyr Ile Thr Thr Leu 885 890 895 AAC GTG TGC CAA GCC TAC ACG TTG AAA CGT ATC CGT GAT CCA AAC TAT 2855 Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile Arg Asp Pro Asn Tyr 900 905 910 AAT GTG AAG CTG CGC CCT CAC ATC TCC AAA GAG TCT ATA GAG ATA AGT 2903 Asn Val Lys Leu Arg Pro His Ile Ser Lys Glu Ser Ile Glu Ile Ser 915 920 925 AAA CCT GCT GAT GAA CTT ATA ACA CTT AAC CCA ACA AGT GAA TAT GCA 2951 Lys Pro Ala Asp Glu Leu Ile Thr Leu Asn Pro Thr Ser Glu Tyr Ala 930 935 940 945 CCT GGT TTG GAA GAC ACC CTC ATT CTC ACC ATG AAG GGT ATT GCT GCT 2999 Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys Gly Ile Ala Ala 950 955 960 GGC TTG CAA AAC ACT GGC TAAATCTGAG TTTTTGTCTT CTCTTTGGTT 3047 Gly Leu Gln Asn Thr Gly 965 CCACTTTTAT TTTCTGTTTC CTTTATCAGA AATAACGAGT TTAGCTGCAT GCACCAAAGG 3107 GTGTTTTTCC CTCCCCTGTA CCCATGTTTC CATTATAAGA TATTACAGAG AGATAGCTGC 3167 CGCAAAATGA GACAATGCAA GTATGCAACT GATTCTTATG TTCC 3211SEQ ID NO: 2 Sequence Length: 3211 Sequence Type: Nucleic Acid Number of Strands: Double Strand Topology: Linear Sequence Type: cDNA Origin Organism Name: Glycine max Direct Origin Library Name: Soybean genomic cDNA library Clone name: SPC16 Sequence features Characteristic symbol: 3'UTR Location: 3018..3211 Method of determining features: P sequence CTTCTCTCTC TCTCTGTCAT TGGTTTTTCT CTGGTTGACA TCATCGTCAT CTACTACTTC 60 TTCCTCTTAT CCAATTGGCATTCACAGTTGACTTT ATG 119 Met 1 GCG AAC AGG AAC TTG GAA AAG ATG GCA TCG ATT GAT GCT CAG CTT CGG 167 Ala Asn Arg Asn Leu Glu Lys Met Ala Ser Ile Asp Ala Gln Leu Arg 5 10 15 CTG TTG GTT CCG GCC AAA GTG AGT GAG GAT GAC AAA CTG GTT GAG TAT 215 Leu Leu Val Pro Ala Lys Val Ser Glu Asp Asp Lys Leu Val Glu Tyr 20 25 30 GAT GCT TTG CTT TTG GAT CGG TTC CTT GAT ATT CTT CAG GAT TTA CAT 263 Asp Ala Leu Leu Leu Asp Arg Phe Leu Asp Ile Leu Gln Asp Leu His 35 40 4 5 GGG GAG GAT CTG AAA GAA ACG GTT CAA GAG GTG TAT GAG CTT TCT GCT 311 Gly Glu Asp Leu Lys Glu Thr Val Gln Glu Val Tyr Glu Leu Ser Ala 50 55 60 65 GAG TAT GAA GGT AAG CAT GAC CCA AAG AAA CTA GAG GAA CTT GGA AAT 359 Glu Tyr Glu Gly Lys His Asp Pro Lys Lys Leu Glu Glu Leu Gly Asn 70 75 80 CTG ATA ACT AGT TTG GAT GCT GGA GAT TCC ATT GTG GTT GCC AAG TCC 407 Leu Ile Thr Ser Leu Asp Ala Gly Asp Ser Ile Val Val Ala Lys Ser 85 90 95 TTT TCC CAC ATG CTT AAC TTG GCC AAC TTA GCC GAA GAG GTC CAA ATT 455 Phe Ser His Met Leu Asn Leu Ala Asn Leu Ala Glu Glu Val Gln Ile 100 105 110 GCC CAC AGT CGA AGG AAC AAG TTG AAG AAA GGT GAT TTT GCT GAT GAA 503 Ala His Ser Arg Arg Asn Lys Leu Lys Lys Gly Asp Phe Ala Asp Glu 115 120 125 AAC AAT GCC ACC ACT GAA TCA GAC ATT GAA GAA ACT CTA AAG AAA CTT 551 Asn Asn Ala Thr Thr Glu Ser Asp Ile Glu Glu Thr Leu Lys Lys Leu 130 135 140 145 GTG GTG GAT ATG AAG AAG TCT CCT CAG GAA GTT TTT GAT GCA CTT AAA 599 Val Val Asp Met Lys Lys Ser Pro Gln Glu Val Phe Asp Ala Leu Lys 150 155 160 AAC CAG ACT GTT GAT CTG GTT CTT ACT GCT CAT CCT ACT CAA TCT GTC 647 Asn Gln Thr Val Asp Leu Val Leu Thr Ala His Pro Thr Gln Ser Val 165 170 175 CGT AGG TCT TTG CTT CAA AAA CAT GGA AGG ATA AGA AAT AAT TTA ACT 695 Arg Arg Ser Leu Leu Gln Lys His Gly Arg Ile Arg Asn Asn Leu Thr 180 185 190 CAG TTG TAT GCC AAA GAC ATC ACT CCT GAT GAT AAG CAG GAA CTT GAC 743 Gln Leu Tyr Ala Lys Asp Ile Thr Pro Asp Asp Lys Gln Glu Leu Asp 195 200 205 GAG GCT CTA CAG AGG GAG ATC CAA GCT GCA TTC CGT ACT GAT GAA ATC 791 Glu Ala Leu Gln Arg Glu Ile Gln Ala Ala Phe Arg Thr Asp Glu Ile 210 215 220 225 AGG AGG ACC CCT CCA ACC CCA CAA GAT GAG ATG AGA GCA GGG ATG AGC 839 Arg Arg Thr Pro Pro Thr Pro Gln Asp Glu Met Arg Ala Gly Met Ser 230 235 240 TAC TTC CAT GAA ACA ATT TGG AAG GGT GTA CCC ACA TTT CTA CGT CGT 887 Tyr Phe His Glu Thr Ile Trp Lys Gly Val Pro Thr Phe Leu Arg Arg 245 250 255 GTT GAT ACA GCT TTG AAG AAT ATA GGG ATC AAC GAA CGT GTC CCT TAT 935 Val Asp Thr Ala Leu Lys Asn Ile Gly Ile Asn Glu Arg Val Pro Tyr 260 265 270 AAT GCT CCT CTC ATT CAA TTT TCT TCT TGG ATG GGT GGA GAT CGT GAT 983 Asn Ala Pro Leu Ile Gln Phe Ser Ser Trp Met Gly Gly Asp Arg Asp 275 280 285 GGC AAT CCA AGA GTA ACT CCT GAA GTG ACC AGA GAT GTT TGC TTA TTG 1031 Gly Asn Pro Arg Val Thr Pro Glu Val Thr Arg Asp Val Cys Leu Leu 290 295 300 305 GCT AGA ATG ATG GCT GCT AAC TTG TAC TAC TCC CAG ATA GAG GAT CTT 1079 Ala Arg Met Met Ala Ala Asn Leu Tyr Tyr Ser Gln Ile Glu Asp Leu 310 315 320 ATG TTT GAG CTG TCA ATG TGG CGC TGC AAT GAC GAG CTA CGT GTC CGT 1127 Met Phe Glu Leu Ser Met Trp Arg Cys Asn Asp Glu Leu Arg Val Arg 325 330 335 GCA GAT GAA CTT AAC AGG TCT TCC AAG AAA AAT TCA GTC GCA AAA CAC 1175 Ala Asp Glu Leu Asn Arg Ser Ser Lys Lys Asn Ser Val Ala Lys His 340 345 350 TAC ATA GAA TTT TGG AAA GCC ATT CCT CCA AAT GAA CCA TAT CGT GTG 1223 Tyr Ile Glu Phe Trp Lys Ala Ile Pro Pro Asn Glu Pro Tyr Arg Val 355 360 365 CTA CTG GGT GAA GTA AGG AAT AGG CTT TAC CAG ACT CGT GAA CGC TCA 1271 Leu Leu Gly Glu Val Arg Asn Arg Leu T yr Gln Thr Arg Glu Arg Ser 370 375 380 385 CGC CAT TTG CTA GCT CAC GGA TAC TCT GAC ATT CCA GAG GAA GAG ACT 1319 Arg His Leu Leu Ala His Gly Tyr Ser Asp Ile Pro Glu Glu Glu Thr 390 395 400 TTT ACC AAT GTT GAG GAG TTC TTG GAA CCC CTT GAA CTC TGT TAC AGA 1367 Phe Thr Asn Val Glu Glu Phe Leu Glu Pro Leu Glu Leu Cys Tyr Arg 405 410 415 TCA CTC TGT GCT TGT GGC GAT CGT GCA ATT GCC GAT GGA AGC CTT CTA 1415 Ser Leu Cys Ala Cys Gly Asp Arg Ala Ile Ala Asp Gly Ser Leu Leu 420 425 430 GAT TTC TTG AGA CAA GTC TCT ACT TTC GGA CTC TCC CTA GTG AGG CTT 1463 Asp Phe Leu Arg Gln Val Ser Thr Phe Gly Leu Ser Leu Val Arg Leu 435 440 445 GAC ATA AGG CAA GAG TCA GAC CGC CAC ACA GAC GTC TTA GAC GCC ATC 1511 Asp Ile Arg Gln Glu Ser Asp Arg His Thr Asp Val Leu Asp Ala Ile 450 455 460 465 ACC AAA CAT TTA GAA ATA GGC TCA TAC CAG GAA TGG TCG GAG GAA AAA 1559 Thr Lys His Leu Glu Ile Gly Ser Tyr Gln Glu Trp Ser Glu Glu Lys 470 475 480 CGG CAG CAA TGG CTT TTA TCT GAG TTG AGT GGC AAA CGG CCC CTA TTC 1607 Arg Gln Gln Tr p Leu Leu Ser Glu Leu Ser Gly Lys Arg Pro Leu Phe 485 490 495 GGC CCT GAT CTT CCC CAA ACC GAA GAA ATC AGA GAC GTG TTG GAG ACA 1655 Gly Pro Asp Leu Pro Gln Thr Glu Glu Ile Arg Asp Val Leu Glu Thr 500 505 510 TTC CAT GTC ATA GCA GAG CTT CCA CTA GAC AAC TTT GGA GCA TAC ATC 1703 Phe His Val Ile Ala Glu Leu Pro Leu Asp Asn Phe Gly Ala Tyr Ile 515 520 525 ATC TCA ATG GCA ACT GCA CCT TCT GAT GTG CTT GCA GTT GAG CTT CTG 1751 Ile Ser Met Ala Thr Ala Pro Ser Asp Val Leu Ala Val Glu Leu Leu 530 535 540 545 CAG CGC GAA TGC CAT GTC AAG CAT CCA CTA AGA GTT GTG CCA TTG TTT 1799 Gln Arg Glu Cys His Val Lys His Pro Leu Arg Val Val Pro Leu Phe 550 555 560 GAG AAG CTA GCT GAT CTA GAA GCA GCA CCG GCC GCG TTG GCG CGA TTG 1847 Glu Lys Leu Ala Asp Leu Glu Ala Ala Pro Ala Ala Leu Ala Arg Leu 565 570 575 TTC TCT GTA GAC TGG TAC AGA AAC AGG ATC AAT GGG AAG CAG GAA GTG 1895 Phe Ser Val Asp Trp Tyr Arg Asn Arg Ile Asn Gly Lys Gln Glu Val 580 585 590 ATG ATA GGC TAT TCT GAT TCT GGC AAA GAT GCT GGA AGG TTT TCA GCT 1943 Met Ile Gly Tyr Ser Asp Ser Gly Lys Asp Ala Gly Arg Phe Ser Ala 595 600 605 GCA TGG CAG CTG TAT AAG GCT CAG GAG GAG CTT ATA ATG GTG GCT AAG 1991 Ala Trp Gln Leu Tyr Lys Ala Gln Glu Glu Leu Ile Met Val Ala Lys 610 615 620 625 CAG TAT GGT GTG AAG CTG ACA ATG TTC CAT GGT CGT GGA GGG ACA GTT 2039 Gln Tyr Gly Val Lys Leu Thr Met Phe His Gly Arg Gly Gly Thr Val 630 635 640 GGA AGA GGA GGT GGT CCA ACT CAC CTT GCT ATT CTG TCT CAG CCT CCT 2087 Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile Leu Ser Gln Pro Pro 645 650 655 GAA ACC ATT CAT GGA TCG CTG CGC GTG ACT GTC CAA GGT GAA GTT ATT 2135 Glu Thr Ile His Gly Ser Leu Arg Val Thr Val Gln Gly Glu Val Ile 660 665 670 GAG CAA TCG TTT GGA GAG CAG CAC TTG TGC TTC AGA ACG CTT CAA AGG 2183 Glu Gln Ser Phe Gly Glu Gln His Leu Cys Phe Arg Thr Leu Gln Arg 675 680 685 TTC ACT GCA GCT ACT CTA GAA CAT GGA ATG CAC CCT CCA ATT TCT CCT 2231 Phe Thr Ala Ala Thr Leu Glu His Gly Met His Pro Pro Ile Ser Pro 690 695 700 705 AAA CCG GAA TGG AGG GCT TTG ATG GAT GAG A TG GCT GTC ATT GCC ACT 2279 Lys Pro Glu Trp Arg Ala Leu Met Asp Glu Met Ala Val Ile Ala Thr 710 715 720 GAG GAG TAC CGG TCC ATT GTG TTC AAA GAA CCA CGA TTT GTT GAG TAT 2327 Glu Glu Tyr Arg Ser Ile Val Phe Lys Glu Pro Arg Phe Val Glu Tyr 725 730 735 TTC CGC CTG GCC ACA CCT GAG TTG GAG TAC GGG AGG ATG AAC ATT GGA 2375 Phe Arg Leu Ala Thr Pro Glu Leu Glu Tyr Gly Arg Met Asn Ile Gly 740 745 750 AGT CGA CCA GCA AAG AGG AGG CCA AGT GGA GGT ATT GAG ACA CTC CGT 2423 Ser Arg Pro Ala Lys Arg Arg Pro Ser Gly Gly Ile Glu Thr Leu Arg 755 760 765 GCC ATA CCT TGG ATC TTT GCC TGG ACA CAA ACA AGG TTC CAT CTT CCA 2471 Ala Ile Pro Trp Ile Phe Ala Trp Thr Gln Thr Arg Phe His Leu Pro 770 775 780 785 GTG TGG CTA GGC TTT GGT GCA GCA TTC AAA CAT GTT ATT GAG AAG GAT 2519 Val Trp Leu Gly Phe Gly Ala Ala Phe Lys His Val Ile Glu Lys Asp 790 795 800 GTT AGG AAT ATT CAT GTG CTG CAG GAG ATG TAC AAT CAA TGG CCT TTC 2567 Val Arg Asn Ile His Val Leu Gln Glu Met Tyr Asn Gln Trp Pro Phe 805 810 815 TTT AGG GTC ACT ATT GA T TTA GTG GAA ATG GTG TTT GCC AAA GGA GAC 2615 Phe Arg Val Thr Ile Asp Leu Val Glu Met Val Phe Ala Lys Gly Asp 820 825 830 CCA GGG ATA GCT GCT CTT TAT GAT AGG CTC CTT GTT TCA GAG GAT CTG 2663 Pro Gly Ile Ala Ala Leu Tyr Asp Arg Leu Leu Val Ser Glu Asp Leu 835 840 845 TGG TCA TTT GGG GAG CAG TTG AGG ACC ATG TAC GAA GAA ACC AAG GAA 2711 Trp Ser Phe Gly Glu Gln Leu Arg Thr Met Tyr Glu Glu Thr Lys Glu 850 855 860 865 CTC CTC CTT CAG GTG GCT GGC CAT AGG GAT CTT CTT GAA GGA GAT CCA 2759 Leu Leu Leu Gln Val Ala Gly His Arg Asp Leu Leu Glu Gly Asp Pro 870 875 880 TAC TTG AAG CAA AGA CTG CGC TTG CGT GAT TCT TAT ATT ACT ACC CTA 2807 Tyr Leu Lys Gln Arg Leu Arg Leu Arg Asp Ser Tyr Ile Thr Thr Leu 885 890 895 AAC GTG TGC CAA GCC TAC ACG TTG AAA CGT ATC CGT GAT CCA AAC TAT 2855 Asn Val Cys Gln Ala Tyr Thr Leu Lys Arg Ile Arg Asp Pro Asn Tyr 900 905 910 AAT GTG AAG CTG CGC CCT CAC ATC TCC AAA GAG TCT ATA GAG ATA AGT 2903 Asn Val Lys Leu Arg Pro His Ile Ser Lys Glu Ser Ile Glu Ile Ser 915 920 925 AA A CCT GCT GAT GAA CTT ATA ACA CTT AAC CCA ACA AGT GAA TAT GCA 2951 Lys Pro Ala Asp Glu Leu Ile Thr Leu Asn Pro Thr Ser Glu Tyr Ala 930 935 940 945 CCT GGT TTG GAA GAC ACC CTC ATT CTC ACC ATG AAG GGT ATT GCT GCT 2999 Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys Gly Ile Ala Ala 950 955 960 GGC TTG CAA AAC ACT GGC TAAATCTGAG TTTTTGTCTT CTCTTTGGTTCATCTCCATACATCTCCATACATCTCCATACGACTTTTAT TTTCCAGAATT CATTATAAGA TATTACAGAG AGATAGCTGC 3167 CGCAAAATGA GACAATGCAA GTATGCAACT GATTCTTATG TTCC 3211

【0063】配列番号:3 配列の長さ:17 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GTTTTCCCAG TCACGAC 17SEQ ID NO: 3 Sequence Length: 17 Sequence Type: Nucleic Acid Number of Strands: Single Strand Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence GTTTTCCCAG TCACGAC 17

【0064】配列番号:4 配列の長さ:17 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CAGGAAACAG CTATGAC 17SEQ ID NO: 4 Sequence Length: 17 Sequence Type: Nucleic Acid Number of Strands: Single Strand Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence CAGGAAACAG CTATGAC 17

【0065】配列番号:5 配列の長さ:28 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CTTCTAGACT TCTCTCTCTC TCTGTCAT 28SEQ ID NO: 5 Sequence Length: 28 Sequence Type: Nucleic Acid Number of Strands: Single Strand Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence CTTCTAGACT TCTCTCTCTC TCTGTCAT 28

【0066】配列番号:6 配列の長さ:28 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GCTCTAGAAA CTTTTCAAAG TACCCCAA 28SEQ ID NO: 6 Sequence Length: 28 Sequence Type: Nucleic Acid Number of Strands: Single Strand Topology: Linear Sequence Type: Other Nucleic Acid Synthetic DNA Sequence GCTCTAGAAA CTTTTCAAAG TACCCCAA 28

【0067】[0067]

【図面の簡単な説明】[Brief description of drawings]

【図1】プラスミドpSLG/PEPIの構築を示す図。FIG. 1 shows the construction of plasmid pSLG / PEPI.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12N 15/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12N 15/60

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1に示す塩基配列を有するホス
ホエノールピルビン酸カルボキシラーゼ遺伝子のプロモ
ーター領域及び5’非翻訳領域。
1. A promoter region and 5'untranslated region of the phosphoenolpyruvate carboxylase gene having the nucleotide sequence shown in SEQ ID NO: 1.
【請求項2】 配列番号1に示す塩基配列のうち、塩基
番号1〜862の塩基配列を有するホスホエノールピル
ビン酸カルボキシラーゼ遺伝子のプロモーター領域。
2. A promoter region of the phosphoenolpyruvate carboxylase gene having the base sequence of base numbers 1 to 862 in the base sequence shown in SEQ ID NO: 1.
【請求項3】 配列番号1に示す塩基配列のうち、塩基
番号863〜1261の塩基配列を有するホスホエノー
ルピルビン酸カルボキシラーゼ遺伝子の第一イントロン
を含む5’非翻訳領域の全部又は一部。
3. The whole or a part of the 5'untranslated region containing the first intron of the phosphoenolpyruvate carboxylase gene having the nucleotide sequence of nucleotide numbers 863 to 1261 in the nucleotide sequence of SEQ ID NO: 1.
【請求項4】 植物で発現可能なプロモーターと、請求
項3記載の5’非翻訳領域の全部又は一部と、タンパク
をコードする構造遺伝子を連結して得られる配列を植物
細胞に導入することにより、前記構造遺伝子の発現を増
強させる方法。
4. Introducing into a plant cell a sequence obtained by linking a plant-expressible promoter, all or part of the 5'untranslated region according to claim 3 and a structural gene encoding a protein. The method of enhancing expression of the structural gene according to
【請求項5】 前記植物で発現可能なプロモーターが、
配列番号1に示す塩基配列のうち、塩基番号1〜862
の塩基配列を有するホスホエノールピルビン酸カルボキ
シラーゼ遺伝子のプロモーターであることを特徴とする
請求項4記載の遺伝子の発現を増強させる方法。
5. The plant-expressible promoter comprises:
Of the base sequence shown in SEQ ID NO: 1, base numbers 1 to 862
The method for enhancing expression of a gene according to claim 4, which is a promoter of the phosphoenolpyruvate carboxylase gene having the nucleotide sequence of.
【請求項6】 植物で発現可能なプロモーターと、請求
項3記載の5’非翻訳領域の全部又は一部と、タンパク
をコードする構造遺伝子とを連結して得られる配列を導
入した植物細胞。
6. A plant cell into which a sequence obtained by linking a plant-expressible promoter, all or part of the 5 ′ untranslated region according to claim 3 and a structural gene encoding a protein has been introduced.
JP4219481A 1992-08-18 1992-08-18 Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region Pending JPH0662870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4219481A JPH0662870A (en) 1992-08-18 1992-08-18 Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4219481A JPH0662870A (en) 1992-08-18 1992-08-18 Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region

Publications (1)

Publication Number Publication Date
JPH0662870A true JPH0662870A (en) 1994-03-08

Family

ID=16736117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4219481A Pending JPH0662870A (en) 1992-08-18 1992-08-18 Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5'-nontranslating region

Country Status (1)

Country Link
JP (1) JPH0662870A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076617A2 (en) 2003-02-27 2004-09-10 Basf Plant Science Gmbh Method for the production of polyunsaturated fatty acids
WO2004092398A2 (en) 2003-04-15 2004-10-28 Basf Plant Science Gmbh Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress
WO2005083053A2 (en) 2004-02-27 2005-09-09 Basf Plant Science Gmbh Method for producing unsaturated omega-3 fatty acids in transgenic organisms
WO2006069610A2 (en) 2004-07-02 2006-07-06 Metanomics Gmbh Process for the production of fine chemicals
WO2006100241A2 (en) 2005-03-22 2006-09-28 Basf Plant Science Gmbh Method for producing polyunsaturated c20 and c22 fatty acids with at least four double bonds in transgenic plants
WO2007042510A2 (en) 2005-10-13 2007-04-19 Basf Plant Science Gmbh Process for the production of arachidonic acid and/or eicosapentaenoic acid
WO2007087815A2 (en) 2004-12-17 2007-08-09 Metanomics Gmbh Process for the control of production of fine chemicals
WO2007137973A2 (en) 2006-05-31 2007-12-06 Metanomics Gmbh Manipulation of the nitrogen metabolism using ammonium transporter or glucose 6-phosphate deshydrogenases or farnesyl phosphate synthetase (fpp)
WO2007141189A2 (en) 2006-06-08 2007-12-13 Basf Plant Science Gmbh Plants having improved growth characteristics and method for making the same
EP2045327A2 (en) 2005-03-08 2009-04-08 BASF Plant Science GmbH Expression enhancing intron sequences
EP2053057A2 (en) 2004-09-24 2009-04-29 BASF Plant Science GmbH Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmantal stress
EP2090662A2 (en) 2006-04-05 2009-08-19 Metanomics GmbH Process for the production of a fine chemical
EP2145960A1 (en) 2005-08-12 2010-01-20 BASF Plant Science GmbH Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with in-creased tolerance to environmental stress
EP2166089A2 (en) 2003-08-01 2010-03-24 BASF Plant Science GmbH Method for production of polyunsaturated fatty acids in transgenic organisms
EP2177605A1 (en) 2006-10-06 2010-04-21 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic non-human organisms
DE112008001453T5 (en) 2007-05-22 2010-04-29 Basf Plant Science Gmbh Plant cells and plants with increased tolerance and / or resistance to environmental stress and increased biomass production CO
EP2189534A2 (en) 2006-08-02 2010-05-26 CropDesign N.V. Plants transformed with SYT-polypeptide having increased yield under abiotic stress and a method for making the same
EP2194140A2 (en) 2005-03-02 2010-06-09 Metanomics GmbH Process for the production of fine chemicals
DE112008003433T5 (en) 2007-12-21 2010-11-04 Basf Plant Science Gmbh Plants with increased yield (KO NUE)
EP2333078A2 (en) 2006-03-24 2011-06-15 BASF Plant Science GmbH Proteins associated with abiotic stress response and homologs
EP2365063A1 (en) 2003-03-31 2011-09-14 University Of Bristol New vegetable acyltransferases specifically for long-chain polyunsaturated fatty acids
EP2366781A1 (en) 2005-11-24 2011-09-21 BASF Plant Science GmbH Process for the production of delta5-unsaturated fatty acids in transgenic organisms
EP2377937A1 (en) 2006-05-30 2011-10-19 CropDesign N.V. Plants with reduced expression of a CLE-like gene having enhanced yield-related traits and a method for making the same
EP2380984A2 (en) 2006-02-16 2011-10-26 BASF Plant Science GmbH Nucleic acid
EP2431472A1 (en) 2005-07-06 2012-03-21 CropDesign N.V. Plant yield improvement by STE20-like gene expression
EP2434019A1 (en) 2003-08-01 2012-03-28 BASF Plant Science GmbH Process for the production of fine chemicals
EP2439280A1 (en) 2006-03-31 2012-04-11 BASF Plant Science GmbH Plants having enhanced yield-related traits and a method for making the same
EP2471930A1 (en) 2002-12-20 2012-07-04 Metanomics GmbH & Co. KGaA Method for producing aminoacids
EP2492345A2 (en) 2007-05-04 2012-08-29 BASF Plant Science GmbH Seed enhancement by combinations of pyruvate kinases
DE112009003708T5 (en) 2008-12-12 2012-09-13 Basf Plant Science Gmbh Desaturases and methods of producing polyunsaturated fatty acids in transgenic organisms
EP2573179A1 (en) 2005-09-15 2013-03-27 CropDesign N.V. Plants having increased yield and method for making the same
EP2573188A2 (en) 2005-03-02 2013-03-27 Metanomics GmbH Process for the production of fine chemicals
EP2623584A1 (en) 2004-02-27 2013-08-07 BASF Plant Science GmbH Method for producing polyunsatured fatty acids in transgenic plants
WO2015092709A1 (en) 2013-12-17 2015-06-25 Basf Plant Science Company Gmbh Methods for conversion of the substrate specificity of desaturases

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471930A1 (en) 2002-12-20 2012-07-04 Metanomics GmbH & Co. KGaA Method for producing aminoacids
WO2004076617A2 (en) 2003-02-27 2004-09-10 Basf Plant Science Gmbh Method for the production of polyunsaturated fatty acids
EP2365063A1 (en) 2003-03-31 2011-09-14 University Of Bristol New vegetable acyltransferases specifically for long-chain polyunsaturated fatty acids
EP2674496A2 (en) 2003-04-15 2013-12-18 BASF Plant Science GmbH Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress
WO2004092398A2 (en) 2003-04-15 2004-10-28 Basf Plant Science Gmbh Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmental stress
EP2166070A2 (en) 2003-08-01 2010-03-24 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic organisms
EP2166071A2 (en) 2003-08-01 2010-03-24 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic organisms
EP3395945A1 (en) 2003-08-01 2018-10-31 BASF Plant Science GmbH Method for producing polyunsatured fatty acids in transgenic organisms
EP2434019A1 (en) 2003-08-01 2012-03-28 BASF Plant Science GmbH Process for the production of fine chemicals
EP2169053A2 (en) 2003-08-01 2010-03-31 BASF Plant Science GmbH Method for production of polyunsaturated fatty acids in transgenic organisms
EP2166090A2 (en) 2003-08-01 2010-03-24 BASF Plant Science GmbH Method for production of polyunsaturated fatty acids in transgene organisms
EP2172536A2 (en) 2003-08-01 2010-04-07 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic organisms
EP2166069A2 (en) 2003-08-01 2010-03-24 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic organisms
EP2169052A2 (en) 2003-08-01 2010-03-31 BASF Plant Science GmbH Method for production of polyunsaturated fatty acids in transgenic organisms
EP2166089A2 (en) 2003-08-01 2010-03-24 BASF Plant Science GmbH Method for production of polyunsaturated fatty acids in transgenic organisms
WO2005083053A2 (en) 2004-02-27 2005-09-09 Basf Plant Science Gmbh Method for producing unsaturated omega-3 fatty acids in transgenic organisms
EP2623584A1 (en) 2004-02-27 2013-08-07 BASF Plant Science GmbH Method for producing polyunsatured fatty acids in transgenic plants
WO2006069610A2 (en) 2004-07-02 2006-07-06 Metanomics Gmbh Process for the production of fine chemicals
EP2080769A2 (en) 2004-07-02 2009-07-22 Metanomics GmbH Process for the production of fine chemicals
EP2053057A2 (en) 2004-09-24 2009-04-29 BASF Plant Science GmbH Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with increased tolerance to environmantal stress
WO2007087815A2 (en) 2004-12-17 2007-08-09 Metanomics Gmbh Process for the control of production of fine chemicals
EP2096177A2 (en) 2004-12-17 2009-09-02 Metanomics GmbH Process for the production of lutein
EP2199304A1 (en) 2004-12-17 2010-06-23 Metanomics GmbH Process for the control of production of fine chemicals
EP2194140A2 (en) 2005-03-02 2010-06-09 Metanomics GmbH Process for the production of fine chemicals
EP2573188A2 (en) 2005-03-02 2013-03-27 Metanomics GmbH Process for the production of fine chemicals
EP2166099A2 (en) 2005-03-08 2010-03-24 BASF Plant Science GmbH Expression enhancing intron sequences
EP2166100A2 (en) 2005-03-08 2010-03-24 BASF Plant Science GmbH Expression enhancing intron sequences
EP2166102A2 (en) 2005-03-08 2010-03-24 BASF Plant Science GmbH Expression enhancing intron sequences
EP2045327A2 (en) 2005-03-08 2009-04-08 BASF Plant Science GmbH Expression enhancing intron sequences
EP2166101A2 (en) 2005-03-08 2010-03-24 BASF Plant Science GmbH Expression enhancing intron sequences
WO2006100241A2 (en) 2005-03-22 2006-09-28 Basf Plant Science Gmbh Method for producing polyunsaturated c20 and c22 fatty acids with at least four double bonds in transgenic plants
EP2431472A1 (en) 2005-07-06 2012-03-21 CropDesign N.V. Plant yield improvement by STE20-like gene expression
EP2145960A1 (en) 2005-08-12 2010-01-20 BASF Plant Science GmbH Nucleic acid sequences encoding proteins associated with abiotic stress response and plant cells and plants with in-creased tolerance to environmental stress
EP2573179A1 (en) 2005-09-15 2013-03-27 CropDesign N.V. Plants having increased yield and method for making the same
EP2450434A2 (en) 2005-10-13 2012-05-09 BASF Plant Science GmbH Process for the production of arachidonic acid and/or eicosapentaenoic acid
WO2007042510A2 (en) 2005-10-13 2007-04-19 Basf Plant Science Gmbh Process for the production of arachidonic acid and/or eicosapentaenoic acid
EP2366781A1 (en) 2005-11-24 2011-09-21 BASF Plant Science GmbH Process for the production of delta5-unsaturated fatty acids in transgenic organisms
EP2388332A1 (en) 2005-11-24 2011-11-23 BASF Plant Science GmbH Process for the production of delta5-unsaturated fatty acids in transgenic organisms
EP2380984A2 (en) 2006-02-16 2011-10-26 BASF Plant Science GmbH Nucleic acid
EP2333078A2 (en) 2006-03-24 2011-06-15 BASF Plant Science GmbH Proteins associated with abiotic stress response and homologs
EP2441844A1 (en) 2006-03-31 2012-04-18 BASF Plant Science GmbH Plants having enhanced yield-related traits and a method for making the same
EP2439280A1 (en) 2006-03-31 2012-04-11 BASF Plant Science GmbH Plants having enhanced yield-related traits and a method for making the same
EP2090662A2 (en) 2006-04-05 2009-08-19 Metanomics GmbH Process for the production of a fine chemical
EP2439277A1 (en) 2006-05-30 2012-04-11 CropDesign N.V. Plants overexpressing SYR polypeptide having enhanced yield-related traits and a method for making the same
EP2377937A1 (en) 2006-05-30 2011-10-19 CropDesign N.V. Plants with reduced expression of a CLE-like gene having enhanced yield-related traits and a method for making the same
WO2007137973A2 (en) 2006-05-31 2007-12-06 Metanomics Gmbh Manipulation of the nitrogen metabolism using ammonium transporter or glucose 6-phosphate deshydrogenases or farnesyl phosphate synthetase (fpp)
EP2497778A2 (en) 2006-05-31 2012-09-12 Metanomics GmbH Manipulation of the nitrogen metabolism
WO2007141189A2 (en) 2006-06-08 2007-12-13 Basf Plant Science Gmbh Plants having improved growth characteristics and method for making the same
EP2436761A1 (en) 2006-06-08 2012-04-04 BASF Plant Science GmbH Plants having improved growth characteristics and method for making the same
EP2436760A1 (en) 2006-06-08 2012-04-04 BASF Plant Science GmbH Plants having improved growth characteristics and method for making the same
EP2199394A1 (en) 2006-08-02 2010-06-23 CropDesign N.V. Plants transformed with SYT-polypeptide having increased yield under abiotic stress and a method for making the same
EP2199395A1 (en) 2006-08-02 2010-06-23 CropDesign N.V. Plants transformed with SYT-polypeptide having increased yield under abiotic stress and a method for making the same
EP2199396A1 (en) 2006-08-02 2010-06-23 CropDesign N.V. Plants transformed with SYT-polypeptide having increased yield under abiotic stress and a method for making the same
EP2189533A1 (en) 2006-08-02 2010-05-26 CropDesign N.V. Plants having improved characteristics and a method for making the same
EP2189534A2 (en) 2006-08-02 2010-05-26 CropDesign N.V. Plants transformed with SYT-polypeptide having increased yield under abiotic stress and a method for making the same
EP2543732A1 (en) 2006-08-02 2013-01-09 CropDesign N.V. Plants transformed with a nucleic acid encoding chloroplastic fructose-1,6-bisphosphatase having increased yield, and a method for making the same
EP2182056A1 (en) 2006-10-06 2010-05-05 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic non-human organisms
EP2177605A1 (en) 2006-10-06 2010-04-21 BASF Plant Science GmbH Method for producing polyunsaturated fatty acids in transgenic non-human organisms
EP2492346A2 (en) 2007-05-04 2012-08-29 BASF Plant Science GmbH Seed enhancement by combinations of pyruvate kinases
EP2492345A2 (en) 2007-05-04 2012-08-29 BASF Plant Science GmbH Seed enhancement by combinations of pyruvate kinases
DE112008001453T5 (en) 2007-05-22 2010-04-29 Basf Plant Science Gmbh Plant cells and plants with increased tolerance and / or resistance to environmental stress and increased biomass production CO
DE112008003433T5 (en) 2007-12-21 2010-11-04 Basf Plant Science Gmbh Plants with increased yield (KO NUE)
DE112009003708T5 (en) 2008-12-12 2012-09-13 Basf Plant Science Gmbh Desaturases and methods of producing polyunsaturated fatty acids in transgenic organisms
EP2669380A1 (en) 2008-12-12 2013-12-04 BASF Plant Science GmbH Desaturases and process for the production of polyunsaturated fatty acids in transgenic organisms
WO2015092709A1 (en) 2013-12-17 2015-06-25 Basf Plant Science Company Gmbh Methods for conversion of the substrate specificity of desaturases

Similar Documents

Publication Publication Date Title
JPH0662870A (en) Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5&#39;-nontranslating region
AU725727B2 (en) Cold-inducible promoter sequence
JP4021615B2 (en) Genetic control of plant growth and development
JP3149951B2 (en) Method for reducing glutelin content in rice seeds
JPH0975093A (en) Cotton fiber specific gene
CN112048493B (en) Method for enhancing Cas9 and derivative protein-mediated gene manipulation system thereof and application
JPH0279979A (en) Self-incompatible gene
EP0455668B1 (en) Male flower specific gene sequences
CN106967720B (en) Cloning and application of stress-induced promoter SlWRKY31P
AU745131B2 (en) Novel DNA fragments ordering gene expression predominant in flower organ
CN109206494B (en) Application of ZmRPH1 gene in regulation and control of plant height and lodging resistance of plant
US8329990B2 (en) Crop grain filling gene GIF1 and the applications thereof
JP3495749B2 (en) Soluble rice starch synthase gene and its use
CN102675437B (en) Method for adjusting size of plant organs and inside asymmetry of floral organs
KR100455621B1 (en) Method for lowering pollen fertility by using pollen-specific zinc finger transcriptional factor genes
JPH10248570A (en) Promoter for metallothionein gene
CN109182316B (en) Rice yield-related SAP30C functional protein, encoding gene, recombinant vector and application
JP2001057886A (en) New dna fragment enhancing expression amount of gene
CA2301257A1 (en) The ire gene regulating the root-hair growth in arabidopsis
JP2681253B2 (en) Peroxidase transcription regulatory gene and method of using the same
RU2243262C2 (en) Raffinose synthase gene, probe and primer, method for detecting and method for amplification of nucleic acid comprising raffinose synthase gene, method for preparing raffinose synthase gene, expressing vector, raffinose synthase
CN113584029A (en) Promoter of rice root-specific expression gene OsHyPRP06/R3L1 and application thereof
NZ526070A (en) Novel nucleic acid molecules and uses therefor
CN114717243A (en) GRMZM2G063882 gene, encoding protein, biological material and application thereof in plant drought resistance
AU779707B2 (en) Novel nucleic acid molecules and uses therefor