JPH066161Y2 - Anti-vibration device for differential transformer rod - Google Patents

Anti-vibration device for differential transformer rod

Info

Publication number
JPH066161Y2
JPH066161Y2 JP9399688U JP9399688U JPH066161Y2 JP H066161 Y2 JPH066161 Y2 JP H066161Y2 JP 9399688 U JP9399688 U JP 9399688U JP 9399688 U JP9399688 U JP 9399688U JP H066161 Y2 JPH066161 Y2 JP H066161Y2
Authority
JP
Japan
Prior art keywords
differential transformer
rod
rubber bush
connecting cylinder
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9399688U
Other languages
Japanese (ja)
Other versions
JPH0218602U (en
Inventor
真男 武井
千里 寺岡
晃 村尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9399688U priority Critical patent/JPH066161Y2/en
Publication of JPH0218602U publication Critical patent/JPH0218602U/ja
Application granted granted Critical
Publication of JPH066161Y2 publication Critical patent/JPH066161Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、蒸気タービンの電気油圧式ガバナの差動トラ
ンスに適用されて、優れた防振効果がえられる防振ゴム
ブッシュの形状に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a shape of an anti-vibration rubber bush which is applied to a differential transformer of an electro-hydraulic governor of a steam turbine and which has an excellent anti-vibration effect.

〔従来の技術〕 第9図は、差動トランス(4)の原理を説明する構成図、
第10図は同じく測定回路図である。円筒形の一次コイル
(1)と2つの二次コイル(2)の中に円柱状の鉄心(3)が嵌
挿されている。鉄心(3)が中央にあれば一次コイルの励
磁によって2つの二次コイル(2)には同じ電圧が誘起さ
れ、それら2つの二次コイルが差動的に接続されている
と出力電圧は零になる。鉄心(3)が動くと二次コイル(2)
の電圧バランスがくずれて差が出力電圧になる。このよ
うにして変位を電気的に求めることができる。
[Prior Art] FIG. 9 is a block diagram for explaining the principle of a differential transformer (4),
FIG. 10 is the same measurement circuit diagram. Cylindrical primary coil
A column-shaped iron core (3) is fitted in (1) and two secondary coils (2). If the iron core (3) is in the center, the same voltage is induced in the two secondary coils (2) by the excitation of the primary coil, and if the two secondary coils are differentially connected, the output voltage will be zero. become. Secondary coil (2) when iron core (3) moves
The voltage balance of is broken and the difference becomes the output voltage. In this way, the displacement can be obtained electrically.

第11図ないし第14図は上記差動トランス(4)を蒸気ター
ビンの電気油圧式ガバナに適用した従来の例を示す組立
図であって、第11図は全体縦断面図、第12図は第11図の
XII−XII鎖線による横断面図、第13図は差動トランス連
結筒下部の拡大縦断面図、第14図は第13図のXIV−XIV鎖
線による横断面図である。
11 to 14 are assembly diagrams showing a conventional example in which the differential transformer (4) is applied to an electrohydraulic governor of a steam turbine, FIG. 11 is an overall longitudinal sectional view, and FIG. 12 is Of Fig. 11
FIG. 13 is an enlarged vertical cross-sectional view of the lower portion of the differential transformer connecting cylinder, and FIG. 14 is a cross-sectional view taken along the XIV-XIV chain line of FIG.

火力タービンの主蒸気止め弁、蒸気加減弁、原子力ター
ビンの蒸気加減弁の開閉操作は、弁棒に連動したブラケ
ット(5)を上下方向に移動させ、クランプ(6)によって下
端が把持された鉄心(3)を移動させる。この鉄心(3)の上
端は一次および二次コイルより成る差動トランス(4)内
に挿入され、その移動量は二次側電圧を変化させる。
To open and close the main steam stop valve of the thermal turbine, the steam control valve of the thermal turbine, and the steam control valve of the nuclear turbine, the bracket (5) linked to the valve rod is moved up and down, and the lower end is gripped by the clamp (6). Move (3). The upper end of the iron core (3) is inserted into a differential transformer (4) consisting of primary and secondary coils, and the amount of movement changes the secondary side voltage.

差動トランス(4)は差動トランス連結筒(7)内に収納され
ている。同連結筒(7)は、保持具(8),(9)を介して、第1
2図に円筒の一部のみが示されたパワーシリンダ(10)に
固定されている。差動トランス(4)は、上下一対のアダ
プタ(11)を介して連結筒(7)によって保持されている。
そのアダプタ(11)は上下一対のC形止め輪(12)で上下方
向に固定されている。
The differential transformer (4) is housed in the differential transformer connecting cylinder (7). The connecting tube (7) is connected to the first via the holders (8) and (9).
It is fixed to the power cylinder (10), only a part of which is shown in Fig. 2. The differential transformer (4) is held by the connecting cylinder (7) via a pair of upper and lower adapters (11).
The adapter (11) is vertically fixed by a pair of upper and lower C-shaped retaining rings (12).

差動トランス連結筒(7)の下部には、鉄心(3)との間に微
小すきまを設けた円筒形のゴムブッシュ(13)が嵌挿さ
れ、その外周面を連結筒(7)の内周面に当接させること
によって、蒸気タービン車室と一体に形成されたパワー
シリンダ(10)から鉄心に伝達される振動が、抑止されて
いる。なお、ゴムブッシュ(13)は一対の座金(14)とC形
止め輪(12)で上下方向に固定されている。
A cylindrical rubber bush (13) with a small clearance between it and the iron core (3) is fitted in the lower part of the differential transformer connecting cylinder (7), and the outer peripheral surface of the rubber bush (13) is inside the connecting cylinder (7). By abutting against the peripheral surface, vibration transmitted from the power cylinder (10) formed integrally with the steam turbine casing to the iron core is suppressed. The rubber bush (13) is vertically fixed by a pair of washers (14) and a C-shaped retaining ring (12).

二次コイルからの出力信号は、シリコンラバーガラスチ
ューブ(17)内のリード線(18)によって、図に示されてい
ない電気ガバナにフィードバックされ、蒸気タービンの
速度及び負荷制御が行なわれる。上記シリコンラバーガ
ラスチューブ(17)はばね(16)に収納され、同ばね(16)は
アダプタ(15)に保持されている。
The output signal from the secondary coil is fed back to the electric governor (not shown) by the lead wire (18) in the silicon rubber glass tube (17) to control the speed and load of the steam turbine. The silicone rubber glass tube (17) is housed in the spring (16), and the spring (16) is held by the adapter (15).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

前記従来の差動トランス鉄心の防振装置において、防振
ゴムブッシュ(13)は雰囲気の温度が高いので、一般に耐
熱性、耐摩耗性が優れたふっ素ゴムが使われる。したが
って、鉄心(以下ロッドと云う)(3)や差動トランス連
結筒(7)に比べて、線膨脹係数が格段に大きい。このた
め、温度が上るとゴムブッシュが膨脹し、その外周が連
結筒(7)に当接しているため内周側へ弾性変形する。そ
うするとロッド(3)とのすきまが減少し、甚だしいとき
には、密着してロッドの移動を拘束するに至る。
In the conventional vibration isolator for the differential transformer core, since the vibration isolating rubber bush (13) has a high ambient temperature, a fluororubber excellent in heat resistance and wear resistance is generally used. Therefore, the coefficient of linear expansion is significantly larger than that of the iron core (hereinafter referred to as a rod) (3) and the differential transformer connecting cylinder (7). For this reason, when the temperature rises, the rubber bush expands, and its outer circumference is in contact with the connecting cylinder (7), so that it elastically deforms toward the inner circumference side. Then, the clearance between the rod (3) and the rod (3) is reduced, and when it is extremely large, the rod (3) comes into close contact and restrains the movement of the rod.

ゴムブッシュがロッドを拘束した状態のまま弁を開く
と、弁棒に連動したブラケット(5)が上昇し、ロッド(3)
はクランプ(6)部とゴムブッシュ(13)部間で圧縮され
る。そして遂には、直径約7mmに過ぎないロッド(3)が
座屈によって彎曲し、蒸気タービンのガバナ制御ができ
なくなる。
When the valve is opened while the rubber bush holds the rod, the bracket (5) linked to the valve rod rises and the rod (3)
Is compressed between the clamp (6) and the rubber bush (13). Finally, the rod (3) having a diameter of only about 7 mm is bent due to buckling, and the governor control of the steam turbine becomes impossible.

この現象を防止するためにゴムブッシュと鉄心のすきま
を予め大きくすると、雰囲気温度が低い起動時および低
負荷時には、ゴムブッシュは防振効果を失い、差動トラ
ンスがロッドを含めて振動により損傷する。
If the clearance between the rubber bush and the iron core is increased in advance to prevent this phenomenon, the rubber bush loses its anti-vibration effect when the ambient temperature is low and the load is low, and the differential transformer including the rod is damaged by vibration. .

上記現象は、蒸気タービンの大容量化に伴って弁リフト
が長くなり、それと共に鉄心の長さが長大化したこと
と、火力タービンのD.S.S、およびW.S.S.運
用により、差動トランスの雰囲気温度変化の大きさと頻
度が増したこととにより、解決すべき課題となってい
る。
The above phenomenon is due to the fact that the valve lift becomes longer as the capacity of the steam turbine becomes larger, and the length of the iron core becomes longer accordingly. S. S, and W. S. S. Due to the increase in the frequency and the frequency of the ambient temperature change of the differential transformer due to the operation, it is a problem to be solved.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、前記従来の課題を解決するために、差動トラ
ンス連結筒と、同連結筒内の上部に配された差動トラン
スと、同連結筒内の下部に配されたゴムブッシュと、同
ゴムブッシュに設けられた中心穴を摺動自在に貫通して
上端が上記差動トランス内に挿入され下端が弁棒に連結
されたロッドとを備え、上記連結筒の内周面に当接する
上記ゴムブッシュの外側面が円周上複数箇所切除されて
いることを特徴とする差動トランスロッドの防振装置を
提案するものである。
In order to solve the conventional problems, the present invention provides a differential transformer connecting cylinder, a differential transformer arranged in an upper part of the connecting cylinder, and a rubber bush arranged in a lower part of the connecting cylinder. And a rod having an upper end inserted into the differential transformer and a lower end connected to a valve rod slidably passing through a center hole provided in the rubber bush, and abutting on an inner peripheral surface of the connecting cylinder. The present invention proposes a vibration isolator for a differential transformer rod, wherein the outer surface of the rubber bush is cut off at a plurality of locations on the circumference.

〔作用〕[Action]

ゴムブッシュが膨脹しても、ゴムブッシュ外側面の切除
箇所が熱膨脹を吸収し、ゴムブッシュとロッドとの隙間
は運転条件に関係なく一定に保たれる。そして、外側面
の切除されていない複数個の局部が連結管に接触して軸
心を保持するため、ゴムブッシュ内面とロッド外面との
円周方向すきまは一定となる。
Even if the rubber bush expands, the cut portion on the outer surface of the rubber bush absorbs thermal expansion, and the gap between the rubber bush and the rod is kept constant regardless of operating conditions. Then, since a plurality of uncut local portions on the outer side surface contact the connecting pipe to hold the axial center, the circumferential clearance between the rubber bush inner surface and the rod outer surface becomes constant.

〔実施例〕〔Example〕

第1図は、本考案の一実施例に用いられるゴムブッシュ
の形状を示す横断面図、第2図は第1図のII−II鎖線に
よる縦断面図である。本実施例においては、ゴムブッシ
ュ(13a)の外側面は正六角形断面に形成されている。す
なわち、ゴムブッシュ(13a)の外側面は円周上6箇所切
除されている。そして差動トランス連結筒(7)の内周面
とは上記正六角形の頂点の円弧部(21a)で接触し、ゴム
ブッシュの熱膨脹は隣接する円弧部(21a)間の空隙(切
除部)(22a)によって吸収される。したがって、ゴムブ
ッシュ(13a)の中心穴(23a)とロッド(3)との間隙は、運
転条件に関係なく、ほぼ一定に保たれる。
FIG. 1 is a transverse sectional view showing the shape of a rubber bush used in an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view taken along the II-II chain line in FIG. In this embodiment, the outer surface of the rubber bush (13a) has a regular hexagonal cross section. That is, the outer surface of the rubber bush (13a) is cut off at six places on the circumference. And the inner peripheral surface of the differential transformer connecting cylinder (7) is in contact with the arc portion (21a) at the apex of the regular hexagon, and the thermal expansion of the rubber bush is caused by the gap (cut portion) between the adjacent arc portions (21a) ( Absorbed by 22a). Therefore, the gap between the center hole (23a) of the rubber bush (13a) and the rod (3) is kept substantially constant regardless of the operating conditions.

次に第3図は本考案の第2の実施例に用いられるゴムブ
ッシュの形状を示す横断面図、第4図は第3図のIV−IV
鎖線による縦断面図である。この実施例では、ゴムブッ
シュ(13b)の外側面は4個の部分円筒面(21b)で形成され
ている。そして差動トランス連結筒(7)の内周面とはそ
れら部分円筒面で接触し、ゴムブッシュの熱膨脹は隣接
する部分円筒面間の切込み部(切除部)(22b)によって
吸収される。したがってこの実施例でも、ゴムブッシュ
(13b)の中心穴(23b)とロッド(3)との間隙は、運転条件
に関係なくほぼ一定に保たれる。
Next, FIG. 3 is a cross-sectional view showing the shape of the rubber bush used in the second embodiment of the present invention, and FIG. 4 is IV-IV of FIG.
It is a longitudinal cross-sectional view by a chain line. In this embodiment, the outer surface of the rubber bush (13b) is formed by four partial cylindrical surfaces (21b). The partial cylindrical surfaces of the differential transformer connecting cylinder (7) are in contact with each other, and the thermal expansion of the rubber bush is absorbed by the notch (cutout) (22b) between the adjacent partial cylindrical surfaces. Therefore, also in this embodiment, the rubber bush
The gap between the center hole (23b) of (13b) and the rod (3) is kept substantially constant regardless of the operating conditions.

さらに第5図は、本考案の第3の実施例における差動ト
ランス連結筒下部の縦断面図、第6図および第7図はそ
れぞれ第5図のVI−VI鎖線およびVII−VII鎖線による横
断面図である。図中(13c)は一対の防振ゴムブッシュで
あって、断面が正六角形状に形成され、その正六角形頂
点(21c)は円弧状に丸められていて、前記第1の実施例
と同様、作動トランス連結筒(7)の内周面と局部的に接
触する。そして、これらゴムブッシュ(13c)の中心に穿
たれた中心穴(23c)にロッド(3)が摺動自在に挿入されて
いる。
Further, FIG. 5 is a vertical cross-sectional view of the lower portion of the differential transformer connecting cylinder in the third embodiment of the present invention, and FIGS. 6 and 7 are cross-sections taken along chain line VI-VI and chain line VII-VII of FIG. 5, respectively. It is a side view. In the figure (13c) is a pair of anti-vibration rubber bushes, the cross-section is formed into a regular hexagonal shape, the regular hexagonal apex (21c) is rounded in an arc shape, similar to the first embodiment, It locally contacts the inner peripheral surface of the operating transformer connecting cylinder (7). The rod (3) is slidably inserted into the center hole (23c) formed at the center of these rubber bushes (13c).

上記一対の防振ゴムブッシュ(13c)は、差動トランス連
結筒(7)に嵌合された金属製のスペーサ(19)を挾持して
いる。振動によって上記スペーサ(19)と差動トランス連
結筒(7)とが高サイクルで断続的に接触するのを防ぐた
め、スペーサ(19)の外周には2個の溝が切られ、それら
溝内にそれぞれOリング(20)がはめ込まれている。な
お、スペーサ外面と連結筒内面との振動による衝突エネ
ルギを吸収させるため、スペーサの材質は鉛、銅または
それらの合金材等の軟質材が望ましい。
The pair of anti-vibration rubber bushes (13c) holds a metal spacer (19) fitted in the differential transformer connecting tube (7). In order to prevent the spacer (19) and the differential transformer connecting cylinder (7) from coming into contact with each other intermittently in a high cycle due to vibration, two grooves are cut on the outer periphery of the spacer (19). Each has an O-ring (20) fitted into it. The spacer is preferably made of a soft material such as lead, copper, or an alloy material thereof in order to absorb collision energy due to vibration between the outer surface of the spacer and the inner surface of the connecting cylinder.

本実施例の場合も、ゴムブッシュ(13c)の熱膨脹は切除
部(22c)によって吸収され、中心穴(23c)とロッド(3)と
の間隙が一定に保たれるが、前記第1および第2の実施
例と比較すると、ロッド拘束力が小さい点で優り、防振
効果において劣る。したがって、比較的振動が小さく比
較的雰囲気温度上昇が大きい場合にはこの第3実施例
を、その逆の場合は前記第1または第2の実施例を適用
するとよい。
Also in the case of this embodiment, the thermal expansion of the rubber bush (13c) is absorbed by the cutout portion (22c), and the gap between the central hole (23c) and the rod (3) is kept constant. Compared to the second example, the rod restraining force is small and the vibration damping effect is poor. Therefore, when the vibration is relatively small and the ambient temperature rise is relatively large, the third embodiment may be applied, and in the opposite case, the first or second embodiment may be applied.

つぎに雰囲気温度と拘束力の関係を第8図に示す。これ
は実験結果によるもので、実線の曲線は従来の防振装置
の場合、破線の曲線は本考案になる防振装置の場合(第
3の実施例)をそれぞれ示す。また点Aは座屈荷重とな
る拘束力である。本考案の防振装置においては、雰囲気
温度が上昇してもロッド(3)が座屈によって曲るおそれ
が全くないことが、この図から分る。
Next, FIG. 8 shows the relationship between the ambient temperature and the restraining force. This is based on the experimental results. The solid curve shows the case of the conventional vibration isolator, and the broken curve shows the case of the vibration isolator according to the present invention (third embodiment). Point A is a restraining force that causes a buckling load. It can be seen from this figure that in the vibration damping device of the present invention, there is no possibility that the rod (3) will bend due to buckling even if the ambient temperature rises.

〔考案の効果〕[Effect of device]

本考案によれば、次の効果が奏せられる。 According to the present invention, the following effects can be obtained.

運転状態及び急激な負荷変化にかかわらず差動トラン
スのロッドは円滑に作動することができる。
The rod of the differential transformer can operate smoothly regardless of operating conditions and sudden load changes.

振動によるロッドの損傷が防止される。Damage to the rod due to vibration is prevented.

したがって、火力及び原子力タービンの速度及び負荷
が円滑に制御され、プラントの信頼性が向上する。
Therefore, the speed and load of the thermal power and the nuclear turbine are smoothly controlled, and the reliability of the plant is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例に用いられるゴムブッシュの
形状を示す横断面図、第2図は第1図のII−II鎖線によ
る縦断面図、第3図は本考案の第2の実施例に用いられ
るゴムブッシュの形状を示す横断面図、第4図は第3図
のIV−IV鎖線による縦断面図、第5図は本考案の第3の
実施例における差動トランス連結筒下部の縦断面図、第
6図および第7図はそれぞれ第5図のVI−VI鎖線および
VII−VII鎖線による横断面図、第8図は本考案の効果を
説明する図である。第9図は差動トランスの原理を説明
する構成図、第10図は同じく測定回路図である。第1
1図ないし第14図は差動トランスを蒸気タービンの電
気油圧式ガバナに適用した従来の例を示す組立図であっ
て、第11図は全体縦断面図、第12図は第11図のXI
I−XII鎖線による横断面図、第13図は差動トランス連
結筒下部の拡大縦断面図、第14図は第13図のXIV−X
IV鎖線による横断面図である。 (1)……一次コイル、(2)……二次コイル (3)……鉄心(ロッド)、(4)……差動トランス (5)……ブラケット、(6)……クランプ (7)……差動トランス連結筒、(8),(9)……保持具 (10)……パワーシリンダ、(11)……アダプタ (12)……C形止め輪 (13),(13a),(13b),(13c)……(防振)ゴムブッシュ (14)……座金、(15)……アダプタ (16)……ばね、(17)……シリコンラバーガラスチュブ (18)……リード線、(19)……スペーサ (20)……Oリング、(22a),(22b),(22c)……空隙(切
除部) (23a),(23b),(23c)……中心穴
FIG. 1 is a transverse sectional view showing the shape of a rubber bush used in an embodiment of the present invention, FIG. 2 is a vertical sectional view taken along the II-II chain line of FIG. 1, and FIG. 3 is a second sectional view of the present invention. FIG. 4 is a horizontal sectional view showing the shape of a rubber bush used in the embodiment, FIG. 4 is a vertical sectional view taken along the IV-IV chain line in FIG. 3, and FIG. 5 is a differential transformer connecting cylinder in the third embodiment of the present invention. The lower longitudinal sectional views, FIG. 6 and FIG. 7 are respectively VI-VI chain line of FIG.
FIG. 8 is a cross-sectional view taken along the chain line VII-VII, and FIG. 8 is a view explaining the effect of the present invention. FIG. 9 is a configuration diagram for explaining the principle of the differential transformer, and FIG. 10 is a measurement circuit diagram of the same. First
1 to 14 are assembly drawings showing a conventional example in which a differential transformer is applied to an electrohydraulic governor of a steam turbine. FIG. 11 is an overall longitudinal sectional view, and FIG. 12 is XI of FIG.
A cross-sectional view taken along the chain line I-XII, FIG. 13 is an enlarged vertical cross-sectional view of the lower portion of the differential transformer connecting cylinder, and FIG. 14 is XIV-X in FIG.
It is a cross-sectional view taken along the IV chain line. (1) …… Primary coil, (2) …… Secondary coil (3) …… Iron core (rod), (4) …… Differential transformer (5) …… Bracket, (6) …… Clamp (7) ...... Differential transformer connecting tube, (8), (9) …… Holder (10) …… Power cylinder, (11) …… Adapter (12) …… C type retaining ring (13), (13a), (13b), (13c) …… (Vibration proof) rubber bush (14) …… washer, (15) …… adapter (16) …… spring, (17) …… silicon rubber glass tube (18) …… lead Wire, (19) …… Spacer (20) …… O-ring, (22a), (22b), (22c) …… Gap (cutout) (23a), (23b), (23c) …… Center hole

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】差動トランス連結筒と、同連結筒内の上部
に配された差動トランスと、同連結筒内の下部に配され
たゴムブッシュと、同ゴムブッシュに設けられた中心穴
を摺動自在に貫通して上端が上記差動トランス内に挿入
され下端が弁棒に連結されたロッドとを備え、上記連結
筒の内周面に当接する上記ゴムブッシュの外側面が円周
上複数箇所切除されていることを特徴とする差動トラン
スロッドの防振装置。
1. A differential transformer connecting cylinder, a differential transformer arranged in an upper part of the connecting cylinder, a rubber bush arranged in a lower part of the connecting cylinder, and a central hole provided in the rubber bush. A rod having an upper end inserted into the differential transformer and a lower end connected to a valve rod, the outer surface of the rubber bush contacting the inner peripheral surface of the connecting cylinder being a circumferential Anti-vibration device for differential transformer rod, characterized in that multiple upper parts are cut off.
JP9399688U 1988-07-18 1988-07-18 Anti-vibration device for differential transformer rod Expired - Lifetime JPH066161Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9399688U JPH066161Y2 (en) 1988-07-18 1988-07-18 Anti-vibration device for differential transformer rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9399688U JPH066161Y2 (en) 1988-07-18 1988-07-18 Anti-vibration device for differential transformer rod

Publications (2)

Publication Number Publication Date
JPH0218602U JPH0218602U (en) 1990-02-07
JPH066161Y2 true JPH066161Y2 (en) 1994-02-16

Family

ID=31318486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9399688U Expired - Lifetime JPH066161Y2 (en) 1988-07-18 1988-07-18 Anti-vibration device for differential transformer rod

Country Status (1)

Country Link
JP (1) JPH066161Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088413B2 (en) * 2013-12-11 2017-03-01 アズビル株式会社 Differential transformer type angle sensor

Also Published As

Publication number Publication date
JPH0218602U (en) 1990-02-07

Similar Documents

Publication Publication Date Title
EP0312601B1 (en) Eddy current brake
EP0225089A1 (en) Wear resistant zirconium base alloy rod support arrangement for water reactors
US6526672B1 (en) Head for the linear dimension checking of mechanical pieces
JPH066161Y2 (en) Anti-vibration device for differential transformer rod
CN108488478B (en) A kind of continous way valve position indicator
JP5341313B2 (en) Method for reducing holding load applied to fuel assembly of nuclear reactor, and fuel assembly
Sun et al. Micro robot in small pipe with electromagnetic actuator
US3175132A (en) Magnetostrictive motoring device
JP4082747B2 (en) Oxide superconducting current lead and superconducting magnet device
JP3958821B2 (en) Heat pipe fixing structure
JPH0328610B2 (en)
CN216353988U (en) Direct current contactor
CN216851787U (en) Giant magnetostrictive actuator for vibration isolation system of precision machining platform
US3335244A (en) Cryogenic pressure switch
US3000214A (en) Electromagnetic thermometer
JPS61144590A (en) Bimetal part
Enokizono et al. Dynamic finite element analysis of a magnetic damper system
CN118143730A (en) Main shaft vibration reduction structure based on ferromagnetic shape memory alloy
JPH0315871Y2 (en)
JPH0294501A (en) Superconducting magnet device
CN118156919A (en) Self-adaptive automobile wire harness
CN118167757A (en) Axial eddy current damping energy harvester based on positive piezoelectric effect
JPS61149703A (en) Preventive structure of vibration of heat transfer tube
CN115901077A (en) Intelligent vibration isolation anemometer
CN110379653A (en) A kind of starter and its electromagnetic switch