JPH0661590A - Method of laser wavelength conversion and separation of isotope using this - Google Patents

Method of laser wavelength conversion and separation of isotope using this

Info

Publication number
JPH0661590A
JPH0661590A JP6360291A JP6360291A JPH0661590A JP H0661590 A JPH0661590 A JP H0661590A JP 6360291 A JP6360291 A JP 6360291A JP 6360291 A JP6360291 A JP 6360291A JP H0661590 A JPH0661590 A JP H0661590A
Authority
JP
Japan
Prior art keywords
raman
laser
light
carbon dioxide
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6360291A
Other languages
Japanese (ja)
Other versions
JP2595389B2 (en
Inventor
Hideo Tashiro
英夫 田代
Katsumi Midorikawa
克美 緑川
Toshiyuki Uchida
理之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP6360291A priority Critical patent/JP2595389B2/en
Publication of JPH0661590A publication Critical patent/JPH0661590A/en
Application granted granted Critical
Publication of JP2595389B2 publication Critical patent/JP2595389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To realize a Raman laser having he average output by introducing gas carbonate laser light into a Raman cell so as to generate secondary inductive Raman dispersion. CONSTITUTION:Laser light is synchronized with a primary stokes light length. Laser light outgoing therefrom is superposed on the gas carbonate laser light and introduced into a Raman cell. A Raman cell part 5 has a multiplex reflection optical system and a gas cooling mechanism. Heavy hydrogen gas or pure orthoheavy hydrogen gas is used as a Raman medium. The multiplex reflection optical system makes two convex mirrors to face each other for making a laser beam to perform multipath reflection therebetween. Thereby, an effective Raman medium length is increased. Further, at every one time reflection, a laser beam is subjected to focusing and also thereby Raman conversion is promoted. Then, a laser pulse transmitted through this Raman cell part 5 is converted into 16mum light through secondary dispersion process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[発明の目的][Object of the Invention]

【0002】[0002]

【産業上の利用分野】本発明は、ラマン変換を用いたレ
ーザー波長変換方法、およびラマン媒質、並びにこの方
法により変換された波長と同じ赤外長波長領域に吸収帯
を持つ 235UF6 (6フッ化ウラン)を利用したウラン
同位体分離方法に関する。
The present invention relates to a laser wavelength conversion method using Raman conversion, a Raman medium, and a 235 UF 6 (6 fluorine) having an absorption band in the same infrared long wavelength region as the wavelength converted by this method. Uranium) and a uranium isotope separation method using the same.

【0003】[0003]

【従来の技術】従来から、 235UF6 を利用したウラン
同位体分離用のラマンレーザーには、励起レーザーとし
て大気圧または大気圧以上の高気圧横放電型炭酸ガスレ
ーザーが用いられてきた。
2. Description of the Related Art Conventionally, a Raman laser for uranium isotope separation using 235 UF 6 has used an atmospheric pressure or a high atmospheric pressure lateral discharge carbon dioxide laser as an excitation laser.

【0004】また、このラマン散乱媒質としてはパラ水
素が用いられ、その1次ストークス光が同位体分離に使
われてきた。
Further, para-hydrogen has been used as the Raman scattering medium, and its first-order Stokes light has been used for isotope separation.

【0005】大気圧炭酸ガスレーザーでは、パラ水素に
よるラマン変換により 235UF6 の吸収線に近い16μm
光を発生し 235UF6 の同位体分離を行なうことが可能
である。しかし、大気圧炭酸ガスレーザーは、互いに0.
01〜0.03μm 程度離れた 100本程度の発振線を持つが、
そのどれを選んでも正確に 235UF6 の吸収波長にスト
ークス光を同調させることはできない。したがって、実
用上十分な同位体分離を行なうことができないという問
題があった。
Atmospheric pressure carbon dioxide laser has a Raman conversion by parahydrogen of 16 μm close to the absorption line of 235 UF 6.
It is possible to generate light and perform 235 UF 6 isotope separation. However, the atmospheric carbon dioxide lasers are at 0.
It has about 100 oscillation lines that are separated by about 01 to 0.03 μm,
Whichever is chosen, Stokes light cannot be tuned exactly to the absorption wavelength of 235 UF 6 . Therefore, there has been a problem that practically sufficient isotope separation cannot be performed.

【0006】一方、高気圧炭酸ガスレーザーは波長連続
可変であるため、 235UF6 の吸収線にラマンレーザー
の波長を同調することが可能である。しかし、この波長
同調を行うと高圧炭酸ガスレーザーの出力は著しく低下
し、ラマン変換に必要な出力が取り出せなくなる。この
ため、高出力の大気圧横放電型炭酸ガスレーザーを同時
に発振させ、四光波混合法によりラマン変換を促進させ
ることが必要になるという問題があった。
On the other hand, since the hyperbaric carbon dioxide laser has a continuously variable wavelength, it is possible to tune the wavelength of the Raman laser to the absorption line of 235 UF 6 . However, if this wavelength tuning is performed, the output of the high-pressure carbon dioxide gas laser is significantly reduced, and the output required for Raman conversion cannot be obtained. Therefore, there is a problem that it is necessary to simultaneously oscillate a high-power atmospheric pressure lateral discharge type carbon dioxide gas laser and promote Raman conversion by the four-wave mixing method.

【0007】また、ラマン変換を促進する方法として、
半導体レーザーを光源とする16μm光を炭酸ガスレーザ
ー光に重畳するストークスシード法が考えられたが、16
μm帯の半導体レーザー光は極めて微弱であって実用上
取扱いが非常に難しい上に、炭酸ガスレーザー光と16μ
m 光に対して同時に高い透過率を示し、かつ高い損傷し
きい値を持つ適当なラマンセルの入射窓材がないため実
用化がきわめて困難であるという問題があった。
As a method of promoting Raman conversion,
A Stokes Seed method was proposed in which 16 μm light from a semiconductor laser was superimposed on carbon dioxide laser light.
The semiconductor laser light in the μm band is extremely weak and very difficult to handle in practical use.
There is a problem that it is extremely difficult to put into practical use because there is no suitable Raman cell entrance window material that simultaneously exhibits high transmittance for m light and has a high damage threshold.

【0008】[0008]

【発明が解決しようとする問題点】上述したように、35
UF6 を利用したウラン同位体分離用のラマンレーザー
には、大気圧炭酸レーザー、高気圧炭酸ガスレーザー、
炭酸ガスレーザー光に半導体レーザー光を重畳させたも
の等が検討されているがそれぞれ次のような問題があっ
た。
[Problems to be Solved by the Invention] As described above, 35
Raman lasers for uranium isotope separation using UF 6 include atmospheric pressure carbon dioxide laser, high pressure carbon dioxide laser,
There have been studied the ones in which a semiconductor laser beam is superposed on a carbon dioxide laser beam, but each has the following problems.

【0009】すなわち、大気圧炭酸ガスレーザーでは多
数の発振線のどれを選んでも正確に235UF6 の吸収波
長にストークス光を同調させることができず、実用上十
分な同位体分離を行なうことができないという問題があ
った。また、高気圧炭酸ガスレーザーは、 235UF6
吸収線にラマンレーザーの波長を同調することが可能で
あるが、発振のために高電圧、高耐圧を必要とし、高平
均出力化のための高速繰り返し動作が難しく、実用的な
同位体分離用ラマンレーザーの開発が困難なであった。
また、四光波混合を行なうためには、高気圧炭酸ガスレ
ーザーと大気圧炭酸ガスレーザーのパルスを重ね合わせ
ることが必要であるが、互いに発振ジッターがあるので
両者の発振のタイミングを安定に保つことが困難であ
り、それにともなってラマンレーザー出力が不安定にな
るという問題があった。
That is, in the atmospheric pressure carbon dioxide laser, the Stokes light cannot be accurately tuned to the absorption wavelength of 235 UF 6 by selecting any of a number of oscillation lines, and practically sufficient isotope separation can be performed. There was a problem that I could not. In addition, the high pressure carbon dioxide laser can tune the Raman laser wavelength to the absorption line of 235 UF 6 , but it requires high voltage and high breakdown voltage for oscillation, and high speed for high average output. It was difficult to repeat the operation, and it was difficult to develop a practical Raman laser for isotope separation.
Further, in order to perform four-wave mixing, it is necessary to overlap the pulse of the high pressure carbon dioxide laser and the pulse of the atmospheric pressure carbon dioxide laser, but since there are oscillation jitters between them, it is possible to keep the oscillation timing of both stable. It is difficult and the Raman laser output becomes unstable accordingly.

【0010】さらに、ラマン変換を促進するため、半導
体レーザーを光源とする16μm 光を炭酸ガスレーザー光
に重畳した場合には、16μm 帯の半導体レーザー光が極
めて微弱であって実用上取扱いが非常に難しい上に、炭
酸ガスレーザー光と16μm 光に対して同時に高い透過率
を示し、かつ高い損傷しきい値を持つ適当なラマンセル
の入射窓材がなく実用化が困難であるという問題があっ
た。
Furthermore, in order to promote Raman conversion, when 16 μm light from a semiconductor laser as a light source is superposed on carbon dioxide laser light, the semiconductor laser light in the 16 μm band is extremely weak and is extremely difficult to handle in practice. In addition to being difficult, there is a problem that it is difficult to put into practical use because there is no suitable Raman cell entrance window material that has a high transmittance for carbon dioxide laser light and 16 μm light at the same time and has a high damage threshold.

【0011】[0011]

【作用】本発明の基本原理を図3を参照しつつ詳細に説
明する。
The basic principle of the present invention will be described in detail with reference to FIG.

【0012】ラマンレーザーの出力光(1次ストークス
光)の波数νS1は励起光の波数をνP とすると、 νS1=νP −△ν で与えられる。
The wave number ν S1 of the output light (first-order Stokes light) of the Raman laser is given by ν S1 = ν P -Δν, where ν P is the wave number of the excitation light.

【0013】従来法であるパラ水素をラマン散乱媒質と
して用いた図3(A)の場合には、△ν= 354cm-1であ
り、波長10μm 帯の励起起炭酸ガスレーザー光Pは、こ
の(1回の)ラマン散乱により16μm 帯光に変換され
る。一方、ラマン散乱媒質がオルト重水素の図3(B)
の場合、△ν= 179cm-1である。(1)で示されるラマ
ン散乱過程によって、励起炭酸ガスレーザー光Pは、12
μm 帯の1次ストークス光S1に変換される。このS1
の出力は励起光出力の増加にともなって高くなっていく
が、ある値を境に逆に減衰が始まる。これは(2)で示
されるような、S1を励起光とするラマン散乱がラマン
散乱媒質中で新たに誘起されたためである。この過程に
よって生じる出力光(2次ストークス光)S2の波数ν
S2は νS2=νS1−△ν=νP − 2△ν となる。
In the case of FIG. 3 (A) in which parahydrogen is used as the Raman scattering medium, which is the conventional method, Δν = 354 cm −1 , and the excited carbon dioxide laser beam P in the wavelength band of 10 μm is It is converted to 16 μm band light by (one) Raman scattering. On the other hand, the Raman scattering medium is ortho-deuterium as shown in FIG.
In the case of, Δν = 179 cm −1 . By the Raman scattering process shown in (1), the excited carbon dioxide laser light P is 12
It is converted into the first-order Stokes light S1 in the μm band. This S1
Output increases with the increase in pumping light output, but begins to decay at a certain value. This is because Raman scattering using S1 as the excitation light as shown in (2) is newly induced in the Raman scattering medium. Wave number ν of output light (second-order Stokes light) S2 generated by this process
S2 is νS2 = νS1- △ ν = νP-2 △ ν.

【0014】その結果、ラマン媒質としてオルト重水素
を用いた場合には、励起光Pは 2△ν= 358cm-1の波長
シフトを受け、16μm 帯光に変換される。しかし、パラ
水素を媒質とした場合と比べると、わずかにシフト量が
異なるので。従来法とは波長の異なる16μm 帯光が得ら
れるのである。
As a result, when ortho-deuterium is used as the Raman medium, the excitation light P undergoes a wavelength shift of 2Δν = 358 cm −1 and is converted into 16 μm band light. However, the shift amount is slightly different compared to the case where para-hydrogen is used as the medium. 16 μm band light with a wavelength different from that of the conventional method can be obtained.

【0015】特に大気圧炭酸ガスレーザーを励起光源と
した場合でも、10R(38) 発振線を用いることで16μm 帯
光の波長を 235UF6 の吸収線にほぼ一致させることが
できる。
Even when the atmospheric pressure carbon dioxide laser is used as the excitation light source, the wavelength of the 16 μm band light can be made substantially coincident with the absorption line of 235 UF 6 by using the 10R (38) oscillation line.

【0016】[0016]

【発明の効果】本発明によれば次のような多くの効果が
得られる。
According to the present invention, the following many effects can be obtained.

【0017】(1) ウラン濃縮に必要なラマンレーザーの
励起レーザー装置を高出力が得られる大気圧炭酸ガスレ
ーザーのみで構成できる。
(1) The pumping laser device of the Raman laser required for uranium enrichment can be constituted only by the atmospheric pressure carbon dioxide laser which can obtain a high output.

【0018】(2) 大気圧炭酸ガスレーザーは高気圧炭酸
ガスレーザーに比べて高速繰り返し化が容易であり、産
業用の高平均出力のラマンレーザーが得やすくなった。
(2) The atmospheric pressure carbon dioxide laser is easier to repeat at high speed than the high pressure carbon dioxide laser, and it is easy to obtain a high average output Raman laser for industrial use.

【0019】(3) 1 台の励起レーザーによる励起なの
で、発振ジッターに伴うラマンレーザー出力の不安定性
も本質的になくなる。
(3) Since the pumping is performed by one pump laser, the instability of Raman laser output due to oscillation jitter is essentially eliminated.

【0020】(4) ストークスシート法の適用に関して、
比較的出力の強い12μm 帯の半導体レーザーを使えるこ
と、損傷しきい値が高いZnSe(セレン化亜鉛)窓を
ラマンセルの入射窓に使えること等でこの技術の実用化
が容易となる。
(4) Regarding the application of the Stokes sheet method,
Practical application of this technology will be facilitated by the fact that a 12 μm band semiconductor laser with a relatively strong output can be used, and that a ZnSe (zinc selenide) window with a high damage threshold can be used as the entrance window of the Raman cell.

【0021】(5) ラマン変換の促進法として従来からの
四光波混合法もそのまま適用できる。
(5) The conventional four-wave mixing method can be applied as it is as a method for promoting Raman conversion.

【0022】[0022]

【実施例】以下、本発明の実施例を図1および図2を参
照しつつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to FIGS. 1 and 2.

【0023】本発明に使用する装置は大別して、炭酸ガ
スレーザー部、半導体レーザー部、およびラマンセル部
から構成されている。図1に構成図をしめす。
The apparatus used in the present invention is roughly divided into a carbon dioxide gas laser section, a semiconductor laser section, and a Raman cell section. Fig. 1 shows the block diagram.

【0024】炭酸ガスレーザー部は、大気圧構放電型炭
酸ガスレーザー発振器1、偏光素子2、および大気圧横
放電型炭酸ガスレーザー増幅器3から成る。
The carbon dioxide gas laser section comprises an atmospheric pressure structured discharge type carbon dioxide gas laser oscillator 1, a polarizing element 2, and an atmospheric pressure lateral discharge type carbon dioxide gas laser amplifier 3.

【0025】発振器より出射した直線偏光のレーザーパ
ルスは偏光素子によって円偏光に変換される。これはラ
マン散乱過程において高い利得を得るために必要な操作
である。偏光素子を出たレーザーパルスは複数の増幅器
に導入され、2次のラマン変換を起こすのに十分な出力
まで増幅された後、ラマンセル中へ導入される。実施例
では実験の簡単化のために炭酸ガスレーザー利得の高い
10P(18) 発振線に発振波長が同調されている。これは10
R(38) 発振線を用いた場合に比べ波長が長いので、むし
ろラマン散乱は起きにくい実験条件である。
The linearly polarized laser pulse emitted from the oscillator is converted into circularly polarized light by the polarizing element. This is a necessary operation to obtain a high gain in the Raman scattering process. The laser pulse exiting the polarizing element is introduced into a plurality of amplifiers, amplified to an output sufficient to cause a second Raman conversion, and then introduced into a Raman cell. In the examples, the carbon dioxide laser gain is high to simplify the experiment.
The oscillation wavelength is tuned to the 10P (18) oscillation line. This is 10
Since the wavelength is longer than in the case of using the R (38) oscillation line, Raman scattering is an experimental condition in which it is less likely to occur.

【0026】半導体レーザー部4は連続発振のPbSn
Te(鉛錫テルル化合物)半導体レーザー装置から成
る。このレーザー光はラマンレーザーの1次ストークス
光長に同調されている。ここから出射されたレーザー光
は炭酸ガスレーザー光に重畳されてラマンセル中に導入
される。
The semiconductor laser section 4 is a continuous wave PbSn.
It consists of a Te (lead-tin tellurium compound) semiconductor laser device. This laser light is tuned to the first Stokes light length of the Raman laser. The laser light emitted from this is superposed on the carbon dioxide laser light and introduced into the Raman cell.

【0027】ラマンセル部5は、多重反射光学系および
ガス冷却機構を持つ。ラマン媒質としては純オルト重水
素ガスを用いることが望ましいが、通常の重水素ガスに
もオルト重水素が2/3 含まれているので使用可能であ
る。多重反射光学系は 2枚の凹面鏡を向かい合わせ、そ
れらの間でレーザービームを多重反射させるものであ
る。これによって実効的なラマン媒質長を増加させてい
る。また、 1回の反射毎にレーザービームは集光を受
け、これによってもラマン変換が促進される。ガスの冷
却は液体窒素を冷媒として行われ、おおむね 100K程度
まで冷却することができる。断熱効果を高めるため、セ
ル全体が真空断熱層をもった二重管構造となっている。
The Raman cell section 5 has a multiple reflection optical system and a gas cooling mechanism. It is desirable to use pure ortho-deuterium gas as the Raman medium, but ordinary deuterium gas can be used because it contains 2/3 of ortho-deuterium. The multiple reflection optical system is a system in which two concave mirrors are faced to each other and the laser beam is multiply reflected between them. This increases the effective Raman medium length. In addition, the laser beam is focused after each reflection, which also promotes Raman conversion. The gas is cooled using liquid nitrogen as a refrigerant, and can be cooled to about 100K. To enhance the heat insulation effect, the entire cell has a double tube structure with a vacuum heat insulation layer.

【0028】このラマンセル部を透過したレーザーパル
スは2次のラマン散乱過程を経て、16μm 光に変換され
る。
The laser pulse transmitted through the Raman cell part is converted into 16 μm light through a secondary Raman scattering process.

【0029】2次ストークス光の出力特性は図2に示す
通りである。実施例では半導体レーザー光注入を行うこ
とで明らかに出力に差があり、注入を行った場合最大1
パルス当たり0.10J、行なわなかった場合でも0.07Jの
2次ストークス光出力が得られた。またこれと別の実験
ではそれぞれ。0.17J、0.12Jが観測された。いずれも
ウラン濃縮に用いるためには十分な出力である。
The output characteristics of the secondary Stokes light are as shown in FIG. In the embodiment, there is a clear difference in the output when the semiconductor laser light is injected, and the maximum is 1 when the injection is performed.
A secondary Stokes light output of 0.10 J per pulse and 0.07 J per pulse was obtained. Also in each of the other experiments. 0.17J and 0.12J were observed. Both are sufficient outputs for use in uranium enrichment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を示すパラ水素とオルト重水素の
エネルギー順位図。
FIG. 1 is an energy ranking diagram of parahydrogen and ortho-deuterium showing the principle of the present invention.

【図2】本発明の実施例を示す構成図。FIG. 2 is a configuration diagram showing an embodiment of the present invention.

【図3】本発明の実施例で得られた出力特性図。FIG. 3 is an output characteristic diagram obtained in an example of the present invention.

【符号の説明】[Explanation of symbols]

P…励起炭酸ガスレーザー光、 S…パラ水素による(1次)ストークス光、 S1…オルト重水素による1次ストークス光、 S2…オルト重水素による2次ストークス光、 1…大気圧構放電型炭酸ガスレーザー発振器、 2…偏光素子、 3…大気圧構放電型炭酸ガスレーザー増幅器、 4…PbSnTe半導体レーザー装置、 5…ラマンセル。 P ... Excited carbon dioxide laser light, S ... (Primary) Stokes light due to parahydrogen, S1 ... Primary Stokes light due to ortho-deuterium, S2 ... Secondary Stokes light due to ortho-deuterium, 1 ... Atmospheric pressure discharge carbonic acid Gas laser oscillator, 2 ... Polarizing element, 3 ... Atmospheric pressure discharge carbon dioxide laser amplifier, 4 ... PbSnTe semiconductor laser device, 5 ... Raman cell.

【手続補正書】[Procedure amendment]

【提出日】平成5年3月24日[Submission date] March 24, 1993

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭酸ガスレーザー光を重水素ガスまたは
純オルト重水素ガスを充填したラマンセルに導入し、2
次の誘導ラマン散乱を起こさせ、前記炭酸ガスレーザー
光の波長を変換することを特徴とするレーザー波長変換
方法。
1. A carbon dioxide laser beam is introduced into a Raman cell filled with deuterium gas or pure ortho-deuterium gas, and 2
A laser wavelength conversion method characterized by causing the following stimulated Raman scattering to convert the wavelength of the carbon dioxide gas laser light.
【請求項2】 前記炭酸ガスレーザー光に半導体レーザ
ー光を重畳させて前記ラマンセルに導入することを特徴
とする請求項1に記載のレーザー波長変換方法。
2. The laser wavelength conversion method according to claim 1, wherein a semiconductor laser light is superposed on the carbon dioxide laser light and introduced into the Raman cell.
【請求項3】 前記炭酸ガスレーザー光が波長の異なる
少なくとも2系列により前記ラマンセルに導入されるこ
とを特徴とする請求項1に記載のレーザー波長変換方
法。
3. The laser wavelength conversion method according to claim 1, wherein the carbon dioxide gas laser light is introduced into the Raman cell by at least two series having different wavelengths.
【請求項4】 炭酸ガスレーザー光を重水素ガスまたは
純オルト重水素ガスを充填したラマンセルに導入して2
次の誘導ラマン散乱を起こさせ、この2次誘導ラマン散
乱光を 235UF6 (6フッ化ウラン)に照射してウラン
の同位体分離を行なうことを特徴とするウラン同位体分
離方法。
4. A carbon dioxide laser beam is introduced into a Raman cell filled with deuterium gas or pure ortho-deuterium gas, and 2
A uranium isotope separation method characterized by causing the following stimulated Raman scattering and irradiating the 235 UF 6 (uranium hexafluoride) with this secondary stimulated Raman scattering light to perform uranium isotope separation.
JP6360291A 1991-03-27 1991-03-27 Laser wavelength conversion method and isotope separation method using the same Expired - Lifetime JP2595389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6360291A JP2595389B2 (en) 1991-03-27 1991-03-27 Laser wavelength conversion method and isotope separation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6360291A JP2595389B2 (en) 1991-03-27 1991-03-27 Laser wavelength conversion method and isotope separation method using the same

Publications (2)

Publication Number Publication Date
JPH0661590A true JPH0661590A (en) 1994-03-04
JP2595389B2 JP2595389B2 (en) 1997-04-02

Family

ID=13233997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6360291A Expired - Lifetime JP2595389B2 (en) 1991-03-27 1991-03-27 Laser wavelength conversion method and isotope separation method using the same

Country Status (1)

Country Link
JP (1) JP2595389B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280654A (en) * 2001-03-19 2002-09-27 Eco Twenty One:Kk Module for optical communication
JP2009535666A (en) * 2006-04-28 2009-10-01 コーニング インコーポレイテッド Pulsed UV and visible Raman laser system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280654A (en) * 2001-03-19 2002-09-27 Eco Twenty One:Kk Module for optical communication
JP2009535666A (en) * 2006-04-28 2009-10-01 コーニング インコーポレイテッド Pulsed UV and visible Raman laser system

Also Published As

Publication number Publication date
JP2595389B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US6498801B1 (en) Solid state laser for microlithography
Hemmer et al. Self-organization, broken symmetry, and lasing in an atomic vapor: The interdependence of gratings and gain
US4222011A (en) Stokes injected Raman capillary waveguide amplifier
Midorikawa et al. Output performance of a liquid‐N2‐cooled, para‐H2 Raman laser
US3435363A (en) Self-focusing laser
Marra et al. Cryogenically cooled Fe: ZnSe-based chirped pulse amplifier at 4.07 µm
Wallmeier et al. Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H 2
CA1128180A (en) Tunable 16-micron coherent source including parahydrogen raman transition and method
Liu et al. Direct generation of 27-mJ, 309-nm pulses from a Ce3+: LiLuF4 oscillator using a large-size Ce3+: LiLuF4 crystal
JPH0661590A (en) Method of laser wavelength conversion and separation of isotope using this
US7974318B2 (en) Infra-red multi-wavelength laser source
Tovey et al. Gain dynamics in a CO2 active medium optically pumped at 4.3 μm
US4254348A (en) Tunable ultra-violet generator for use in the isotope separation of deuterium
Komine et al. Efficient H2 Raman conversion of long‐pulse XeF laser radiation into the blue‐green region
US5181212A (en) Method of emitting on a specific wavelength Fraunhofer line using a neodymium doped laser transmitter
CN214069078U (en) Tunable intermediate infrared laser based on multi-order diamond Raman
Auyeung et al. Multiple harmonic conversion of pulsed CO 2 laser radiation in Tl 3 AsSe 3
Pummer et al. Characteristics and optimization of the two‐photon‐excited 16‐μm laser in 14NH3
Lancaster et al. Methane detection with a narrow-band source at 3.4 μm based on a Nd: YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing
US4628513A (en) Tunable indium UV anti-Stokes Raman laser
US5011584A (en) Method for separating a predetermined isotope of an element from a gaseous compound containing said element
Kildal et al. Optically pumped gas lasers
CN112803233A (en) Medium infrared laser generation method based on multi-order diamond Raman and tunable medium infrared laser
Bruns et al. Scalable visible Nd: YAG pumped Raman laser source
US6603778B1 (en) Ultrashort pulse light generating method using raman resonator and its device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960903