JPH0661470A - Solid-state image sensing device and its manufacture - Google Patents

Solid-state image sensing device and its manufacture

Info

Publication number
JPH0661470A
JPH0661470A JP4235324A JP23532492A JPH0661470A JP H0661470 A JPH0661470 A JP H0661470A JP 4235324 A JP4235324 A JP 4235324A JP 23532492 A JP23532492 A JP 23532492A JP H0661470 A JPH0661470 A JP H0661470A
Authority
JP
Japan
Prior art keywords
film
silicon
silicon oxide
gate insulating
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4235324A
Other languages
Japanese (ja)
Inventor
Takahisa Kusaka
卓久 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4235324A priority Critical patent/JPH0661470A/en
Publication of JPH0661470A publication Critical patent/JPH0661470A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain the excellent image sensing characteristic of the device by a method wherein a signal charge amount which can be transferred is increased and a noise due to a change in a dark current is reduced. CONSTITUTION:A three-layer film composed of a silicon oxynitride film 15, a silicon nitride film 16 and a silicon oxide film 17 which have been laminated sequentially on a silicon substrate 11 acts as a gate insulating film 18 for a charge transfer part. Since a part constituting an interface with the silicon substrate 11 out of the gate insulating film 18 is the silicon oxynitride film 15, an interface characteristic is good as compared with a case in which an interface is constituted of a silicon oxide film, a change in a surface level density is small and an increase in a dark current can be restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電荷転送部にゲート絶
縁膜を有する固体撮像装置及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device having a gate insulating film in a charge transfer section and a manufacturing method thereof.

【0002】[0002]

【従来の技術】CCD等の固体撮像装置では、隣接する
MOSキャパシタのポテンシャル井戸を順次に結合させ
て信号電荷を転送するので、電荷転送部にMOSキャパ
シタのゲート絶縁膜を有している。このゲート絶縁膜と
しては、SiO2 膜のみの単層膜の他に、SiO2 膜と
Si3 4 膜とSiO2 膜とが順次に積層されておりO
NO膜と称されている3層膜が用いられている。
2. Description of the Related Art In a solid-state image pickup device such as a CCD, since the potential wells of adjacent MOS capacitors are sequentially coupled to transfer signal charges, the charge transfer portion has a gate insulating film of the MOS capacitors. As the gate insulating film, in addition to the single layer film of only SiO 2 film and the SiO 2 film and the Si 3 N 4 film and the SiO 2 film are sequentially stacked O
A three-layer film called an NO film is used.

【0003】特に、ONO膜では、3層膜でありピンホ
ールが殆どないので耐圧歩留りが高く、金属等の拡散を
Si3 4 膜で阻止することができるので汚染が少ない
という利点がある。また、半導体基板上に最初に形成し
たONO膜を第2層目の導電膜で形成するゲート電極の
ゲート絶縁膜としても用い、ゲート絶縁膜を一旦除去し
てから再び形成しなくてもよいので、最初に形成したゲ
ート絶縁膜に比べてその後に形成したゲート絶縁膜が半
導体基板内へ陥没することがなく、半導体基板内の転送
部が平坦になって転送を良好に行うことができるという
利点もある。
In particular, the ONO film is a three-layer film and has almost no pinholes, so that the withstand voltage yield is high and the diffusion of metal or the like can be prevented by the Si 3 N 4 film, so that there is an advantage that there is little contamination. Further, since the ONO film formed first on the semiconductor substrate is also used as the gate insulating film of the gate electrode formed of the second conductive film, the gate insulating film does not have to be removed and then formed again. As compared with the gate insulating film formed first, the gate insulating film formed after that does not sink into the semiconductor substrate, and the transfer portion in the semiconductor substrate is flat and the transfer can be performed favorably. There is also.

【0004】[0004]

【発明が解決しようとする課題】しかし、ONO膜で
も、シリコン基板との界面の構造はSiO2 /Siであ
り、界面特性が良好とは言い難い。即ち、この界面には
通常は1010〜1012cm-2eV-1の密度の表面準位が
存在しており、この表面準位を介して熱的に発生する電
荷によって暗電流が観測されるが、SiO2 /Siの界
面構造では温度の変動による表面準位密度の変動が大き
い。
However, even in the ONO film, the structure of the interface with the silicon substrate is SiO 2 / Si, and it is difficult to say that the interface characteristics are good. That is, there is usually a surface level having a density of 10 10 to 10 12 cm -2 eV -1 at this interface, and a dark current is observed by the charges thermally generated through this surface level. However, in the SiO 2 / Si interface structure, the surface state density fluctuates greatly due to temperature fluctuations.

【0005】この様な表面準位密度は、転送用のゲート
電極に静電的に高電圧が印加された場合(サージ)や、
通常の動作条件でも長時間に亙ってゲート電極に電圧が
印加された場合や、固体撮像装置に放射線が照射された
場合に、特に増大する。そして、温度の上昇等によって
表面準位密度が増大して、暗電流が増加すると、転送可
能な信号電荷量が少なくなるのみならず、暗電流自体の
変動によるノイズが多くなって、撮像特性が低下する。
Such a surface level density is generated when a high voltage is electrostatically applied to the transfer gate electrode (surge),
Even under normal operating conditions, it increases particularly when a voltage is applied to the gate electrode for a long time or when the solid-state imaging device is irradiated with radiation. When the surface level density increases due to temperature rise and the like, and the dark current increases, not only the amount of signal charge that can be transferred decreases, but also the noise due to the fluctuation of the dark current itself increases and the imaging characteristics are improved. descend.

【0006】[0006]

【課題を解決するための手段】請求項1の固体撮像装置
では、シリコン酸窒化膜15上にシリコン窒化膜16と
シリコン酸化膜17とが順次に積層されて成る3層膜が
電荷転送部のゲート絶縁膜18になっている。
In the solid-state image pickup device according to the first aspect of the present invention, a three-layer film formed by sequentially stacking a silicon nitride film 16 and a silicon oxide film 17 on a silicon oxynitride film 15 is a charge transfer portion. It is the gate insulating film 18.

【0007】請求項2の固体撮像装置の製造方法では、
シリコン基板11の表面を酸化して第1のシリコン酸化
膜を形成し、窒素を含む雰囲気中で前記第1のシリコン
酸化膜を熱処理してこの第1のシリコン酸化膜をシリコ
ン酸窒化膜15にし、前記シリコン酸窒化膜15上にシ
リコン窒化膜16を堆積させ、前記シリコン窒化膜16
の表面を酸化してこのシリコン窒化膜16上に第2のシ
リコン酸化膜17を形成し、前記シリコン酸窒化膜15
上に前記シリコン窒化膜16と前記第2のシリコン酸化
膜17とが順次に積層されて成る3層膜を電荷転送部の
ゲート絶縁膜18にする。
In the method of manufacturing a solid-state image pickup device according to claim 2,
The surface of the silicon substrate 11 is oxidized to form a first silicon oxide film, and the first silicon oxide film is heat treated in an atmosphere containing nitrogen to form the first silicon oxide film as a silicon oxynitride film 15. A silicon nitride film 16 is deposited on the silicon oxynitride film 15,
The surface of the silicon oxynitride film 15 is oxidized to form a second silicon oxide film 17 on the silicon nitride film 16.
A three-layer film formed by sequentially stacking the silicon nitride film 16 and the second silicon oxide film 17 thereon is used as the gate insulating film 18 of the charge transfer portion.

【0008】[0008]

【作用】本発明による固体撮像装置及びその製造方法で
は、電荷転送部のゲート絶縁膜18のうちで基板11と
の界面を構成している部分がシリコン酸窒化膜15であ
り、シリコン酸化膜のみの単層膜やシリコン酸化膜上に
シリコン窒化膜とシリコン酸化膜とが順次に積層されて
成る3層膜等の様にシリコン酸化膜で界面を構成してい
る場合に比べて、界面特性が良好で、表面準位密度の変
動が少ない。
In the solid-state image pickup device and the method of manufacturing the same according to the present invention, the portion of the gate insulating film 18 of the charge transfer portion which constitutes the interface with the substrate 11 is the silicon oxynitride film 15, and only the silicon oxide film is formed. In comparison with the case where the interface is composed of a silicon oxide film such as a single layer film or a three-layer film in which a silicon nitride film and a silicon oxide film are sequentially laminated on a silicon oxide film, the interface characteristics are Good and little fluctuation of surface state density.

【0009】[0009]

【実施例】以下、CCDに適用した本発明の一実施例
を、図1を参照しながら説明する。本実施例では、図1
に示す様に、シリコン基板11中に、感光画素部のフォ
トダイオードを構成するN型の拡散層12と、電荷転送
部のチャネルになるN型の拡散層13と、チャネルスト
ッパになるP+ 型の拡散層14とを、従来公知の工程で
形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention applied to a CCD will be described below with reference to FIG. In this embodiment, FIG.
As shown in FIG. 3, in the silicon substrate 11, an N type diffusion layer 12 that constitutes a photodiode of a photosensitive pixel portion, an N type diffusion layer 13 that serves as a channel of a charge transfer portion, and a P + type that serves as a channel stopper. And the diffusion layer 14 are formed by a conventionally known process.

【0010】次に、シリコン基板11をドライ酸化また
はウエット酸化して、シリコン基板11の表面にシリコ
ン酸化膜をまず形成し、更にこのシリコン酸化膜をNH
3 雰囲気中でアニールする。アニールの最適条件は、シ
リコン酸化膜の膜厚にも依存するが、温度が900〜1
000℃で時間が10分〜1時間程度である。このアニ
ールによって、シリコン酸化膜の表面、及びシリコン酸
化膜とシリコン基板11との界面付近にN原子が偏析
し、シリコン酸化膜がシリコン酸窒化膜15になる。
Next, the silicon substrate 11 is dry-oxidized or wet-oxidized to first form a silicon oxide film on the surface of the silicon substrate 11, and this silicon oxide film is further subjected to NH3.
3 Anneal in an atmosphere. The optimum annealing condition depends on the film thickness of the silicon oxide film, but the temperature is 900 to 1
The time is about 10 minutes to 1 hour at 000 ° C. By this annealing, N atoms are segregated on the surface of the silicon oxide film and near the interface between the silicon oxide film and the silicon substrate 11, and the silicon oxide film becomes the silicon oxynitride film 15.

【0011】次に、SiH2 Cl2 ガスとNH3 ガスと
を原料ガスとする通常のCVD法で、シリコン酸窒化膜
15上にシリコン窒化膜16を堆積させ、更にシリコン
窒化膜16の表面をウエット酸化して、シリコン窒化膜
16上にシリコン酸化膜17を形成する。本実施例で
は、以上の様にして形成したシリコン酸窒化膜15とシ
リコン窒化膜16とシリコン酸化膜17との3層膜を、
ゲート絶縁膜18にする。
Then, a silicon nitride film 16 is deposited on the silicon oxynitride film 15 by a normal CVD method using SiH 2 Cl 2 gas and NH 3 gas as source gases, and the surface of the silicon nitride film 16 is further deposited. Wet oxidation is performed to form a silicon oxide film 17 on the silicon nitride film 16. In this embodiment, the three-layer film including the silicon oxynitride film 15, the silicon nitride film 16, and the silicon oxide film 17 formed as described above is
The gate insulating film 18 is used.

【0012】その後は、従来公知の工程を実行する。即
ち、まずゲート絶縁膜18上で多結晶シリコン膜をパタ
ーニングして、転送用のゲート電極21を形成する。そ
して、絶縁膜としてのPSG膜22を全面に堆積させ、
感光画素部上で開口23aを有する遮光用マスクとして
のAl膜23をPSG膜22上でパターニングする。そ
して更に、保護絶縁膜24を全面に形成して、本実施例
のCCDを完成させる。
After that, a conventionally known process is executed. That is, first, the polycrystalline silicon film is patterned on the gate insulating film 18 to form the transfer gate electrode 21. Then, a PSG film 22 as an insulating film is deposited on the entire surface,
An Al film 23 as a light-shielding mask having an opening 23a on the photosensitive pixel portion is patterned on the PSG film 22. Then, a protective insulating film 24 is formed on the entire surface to complete the CCD of this embodiment.

【0013】以上の様な実施例では、ゲート絶縁膜18
とシリコン基板11との界面特性が、ONO膜等とシリ
コン基板11との界面特性に比べて優れており、表面準
位密度の変動が少ない。このため、同一の電気的ストレ
スを与えても、ONO膜をゲート絶縁膜として用いた場
合に比べて、暗電流の増加が1/5〜1/10に低減し
ている。
In the above embodiment, the gate insulating film 18
The interface characteristic between the silicon substrate 11 and the silicon substrate 11 is superior to the interface characteristic between the ONO film and the silicon substrate 11, and the fluctuation of the surface state density is small. Therefore, even if the same electric stress is applied, the increase in dark current is reduced to 1/5 to 1/10 of that in the case where the ONO film is used as the gate insulating film.

【0014】この様に本実施例でゲート絶縁膜18とシ
リコン基板11との界面特性が優れているのは、シリコ
ン基板11との界面付近におけるシリコン酸窒化膜15
中のN原子またはその結合によるものと考えられる。な
お、シリコン酸窒化膜15を形成するためのNH3 雰囲
気中でのアニール後に、更に酸素雰囲気中でアニールを
行えば、界面特性が更に向上する。
As described above, the excellent interface characteristic between the gate insulating film 18 and the silicon substrate 11 in this embodiment is that the silicon oxynitride film 15 near the interface with the silicon substrate 11 is excellent.
It is thought to be due to the N atom in the inside or its bond. If annealing is further performed in an oxygen atmosphere after annealing in an NH 3 atmosphere for forming the silicon oxynitride film 15, the interface characteristics are further improved.

【0015】[0015]

【発明の効果】本発明による固体撮像装置及びその製造
方法では、電荷転送部のゲート絶縁膜と基板との界面に
おける表面準位密度の変動が少ないので、暗電流の増加
を抑制することができる。このため、転送可能な信号電
荷量が多く且つ暗電流の変動によるノイズが少なくて、
優れた撮像特性を得ることができる。
In the solid-state image pickup device and the method for manufacturing the same according to the present invention, since the fluctuation of the surface level density at the interface between the gate insulating film of the charge transfer portion and the substrate is small, it is possible to suppress the increase of dark current. . Therefore, the amount of signal charges that can be transferred is large, and the noise due to changes in dark current is small,
Excellent imaging characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の側断面図である。FIG. 1 is a side sectional view of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 シリコン基板 15 シリコン酸窒化膜 16 シリコン窒化膜 17 シリコン酸化膜 18 ゲート絶縁膜 11 silicon substrate 15 silicon oxynitride film 16 silicon nitride film 17 silicon oxide film 18 gate insulating film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン酸窒化膜上にシリコン窒化膜と
シリコン酸化膜とが順次に積層されて成る3層膜が電荷
転送部のゲート絶縁膜になっている固体撮像装置。
1. A solid-state imaging device in which a three-layer film formed by sequentially stacking a silicon nitride film and a silicon oxide film on a silicon oxynitride film serves as a gate insulating film of a charge transfer portion.
【請求項2】 シリコン基板の表面を酸化して第1のシ
リコン酸化膜を形成し、 窒素を含む雰囲気中で前記第1のシリコン酸化膜を熱処
理してこの第1のシリコン酸化膜をシリコン酸窒化膜に
し、 前記シリコン酸窒化膜上にシリコン窒化膜を堆積させ、 前記シリコン窒化膜の表面を酸化してこのシリコン窒化
膜上に第2のシリコン酸化膜を形成し、 前記シリコン酸窒化膜上に前記シリコン窒化膜と前記第
2のシリコン酸化膜とが順次に積層されて成る3層膜を
電荷転送部のゲート絶縁膜にする固体撮像装置の製造方
法。
2. A surface of a silicon substrate is oxidized to form a first silicon oxide film, and the first silicon oxide film is heat-treated in an atmosphere containing nitrogen to convert the first silicon oxide film into silicon oxide. Forming a nitride film, depositing a silicon nitride film on the silicon oxynitride film, oxidizing the surface of the silicon nitride film to form a second silicon oxide film on the silicon nitride film, A method of manufacturing a solid-state imaging device, wherein a three-layer film formed by sequentially stacking the silicon nitride film and the second silicon oxide film is used as a gate insulating film of a charge transfer portion.
JP4235324A 1992-08-11 1992-08-11 Solid-state image sensing device and its manufacture Pending JPH0661470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4235324A JPH0661470A (en) 1992-08-11 1992-08-11 Solid-state image sensing device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4235324A JPH0661470A (en) 1992-08-11 1992-08-11 Solid-state image sensing device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0661470A true JPH0661470A (en) 1994-03-04

Family

ID=16984423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4235324A Pending JPH0661470A (en) 1992-08-11 1992-08-11 Solid-state image sensing device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0661470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399520B1 (en) 1999-03-10 2002-06-04 Tokyo Electron Limited Semiconductor manufacturing method and semiconductor manufacturing apparatus
US6847079B2 (en) 1999-09-13 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a stacked gate insulation film and a gate electrode and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399520B1 (en) 1999-03-10 2002-06-04 Tokyo Electron Limited Semiconductor manufacturing method and semiconductor manufacturing apparatus
US6470824B2 (en) 1999-03-10 2002-10-29 Tokyo Electron Limited Semiconductor manufacturing apparatus
US6847079B2 (en) 1999-09-13 2005-01-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a stacked gate insulation film and a gate electrode and manufacturing method thereof
US7180131B2 (en) 1999-09-13 2007-02-20 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having a stacked gate insulation film and a gate electrode and manufacturing method thereof
US7229882B2 (en) 1999-09-13 2007-06-12 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a field effect semiconductor device having a stacked gate insulation film and a gate electrode

Similar Documents

Publication Publication Date Title
US5241198A (en) Charge-coupled device and solid-state imaging device
JPH08153814A (en) Nonvolatile semiconductor memory and manufacture thereof
US5492852A (en) Method for fabricating a solid imaging device having improved smear and breakdown voltage characteristics
JP3383632B2 (en) Method for manufacturing MOS transistor
JPH10178170A (en) Semiconductor device and its manufacture
JP3214432B2 (en) Method for manufacturing solid-state imaging device
JPH0661470A (en) Solid-state image sensing device and its manufacture
US4894701A (en) Semiconductor device detector and method of forming same
EP1677355A2 (en) Process for manufacturing an image sensor using deuterium
JP3162440B2 (en) Method for manufacturing solid-state imaging device
JP3110524B2 (en) CCD solid-state imaging device and method of manufacturing the same
JPH0425756B2 (en)
JPH0379864B2 (en)
JP2621773B2 (en) Method for manufacturing solid-state imaging device
JPH1187685A (en) Solid state image sensor and fabrication thereof
JP2612098B2 (en) Manufacturing method of insulating film
JPH07106543A (en) Manufacture of solid-state image sensing device
JP2004055668A (en) Solid-state imaging device and method of manufacturing the same
JP2945023B2 (en) Method for manufacturing thin film transistor
JPH0456275A (en) Manufacture of solid-state image pickup device
JP3392119B2 (en) Semiconductor element, solid-state imaging device, and manufacturing method thereof
JPS60160669A (en) Semiconductor device
JPH05291294A (en) Manufacture of thin film transistor
JPH0817814A (en) Method for forming oxidation prevention film for separating element
JPH03248538A (en) Charge-coupled element and manufacture thereof