JPH065981B2 - Motor - Google Patents

Motor

Info

Publication number
JPH065981B2
JPH065981B2 JP14151284A JP14151284A JPH065981B2 JP H065981 B2 JPH065981 B2 JP H065981B2 JP 14151284 A JP14151284 A JP 14151284A JP 14151284 A JP14151284 A JP 14151284A JP H065981 B2 JPH065981 B2 JP H065981B2
Authority
JP
Japan
Prior art keywords
gear
motor
oscillating
fixed
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14151284A
Other languages
Japanese (ja)
Other versions
JPS6122752A (en
Inventor
康男 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Gijutsu Kaihatsu Co Ltd
Original Assignee
Kokusai Gijutsu Kaihatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Gijutsu Kaihatsu Co Ltd filed Critical Kokusai Gijutsu Kaihatsu Co Ltd
Priority to JP14151284A priority Critical patent/JPH065981B2/en
Publication of JPS6122752A publication Critical patent/JPS6122752A/en
Publication of JPH065981B2 publication Critical patent/JPH065981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator
    • H02K41/065Nutating motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Linear Motors (AREA)

Description

【発明の詳細な説明】 本発明は電力を機械回転力に変換する為のモータに関す
るものであり、特に一つの電気パルス信号によつて極め
て微少な角度回転し、大きな回転力を発揮するモータに
関するものである。
Description: TECHNICAL FIELD The present invention relates to a motor for converting electric power into a mechanical rotational force, and more particularly to a motor that rotates a very small angle by one electric pulse signal and exhibits a large rotational force. It is a thing.

従来各種産業部門におけるモータの用途は増々拡大しつ
つある。特に従来任意の速度で回転していれば良いとい
うのがモータに対する要望であつたが、最近は任意の角
度回転して停止するという事が重要な項目となつて来
た。もちろん停止状態でその位置を保つ必要があり、そ
の為にはいわゆるパルスモータが適当であり、この種の
モータの需要は急速に増加しつつある。又最小回転角度
は出来る丈微小なもの、トルクは大きなもの、パルス応
答性は速いものが望まれるのは当然なことである。現在
はモータ自体は構造的に限界に達しており、更に上記三
つの特性を向上させるのは困難であるとして、特殊な減
速歯車装置を用いたり電気回路上の工夫により性能の向
上を計つている。しかるに減速装置を用いると構造部品
が増加し、モータを含めた駆動部の体積,重量,価格が
増加する上、一般に減速装置のバツクラツシユによる回
転角度の誤差や振動を生ずることがある。又電気回路の
工夫では、最小回転角を小さくすることは出来るが、ト
ルクを増すことは出来ない。
Conventionally, motor applications in various industrial sectors are expanding more and more. Conventionally, it has been a request for a motor that it should rotate at an arbitrary speed, but recently, it has become an important item to rotate at an arbitrary angle and stop. Of course, it is necessary to maintain its position in a stopped state, and a so-called pulse motor is suitable for that purpose, and the demand for this type of motor is rapidly increasing. As a matter of course, it is desired that the minimum rotation angle be as small as possible, the torque be large, and the pulse response be fast. At present, the motor itself has reached the structural limit, and it is difficult to further improve the above three characteristics, so we are trying to improve the performance by using a special reduction gear device and devising on the electric circuit. . However, when the reduction gear is used, the number of structural parts increases, the volume, weight, and cost of the drive unit including the motor increase, and in general, errors and vibrations in the rotation angle may occur due to the backlash of the reduction gear. Also, by devising the electric circuit, the minimum rotation angle can be reduced, but the torque cannot be increased.

以上のごとき状況の下で本発明は、出力歯車と固定歯車
の間で揺動回転する揺動歯車の揺動運動を複数の電磁石
で行なうごとき構造により上記欠点を排し、従来のモー
タの約1/100程度の微小回転角度での運動・停止が可能
であり、又10倍以上の回転力を発揮することの出来る極
めて高性能なモータを提供するものである。
Under the circumstances as described above, the present invention eliminates the above-mentioned drawbacks by a structure in which the swing motion of the swing gear that swings between the output gear and the fixed gear is performed by a plurality of electromagnets. It provides an extremely high-performance motor that is capable of moving and stopping at a minute rotation angle of about 1/100, and that can exhibit a rotational force of 10 times or more.

以下図について、その構造を説明する。The structure of the drawings will be described below.

第1図は本発明の一実施例の構造を示す側断面図であ
り、第2図はその正断面図である。
FIG. 1 is a side sectional view showing the structure of an embodiment of the present invention, and FIG. 2 is a front sectional view thereof.

第1図、第2図において、ケース1に固定歯車2及び複
数個の磁極3−1〜3−6が固着され、各々の磁極3−
1〜3−6の外周にはコイル4−1〜4−6が嵌挿され
ている。又、ケース1の中心には軸受5を介して出力軸
6が回転自在に設けられており、該出力軸6には出力歯
車7が前記固定歯車と互いに歯面を対向するごとく取付
けられている。更に固定歯車2と出力歯車7との間には
第1の歯面8と第2の歯面9をその両面に有する揺動歯
車10が設けられている。揺動歯車10の中心部には穴11を
有し、該穴11に輪環状のボール溝12が揺動歯車10の中心
面上に設けられ、出力軸6にニードルローラー13を介し
て回転自在に嵌合する回転子14の球面外形部15には回転
軸と一定角度傾斜した輪環状のボール溝16が設けられ、
該ボール溝16と揺動歯車10の穴11に設けられたボール溝
12とは複数個のボール17を介して回転自在に嵌合してい
る。
In FIGS. 1 and 2, a fixed gear 2 and a plurality of magnetic poles 3-1 to 3-6 are fixed to a case 1, and each magnetic pole 3-
Coils 4-1 to 4-6 are fitted around the outer circumferences of 1 to 3-6. An output shaft 6 is rotatably provided at the center of the case 1 via a bearing 5, and an output gear 7 is attached to the output shaft 6 so that the tooth surfaces of the fixed gear and the fixed gear face each other. . Further, an oscillating gear 10 having a first tooth surface 8 and a second tooth surface 9 on both sides thereof is provided between the fixed gear 2 and the output gear 7. The oscillating gear 10 has a hole 11 in the center thereof, and a ring-shaped ball groove 12 is provided in the hole 11 on the center surface of the oscillating gear 10 so that the output shaft 6 can be freely rotated through a needle roller 13. The spherical outer shape portion 15 of the rotor 14 fitted to the is provided with a ring-shaped ball groove 16 inclined at a constant angle with respect to the rotation axis,
The ball groove 16 and the ball groove provided in the hole 11 of the oscillating gear 10.
12 are rotatably fitted through a plurality of balls 17.

又、揺動歯車10の一方の面は輪環状の平面部18を形成し
磁極3と対向しており、外形部19は球面状をなし、ケー
ス1の内面に近接している。尚ケース1、揺動歯車10及
び磁極3−1〜3−6は磁性材料で形成されている。又
固定歯車2と常に噛合つている揺動歯車10の第1の歯面
8及び第2の歯面9と常に噛合つている出力歯車7の歯
面は、全ての回転子14の球面外形部15の中心Oを中心と
する傘歯車を形成しており、各々の歯数はA,B,C,
Dと定められている。
Further, one surface of the oscillating gear 10 forms a ring-shaped flat surface portion 18 facing the magnetic pole 3, and the outer shape portion 19 has a spherical shape and is close to the inner surface of the case 1. The case 1, the oscillating gear 10 and the magnetic poles 3-1 to 3-6 are made of a magnetic material. Further, the tooth flanks of the output gear 7 which is always meshed with the first tooth flank 8 and the second tooth flank 9 of the oscillating gear 10 which is constantly meshed with the fixed gear 2 are spherical outer shape portions 15 of all rotors 14. Forming a bevel gear centered on the center O of each of the teeth of A, B, C,
It is defined as D.

次に第1図及び第2図に示す実施例について本発明の動
作を説明する。
Next, the operation of the present invention will be described with reference to the embodiment shown in FIGS.

今、磁極3−1は揺動歯車10の平面部18が最も近接した
状態となつている。この状態でとなりの磁極3−2に設
けられたコイル4−2に通電すると、磁極3−2と平面
部18の間に吸引力が生じる。そうすると回転子14が磁極
3−2の方向に60゜回転し、そのボール溝16の傾斜によ
り揺動歯車10の傾斜方向が同じく60゜変化して、平面部1
8と磁極3−2とが最も近接した状態で停止する。
Now, the magnetic pole 3-1 is in a state in which the flat surface portion 18 of the oscillating gear 10 is closest. In this state, when the coil 4-2 provided on the adjacent magnetic pole 3-2 is energized, an attractive force is generated between the magnetic pole 3-2 and the flat portion 18. Then, the rotor 14 rotates 60 ° in the direction of the magnetic pole 3-2, and the inclination of the ball groove 16 causes the inclination direction of the oscillating gear 10 to change by 60 ° as well.
8 and the magnetic pole 3-2 stop when they are closest to each other.

この様にしてコイル4−3,4−4…4−6,4−1と
順次通電していくと、回転子14が一回転する間に揺動歯
車10はその傾斜方向が一回転することとなる。そうする
と、固定歯車2と噛合つている第1の歯面との間に各々
の歯数AとBの差だけの回転変位を生ずる。この時の回
転角θ1は、 となる。更に、同時に第2の歯面9(歯数C)と出力歯
車7(歯数D)との間にも揺動歯車10の揺動運動の結果
の回転変位が生ずる。その時の回転角θ2は出力歯車7
を規準にして考えれば、 となる。全体として考えた場合の回転角θはθ1とθ2
和であるから である。今、一例としてA=100,B=101,C=102,
D=101とした場合、 即ち回転子14が一回転すると、出力軸は逆方向に約1万
分の1回転することとなる。コイル4−1〜4−6の数
が6ケであるから出力軸を一回転させるに必要なパルス
数は約6万パルスとなり、従来のパルスモータが200〜4
00パルスであるのに比べて数百倍の値となる。このこと
は1パルスで得られる回転角度が従来のモータの数百分
の1の微小なものまで可能であることを意味する。しか
もこの微小角度は揺動歯車10の運動による機械的な減速
によるものであるので、もし機械効率が著しく悪くなけ
れば回転トルクは減速比に反比例して強くなるので従来
モータの数百倍となる可能性を持つている。実用状態で
種々の損失を含めた場合でも数10倍のトルクは充分に保
証することが出来る。更にこの場合、減速機構はケース
1の内部にモータの一部として内蔵されてしまつている
ので別途に減速機を用いる時と比べてスペース及び重量
の大巾な減少となり、本発明のモータを使用した場合装
置自体が大巾に小型化される可能性を持つている。又、
機構部分は全て剛性の高いものであり材料のたわみを利
用した構造は採用していないので回転角の精度は高く、
又振動を生ずる可能性もない。一方この様な大巾な減速
を必要としない場合には、回転子14の球面外形部15の中
心Oの位置を変えることにより、歯数AとB又はCとD
を同数とすることでその部分の減速比を1とし、全体の
減速比を数百分の1程度にすることも出来る。又、回転
子14に設けられたボール溝16は回転軸と一定角度傾
斜して設けられており、この傾斜により揺動歯車10は
常に一定角度傾斜して回転し、歯面8,9は夫々常に、
固定歯車2及び出力歯車7と噛み合っており、コイルの
通電を断ってもこの状態は保たれる。従って、通電を断
っても、出力軸6が空転することはなく、又、再通電し
た時に一旦はずれた歯車が衝突し動作不良及び破損する
ごとき問題も生じない。
When the coils 4-3, 4-4 ... 4-6, 4-1 are sequentially energized in this manner, the oscillating gear 10 makes one revolution in the inclination direction while the rotor 14 makes one revolution. Becomes Then, a rotational displacement corresponding to the difference between the number of teeth A and B is generated between the fixed gear 2 and the first tooth surface that meshes with the fixed gear 2. The rotation angle θ 1 at this time is Becomes Further, at the same time, a rotational displacement as a result of the oscillating motion of the oscillating gear 10 also occurs between the second tooth surface 9 (the number of teeth C) and the output gear 7 (the number of teeth D). The rotation angle θ 2 at that time is the output gear 7
Based on the criteria, Becomes The rotation angle θ when considered as a whole is the sum of θ 1 and θ 2. Is. Now, as an example, A = 100, B = 101, C = 102,
If D = 101, That is, when the rotor 14 makes one revolution, the output shaft makes about one-10,000th revolution in the opposite direction. Since the number of coils 4-1 to 4-6 is 6, the number of pulses required to rotate the output shaft once is about 60,000, and the conventional pulse motor has 200 to 4 pulses.
The value is several hundred times that of the 00 pulse. This means that the rotation angle obtained with one pulse can be as small as several hundredths of that of the conventional motor. Moreover, since this minute angle is due to mechanical deceleration due to the movement of the oscillating gear 10, if the mechanical efficiency is not significantly low, the rotating torque becomes stronger in inverse proportion to the reduction ratio, and thus becomes several hundred times that of the conventional motor. Have the potential. Even when various losses are included in a practical state, a torque of several tens of times can be sufficiently guaranteed. Further, in this case, since the speed reducing mechanism is built in the case 1 as a part of the motor, the space and the weight are greatly reduced as compared with the case where the speed reducer is separately used. If this is done, the device itself may be greatly downsized. or,
Since the mechanical parts are all highly rigid and do not employ a structure that utilizes the bending of the material, the accuracy of the rotation angle is high,
Moreover, there is no possibility of causing vibration. On the other hand, when such a large deceleration is not required, the number of teeth A and B or C and D can be changed by changing the position of the center O of the spherical outer shape portion 15 of the rotor 14.
It is also possible to make the reduction ratio of that portion 1 by setting the same number, and reduce the entire reduction ratio to about several hundredths. Further, the ball groove 16 provided on the rotor 14 is provided so as to be inclined at a constant angle with respect to the rotating shaft, and by this inclination, the oscillating gear 10 is always rotated while being inclined at a constant angle, and the tooth flanks 8 and 9 are respectively rotated. always,
It meshes with the fixed gear 2 and the output gear 7, and this state is maintained even if the coil is de-energized. Therefore, even if the energization is cut off, the output shaft 6 does not run idle, and there is no problem such as a malfunction or breakage caused by a gear that once disengages when re-energized.

第3図は本発明の他の一実施例の構造を示す側断面図で
あり、第4図はその正断面図である。第3図及び第4図
において回転子14−1及び14−2は互いに逆方向に傾い
たボール溝16−1、16−2を有した状態でパイプ20で結
合されている。固定歯車2−1、2−2、出力歯車7−
1、7−2、揺動歯車10−1、10−2は第1図、第2図
に示す実施例のものを左右対称に設けたものであり、磁
極3−1〜3−6は非磁性体のホルダー21を介してケー
ス1に固定されている。又、パイプ20の外周には60゜ご
とにS−N−S−N−O−Oと着磁されたマグネツトリ
ング22を有する。尚、Oは無着磁を示す。又、該マグネ
ツト22に近接して磁気感知素子23−1、23−2が180゜ご
とに配置され、間接的にケース1に固定されている。
FIG. 3 is a side sectional view showing the structure of another embodiment of the present invention, and FIG. 4 is a front sectional view thereof. In FIGS. 3 and 4, the rotors 14-1 and 14-2 are connected by a pipe 20 with ball grooves 16-1 and 16-2 inclined in opposite directions. Fixed gears 2-1, 2-2, output gear 7-
1, 7-2 and oscillating gears 10-1 and 10-2 are symmetrically provided for the embodiment shown in FIGS. 1 and 2, and the magnetic poles 3-1 to 3-6 are non-symmetrical. It is fixed to the case 1 via a magnetic holder 21. Further, on the outer circumference of the pipe 20, there is a magnet ring 22 magnetized as S-N-S-N-N-O-O every 60 °. Incidentally, O indicates no magnetization. In addition, magnetic sensing elements 23-1 and 23-2 are arranged close to the magnet 22 at every 180 ° and are indirectly fixed to the case 1.

第3図及び第4図に示す実施例において、その動作原理
は第1図及び第2図に示す実施例のものと大略同じであ
るが、第1図、第2図に示す実施例の場合には駆動パル
スの周波数が高く、回転子14の回転が高速になると揺動
歯車10の揺動運動による振動が発生するおそれがある。
これに対し第3図、第4図に示す実施例においては、揺
動歯車10−1と10−2が対称の運動をするので、前記振
動を完全に打消すことが出来る。又、回転子14−1及び
14−2はパイプ20で結合されているので回転力を互いに
半分づつ受け持つこととなり、歯車等各部に加わる応力
を半減させることが出来る上回転を滑らかにすることが
出来る効果を有する。又、パイプ20に設けたマグネツト
22と磁気検知素子23−1、23−2により回転子14−1、
14−2の回転位置を検知することが出来る。表はその検
知状態を示す。
In the embodiment shown in FIGS. 3 and 4, the operating principle is almost the same as that of the embodiment shown in FIGS. 1 and 2, but in the case of the embodiment shown in FIGS. When the frequency of the drive pulse is high and the rotation speed of the rotor 14 becomes high, vibration due to the oscillating motion of the oscillating gear 10 may occur.
On the other hand, in the embodiment shown in FIGS. 3 and 4, since the oscillating gears 10-1 and 10-2 make symmetrical movements, the vibration can be canceled out completely. Also, the rotor 14-1 and
Since 14-2 is connected by the pipe 20, the rotational forces are halved by each other, so that the stress applied to each part such as the gear can be halved, and the rotation can be smoothed. In addition, the magnet installed on the pipe 20
22 and the magnetic sensing elements 23-1, 23-2 make the rotor 14-1,
The rotational position of 14-2 can be detected. The table shows the detection status.

このことにより回転子14−1、14−2がパルス駆動によ
り正しく回転しているか否か、即ちいわゆる脱調状態の
有無を検知することが出来る。このことは従来のパルス
モータにはない特徴であり、駆動装置全体の信頼性を大
巾に向上することが出来る。更に前記磁気検知素子22−
1、22−2の出力信号によつて各コイル4−1〜4−6
の通電回路を制御すれば、いわゆるブラシレスモータと
して一般のDCモータのごとき使用方法も可能になる。
この場合の駆動回路の一実施例を第5図に示す。
This makes it possible to detect whether or not the rotors 14-1 and 14-2 are correctly rotated by pulse driving, that is, whether or not there is a so-called step-out condition. This is a characteristic that conventional pulse motors do not have, and the reliability of the entire drive device can be greatly improved. Further, the magnetic sensing element 22-
According to the output signals of 1 and 22-2, each coil 4-1 to 4-6
By controlling the energizing circuit, the usage method such as a general DC motor as a so-called brushless motor becomes possible.
An example of the drive circuit in this case is shown in FIG.

第5図において、24は電源、25はコイル制御回路、26は
正転、停止、逆転切換回路である。切換回路26を正転に
セツトしておけば、磁気検知素子23−1、23−2によつ
て検知した回転子14−1、14−2の位置より常に1つ先
のコイルに通電する様にコイル制御回路25に信号を送つ
てやれば、連続的に正方向に回転する。又、逆転にセツ
トしておけば1つ後のコイルに通電するごとくなり、連
続的に逆方向に回転する。又、停止にセツトしておけば
停止位置を強いトルクで保持することが出来るごときも
のである。
In FIG. 5, 24 is a power supply, 25 is a coil control circuit, and 26 is a forward rotation, stop, and reverse rotation switching circuit. If the switching circuit 26 is set to the normal rotation, the coil one step ahead of the positions of the rotors 14-1 and 14-2 detected by the magnetic detecting elements 23-1 and 23-2 is always energized. When a signal is sent to the coil control circuit 25, the coil rotates continuously in the positive direction. Also, if the coil is set to reverse rotation, the coil after one is energized, and the coil continuously rotates in the opposite direction. Also, if the vehicle is set to stop, the stop position can be held with a strong torque.

尚、第1図〜第5図までの説明において磁極3−1〜3
−6、コイル4−1〜4−6の数を6ケとしているが、
その数は3ケ以上であれば何個でも良い。又、歯数A,
B,C,Dも任意に選択して良い。又、マグネツト22及
び磁気検知素子23−1、23−2の着磁方法及び数につい
ても本実施例に限定するものではない。更に第1図、第
2図に示す実施例に第3図、第4図に示すマグネツト22
及び磁気検知素子23−1、23−2を設けることが出来る
こともいうまでもない。
In the description of FIGS. 1 to 5, the magnetic poles 3-1 to 3
-6, the number of coils 4-1 to 4-6 is 6, but
The number may be any number as long as it is 3 or more. Also, the number of teeth A,
B, C and D may be arbitrarily selected. Further, the magnetizing method and the number of the magnet 22 and the magnetic detecting elements 23-1, 23-2 are not limited to those in this embodiment. Further, in the embodiment shown in FIGS. 1 and 2, the magnet 22 shown in FIGS.
It goes without saying that the magnetic detection elements 23-1 and 23-2 can be provided.

以上の説明のごとく、本発明のモータは全く新規な駆動
原理に基づくものであり通電を断っても歯車の噛み合い
が外れることがないので、再通電時に動作不良及び破損
することもなく、その微少なステツプ回転角、強大な回
転トルク及び回転位置検知機能等、独自の極めて優れた
特徴を有するものであり、更に小型軽量であるので、産
業界における本発明の効果は極めて著しい。
As described above, the motor of the present invention is based on a completely new driving principle, and the meshing of gears does not disengage even when the power supply is cut off. It has unique and extremely excellent features such as a large step rotation angle, a strong rotation torque, and a rotation position detection function, and since it is small and lightweight, the effect of the present invention in the industrial world is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構造を示す側断面図、第2
図はその正断面図、第3図は本発明の他の一実施例の構
造を示す側断面図、第4図はその正断面図、第5図は駆
動回路図である。 1……ケース、2……固定歯車、3……磁極、4……コ
イル、6……出力軸、7……出力歯車、10……揺動歯
車、22……マグネツト、23……磁気検知素子。
FIG. 1 is a side sectional view showing the structure of an embodiment of the present invention, and FIG.
FIG. 4 is a front sectional view thereof, FIG. 3 is a side sectional view showing the structure of another embodiment of the present invention, FIG. 4 is a front sectional view thereof, and FIG. 5 is a drive circuit diagram. 1 ... Case, 2 ... Fixed gear, 3 ... Magnetic pole, 4 ... Coil, 6 ... Output shaft, 7 ... Output gear, 10 ... Oscillating gear, 22 ... Magnet, 23 ... Magnetic detection element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】出力軸と共に回転する出力歯車と、本体に
固定された固定歯車を互いに歯面が対向するごとく設
け、該両歯車の間に、両面に歯面を有する揺動歯車を、
出力軸に対し常に一定角度傾斜した状態を維持せしめる
溝を回転子を介して回転自在に設け、該揺動歯車の第1
の歯面を固定歯車に噛み合わせ、第2の歯面を出力歯車
に噛み合わせ、各々の歯車の歯面は傘歯車を形成せし
め、更に揺動歯車の揺動方向を、複数個の電磁石の吸引
力によって行わしめるごとくなしたことを特徴とするモ
ータ。
1. An output gear rotating with an output shaft and a fixed gear fixed to a main body are provided such that tooth surfaces face each other, and an oscillating gear having tooth surfaces on both sides is provided between the both gears.
A groove for keeping a state in which the output shaft is always inclined at a constant angle is rotatably provided via a rotor, and
The tooth surface of the gear is meshed with the fixed gear, the second tooth surface is meshed with the output gear, and the bevel gear is formed on the tooth surface of each gear. A motor characterized in that it works as if it were done by suction.
JP14151284A 1984-07-10 1984-07-10 Motor Expired - Lifetime JPH065981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14151284A JPH065981B2 (en) 1984-07-10 1984-07-10 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14151284A JPH065981B2 (en) 1984-07-10 1984-07-10 Motor

Publications (2)

Publication Number Publication Date
JPS6122752A JPS6122752A (en) 1986-01-31
JPH065981B2 true JPH065981B2 (en) 1994-01-19

Family

ID=15293684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14151284A Expired - Lifetime JPH065981B2 (en) 1984-07-10 1984-07-10 Motor

Country Status (1)

Country Link
JP (1) JPH065981B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034320A1 (en) * 2012-08-29 2014-03-06 三菱重工業株式会社 Actuator

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001369B2 (en) 2003-03-27 2006-02-21 Scimed Life Systems, Inc. Medical device
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US20150045168A1 (en) * 2011-05-06 2015-02-12 Johnson Controls Technology Company Planetary gear arrangement for a seat adjustment mechanism and method for operating such a planetary gear arrangement
JP5395158B2 (en) * 2011-12-21 2014-01-22 オリエンタルモーター株式会社 Geared motor
US9124150B2 (en) * 2013-07-12 2015-09-01 The Boeing Company Active-active redundant motor gear system
US9164497B2 (en) * 2013-10-01 2015-10-20 The Boeing Company Reluctance motor system
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
US9929623B2 (en) * 2014-12-11 2018-03-27 The Boeing Company Reluctance motor with virtual rotor
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath
US11451124B2 (en) * 2018-05-23 2022-09-20 Tau Motors, Inc. Electric motor
WO2024069915A1 (en) * 2022-09-30 2024-04-04 ローツェ株式会社 Actuator and workpiece transfer robot comprising same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034320A1 (en) * 2012-08-29 2014-03-06 三菱重工業株式会社 Actuator
JP2014047797A (en) * 2012-08-29 2014-03-17 Mitsubishi Heavy Ind Ltd Actuator
CN104603500A (en) * 2012-08-29 2015-05-06 三菱重工业株式会社 Actuator
US9488248B2 (en) 2012-08-29 2016-11-08 Mitsubishi Heavy Industries, Ltd. Actuator

Also Published As

Publication number Publication date
JPS6122752A (en) 1986-01-31

Similar Documents

Publication Publication Date Title
US3452227A (en) Motor with gyrating rotor
JP6410732B2 (en) Integrated multi-turn absolute position sensor for multi-pole count motors
JPH065981B2 (en) Motor
US6982530B2 (en) Drive control system
JP5177670B2 (en) Magnetic wave gear device and magnetic transmission speed reducer
JP3427511B2 (en) Dual-shaft output motor
JPH0815389B2 (en) Step type motor and its drive circuit
USRE29411E (en) Harmonic drive for digital step motor
US3111596A (en) Synchronous electric motor
JPH02151253A (en) Stepping motor having low stopping torque
US3456139A (en) Wobble drum step motor
US3644764A (en) Harmonic drive for digital step motor
CN1148752A (en) Dynamo used in clock
JP2004120815A (en) 2-degree-of-freedom actuator
JPH08336274A (en) Magnetic screw transmission
JPS6043059A (en) Step motor
JPS6223361A (en) Motor actuator
JPH0517848Y2 (en)
JPS62254655A (en) Rotary machine
JP2004364348A (en) theta-X ACTUATOR
KR100531807B1 (en) Noise reduction structure of switched reluctance motor
US20110215664A1 (en) Epitrochoidal Electric Motor III
USRE27446E (en) Welch motor with gyrating rotor
JP2003139213A (en) Magnetic screw transmission device
JPH0736313Y2 (en) Rotating ornament drive