JPH0658908B2 - Method of forming thin film pattern - Google Patents

Method of forming thin film pattern

Info

Publication number
JPH0658908B2
JPH0658908B2 JP59026450A JP2645084A JPH0658908B2 JP H0658908 B2 JPH0658908 B2 JP H0658908B2 JP 59026450 A JP59026450 A JP 59026450A JP 2645084 A JP2645084 A JP 2645084A JP H0658908 B2 JPH0658908 B2 JP H0658908B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
film pattern
ion beam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59026450A
Other languages
Japanese (ja)
Other versions
JPS60169141A (en
Inventor
克博 塚本
弘朝 大賀
昌弘 米田
秀明 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59026450A priority Critical patent/JPH0658908B2/en
Publication of JPS60169141A publication Critical patent/JPS60169141A/en
Publication of JPH0658908B2 publication Critical patent/JPH0658908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、化合物ガス雰囲気中で、イオン・ビームを
基板上に照射し、その上に化合物ガスの成分である物質
からなる所望の薄膜パターンを形成する薄膜パターンの
形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention irradiates a substrate with an ion beam in a compound gas atmosphere, and a desired thin film pattern made of a substance which is a component of the compound gas is formed on the substrate. The present invention relates to a method of forming a thin film pattern for forming a film.

〔従来の技術〕 従来、シリコンまたはシリコン化合物の薄膜パターンを
半導体基板上に形成する方法として化学蒸着法(Chemica
l Vapor Deposition:CVD法)により、シリコン化合物を
熱分解、あるいは他のガスと化合させてシリコンあるい
はシリコン化合物の薄膜を半導体基板全面に形成し、し
かる後に、周知の写真製版方法およびエッチング方法に
より所望の薄膜パターンを形成している。
[Prior Art] Conventionally, as a method for forming a thin film pattern of silicon or a silicon compound on a semiconductor substrate, a chemical vapor deposition method (Chemica
Vapor Deposition (CVD method) to thermally decompose the silicon compound or combine it with another gas to form a thin film of silicon or a silicon compound on the entire surface of the semiconductor substrate, and then the well-known photoengraving method and etching method. Forming a thin film pattern.

ところで、上記したCVD法では、熱的に励起された化
学反応を利用するので、半導体基板の温度を450℃な
いし800℃程度に昇温しなければならず、そのため、
アルミニウムなどの金属配線を施した半導体基板には上
記の薄膜を形成することは困難であった。また、形成さ
れた薄膜そのものも、密度やクラックなどの点で必ずし
も満足すべきものではなかった。
By the way, since the above-mentioned CVD method utilizes a thermally excited chemical reaction, the temperature of the semiconductor substrate has to be raised to about 450 ° C. to 800 ° C., and therefore,
It was difficult to form the above thin film on a semiconductor substrate provided with a metal wiring such as aluminum. Further, the formed thin film itself is not always satisfactory in terms of density and cracks.

そこで、近年では低温での薄膜形成を目的として、熱的
に励起された化学反応に代わってプラズマ反応を利用す
るプラズマCVD法や、紫外線による化学反応を利用す
る光CVD法などが実用化されつつある。これらの新し
しCVD法は、300℃以下の基板温度でその上に薄膜
を形成し得るが、薄膜の膜質は、先に述べた高温のCV
D法に比べて密度が低く、ピンホールなどの欠陥も多
く、したがって、ごく限られた分野でのみ実用化されて
いるに過ぎない。
Therefore, in recent years, for the purpose of forming a thin film at a low temperature, a plasma CVD method utilizing a plasma reaction instead of a thermally excited chemical reaction, an optical CVD method utilizing a chemical reaction by ultraviolet rays, etc. have been put into practical use. is there. Although these new CVD methods can form a thin film on the substrate at a substrate temperature of 300 ° C. or lower, the quality of the thin film is the same as that of the high temperature CV described above.
The density is lower than that of the D method, and there are many defects such as pinholes. Therefore, it is only put to practical use in a very limited field.

また、以上述べた各CVD法は、半導体基板全面に薄膜
を形成するものであり、その後、薄膜のパターンを形成
するには、写真製版方法によりホト・レジストの所望の
パターンを形成して、しかる後に、このホト・レジスト
をマスクにエッチングする必要があり、その分工程が複
雑になるとともに、近年のパターンの微細化に伴ってパ
ターン幅の制御やパターンの重ね合せなどに大きな制約
が生じている。
Further, each of the above-mentioned CVD methods forms a thin film on the entire surface of a semiconductor substrate. Thereafter, in order to form a thin film pattern, a desired pattern of a photo resist is formed by a photoengraving method. Later, it is necessary to etch this photoresist as a mask, which complicates the process, and with the recent miniaturization of patterns, there are major restrictions on pattern width control and pattern superposition. .

〔発明の概要〕[Outline of Invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、化合物ガスとイオン・ビームと
の相互作用により、基板上に従来のものに比べて非常に
低い温度で薄膜を形成すると同時に、前記イオン・ビー
ムを0.1μm程度に細く集中させ、かつ、このイオン
・ビームを基板上に適宜走査させ、所望の形状を持つ薄
膜パターンを、当該基板上に形成する方法を提供するも
のである。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional one, and a thin film is formed on a substrate at a temperature extremely lower than that of the conventional one due to the interaction between the compound gas and the ion beam. A method for forming a thin film pattern having a desired shape on the substrate by simultaneously forming the thin film pattern and concentrating the ion beam finely to about 0.1 μm and appropriately scanning the ion beam on the substrate To do.

〔発明の実施例〕Example of Invention

以下、この発明の一実施例を図面について説明する。第
1図において、1は半導体その他の基板、2はこの基板
1を収納した高真空容器内に導入されたSiHガス、
3は前記高真空容器を通して基板1に照射されたAr
イオン・ビーム、4はこれによって前記基板1上に形成
されたSi薄膜、4aはSi原子を示す。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a semiconductor or other substrate, 2 is a SiH 4 gas introduced into a high vacuum container accommodating the substrate 1,
3 is Ar + with which the substrate 1 is irradiated through the high vacuum container
An ion beam, 4 is a Si thin film formed on the substrate 1 by this, and 4a is a Si atom.

上記構成において、Si薄膜4の形成に際しては、ま
ず、高真空容器中に基板1を設置し、この基板1の表面
に図示点線で示すように微量のSiHガス2を流す。
この際のSiHガス2は適宜差動排気システムによ
り、基板1の表面付近でのみ所定のガス圧力を維持し、
他には影響を与えないようにしておく。次に、0.1μ
m程度に細く絞ったArイオン・ビーム3を照射す
る。この際のイオン・ビームのエネルギーは、SiH
ガス2を解離するのに必要なエネルギーがあればよいの
で、数100ないし数10KeVのエネルギーでよい。
In the above configuration, when forming the Si thin film 4, first, the substrate 1 is placed in a high vacuum container, and a small amount of SiH 4 gas 2 is flown on the surface of the substrate 1 as shown by the dotted line in the figure.
At this time, the SiH 4 gas 2 is maintained at a predetermined gas pressure only near the surface of the substrate 1 by an appropriate differential exhaust system,
Keep it unaffected. Next, 0.1μ
Irradiate the Ar + ion beam 3 narrowed down to about m. The energy of the ion beam at this time is SiH 4
The energy required to dissociate the gas 2 is sufficient, so that the energy of several hundreds to several tens KeV may be used.

上記のようにしてArイオン・ビーム3で照射された
基板1は局所的に温度が上昇し、かつ、SiHガス2
の一部にArイオン・ビーム3が衝突し、SiとHに
解離する。この作用によりArイオン・ビーム3を照
射された基板1の表面には、Si原子4aが図示のよう
に堆積する。そして、この堆積したSi原子4aは、A
イオン・ビーム3によって照射されているので、そ
の間におけるイオンのノック・オン効果により基板1の
表面層と混合し、両者の密着強度は飛躍的に向上すると
ともに生成薄膜の密度もち密になり、上記従来のCVD
法で形成した薄膜に比べて膜質は、圧倒的に優れたもの
になる。
The temperature of the substrate 1 irradiated with the Ar + ion beam 3 as described above locally rises, and the SiH 4 gas 2
The Ar + ion beam 3 collides with a part of the ion and is dissociated into Si and H. By this action, Si atoms 4a are deposited as shown on the surface of the substrate 1 irradiated with the Ar + ion beam 3. The deposited Si atoms 4a are
Since the irradiation is performed by the r + ion beam 3, the ions are mixed with the surface layer of the substrate 1 due to the knock-on effect of the ions during that time, and the adhesion strength between the two is dramatically improved and the density of the formed thin film becomes dense. , The above conventional CVD
The film quality is overwhelmingly superior to the thin film formed by the method.

以上は基板1上に局所的に形成された薄膜について説明
したが、第2図に示すように集束した前記Arイオン
・ビーム3を前記基板1上で二次元的に走査させること
によって、所望形状を持つ薄膜パターンを形成すること
ができ、従来の写真製版方法とエッチング方法とを採用
していた所望のパターン形成工程が不要になり、かつ近
年のサブ・ミクロンパターン形成の要請にも前記集束イ
オン・ビームの使用により簡単に対応できることにな
る。
Although the thin film locally formed on the substrate 1 has been described above, the Ar + ion beam 3 focused as shown in FIG. A thin film pattern having a shape can be formed, a desired pattern forming step which adopts a conventional photoengraving method and an etching method is not necessary, and the converging light is required even in the recent demand for sub-micron pattern formation. The use of an ion beam would make it easier.

なお、使用されるイオン・ビームとしては、不活性のア
ルゴンイオンに代わって酸素イオンや窒素イオンのイオ
ン・ビームを用いた場合は、基板1の表面でのSiH
ガス2の解離と同時に、堆積したSi原子4aがその時
の酸素や窒素と反応し、酸化シリコン膜や窒化シリコン
膜の薄膜パターンになることはもちろんである。
When an ion beam of oxygen ions or nitrogen ions is used in place of inert argon ions as the ion beam used, SiH 4 on the surface of the substrate 1 is used.
Simultaneously with the dissociation of the gas 2, the deposited Si atoms 4a react with oxygen and nitrogen at that time to form a thin film pattern of a silicon oxide film or a silicon nitride film.

また、上記したこの発明の反応性イオン・ビーム・デボ
ジションでは、基板1の温度がほぼ室温程度で、良質の
薄膜パターンを形成できるので、設置作製の広範な分野
に対応することができる。
Further, in the above-mentioned reactive ion beam devolution of the present invention, since the temperature of the substrate 1 is about room temperature and a good quality thin film pattern can be formed, it is possible to cope with a wide range of installation and fabrication fields.

その他、上記実施例では、シラン・ガスを用いたシリコ
ンまたは、シリコン化合物の薄膜パターンの形成方法に
ついて述べたが、シラン・ガスの代わりに金属のハロゲ
ン化合物ガス、例えばWFや金属の有機化合物ガスを
用いれば、その時の金属あるいは当該金属の酸化物や窒
化物の薄膜パターンの形成も同時の方法で得られること
になる。
In addition, in the above embodiments, the method of forming a thin film pattern of silicon or a silicon compound using silane gas has been described. However, instead of silane gas, a metal halogen compound gas such as WF 6 or a metal organic compound gas is used. By using, the thin film pattern of the metal or the oxide or nitride of the metal at that time can be obtained by the same method.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明は、化合物ガスとイオン
・ビームとの相互作用により、室温程度の非常に低い温
度で薄膜を形成できると同時に、使用するイオン・ビー
ムを、例えば0.1μm程度に細く集束させ、かつ、こ
のイオン・ビームを基板上で適宜走査させて所望の形状
を持つ所期の薄膜パターンをより少ない工程で形成する
ことができ、さらに、形成された薄膜パターンの密度も
高く、基板との密着強度も大なるものが得られる。
As described above, according to the present invention, the thin film can be formed at a very low temperature of about room temperature by the interaction between the compound gas and the ion beam, and at the same time, the ion beam used is set to about 0.1 μm. A desired thin film pattern having a desired shape can be formed in a smaller number of steps by finely focusing and scanning the ion beam on the substrate appropriately. Further, the density of the formed thin film pattern is high. It is possible to obtain a substrate having a high adhesion strength with the substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の半導体装置における薄膜パターンの
形成方法の原理を示す説明図、第2図はイオン・ビーム
を走査し、所期の薄膜パターンを基板上に形成するこの
発明の方法を示す説明図である。 図中、1は基板、2はSiHガス、3はArイオン
ビームである。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is an explanatory view showing the principle of a method of forming a thin film pattern in a semiconductor device of the present invention, and FIG. 2 shows a method of the present invention in which a desired thin film pattern is formed on a substrate by scanning with an ion beam. FIG. In the figure, 1 is a substrate, 2 is a SiH 4 gas, and 3 is an Ar + ion beam. The same reference numerals in each drawing indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 有馬 秀明 兵庫県伊丹市瑞原4丁目1番地 三菱電機 株式会社エル・エス・アイ研究所内 (56)参考文献 特開 昭60−47415(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideaki Arima 4-1-1 Mizuhara, Itami City, Hyogo Prefecture Mitsubishi Electric Corporation LSI Research Laboratory (56) Reference JP-A-60-47415 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空容器中に設置された半導体基板と、こ
の基板表面に化合物ガスを導入するとともに、上記基板
表面に不活性、酸素または窒素イオンビームを走査し、
このイオンビームのエネルギにより上記化合物ガスを解
離して、室温程度の温度で上記基板表面に上記化合物ガ
ス成分を含む薄膜パターン形成することを特徴とする薄
膜パターンの形成方法。
1. A semiconductor substrate installed in a vacuum container, and a compound gas is introduced into the surface of the substrate, and the surface of the substrate is scanned with an inert, oxygen or nitrogen ion beam,
A method for forming a thin film pattern, characterized in that the compound gas is dissociated by the energy of the ion beam to form a thin film pattern containing the compound gas component on the surface of the substrate at a temperature of about room temperature.
JP59026450A 1984-02-13 1984-02-13 Method of forming thin film pattern Expired - Lifetime JPH0658908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026450A JPH0658908B2 (en) 1984-02-13 1984-02-13 Method of forming thin film pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026450A JPH0658908B2 (en) 1984-02-13 1984-02-13 Method of forming thin film pattern

Publications (2)

Publication Number Publication Date
JPS60169141A JPS60169141A (en) 1985-09-02
JPH0658908B2 true JPH0658908B2 (en) 1994-08-03

Family

ID=12193836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026450A Expired - Lifetime JPH0658908B2 (en) 1984-02-13 1984-02-13 Method of forming thin film pattern

Country Status (1)

Country Link
JP (1) JPH0658908B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133635A (en) * 1981-02-12 1982-08-18 Nippon Telegr & Teleph Corp <Ntt> Formation of insulating film
JPS6047415A (en) * 1983-08-26 1985-03-14 Res Dev Corp Of Japan Method and device for forming compound thin film

Also Published As

Publication number Publication date
JPS60169141A (en) 1985-09-02

Similar Documents

Publication Publication Date Title
US4919749A (en) Method for making high resolution silicon shadow masks
JP3048749B2 (en) Thin film formation method
US4405710A (en) Ion beam exposure of (g-Gex -Se1-x) inorganic resists
EP0156999A2 (en) A method of forming a conductive film on an insulating region of a substrate
US4560642A (en) Method of manufacturing a semiconductor device
JPS5811512B2 (en) Pattern formation method
US4333793A (en) High-selectivity plasma-assisted etching of resist-masked layer
WO1991009646A1 (en) Oxygen ion-beam microlithography
JPS61117822A (en) Equipment for manufacturing semiconductor device
US4626315A (en) Process of forming ultrafine pattern
JPH0658908B2 (en) Method of forming thin film pattern
JPS61228633A (en) Formation of thin film
JP2937380B2 (en) Wiring forming method and apparatus
US4892635A (en) Pattern transfer process utilizing multilevel resist structure for fabricating integrated-circuit devices
JPH0618187B2 (en) Semiconductor substrate processing method
Heuberger et al. Open silicon stencil masks for demagnifying ion projection
JP2899542B2 (en) Method of manufacturing transfer mask
KR100596606B1 (en) Method of forming a fine pattern, and method of manufacturing a semiconductor device, and a semiconductor device having a fine pattern
GB2131608A (en) Fabricating semiconductor circuits
JPH0658889B2 (en) Thin film formation method
US20080038462A1 (en) Method of forming a carbon layer on a substrate
EP0251566B1 (en) Process for fabricating integrated-circuit devices utilizing multilevel resist structure
JPH06204185A (en) Dry etching method for copper thin film
JPS6219053B2 (en)
PL233806B1 (en) Method for producing patterns in a Si&lt;sub&gt;x&lt;/sub&gt;N layer by electron-beam lithography method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term