JPH065833A - Image sensor - Google Patents

Image sensor

Info

Publication number
JPH065833A
JPH065833A JP4159783A JP15978392A JPH065833A JP H065833 A JPH065833 A JP H065833A JP 4159783 A JP4159783 A JP 4159783A JP 15978392 A JP15978392 A JP 15978392A JP H065833 A JPH065833 A JP H065833A
Authority
JP
Japan
Prior art keywords
electrode
capacitance
individual electrodes
individual electrode
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4159783A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishihara
啓 石原
Kiyoshi Matsuda
潔 松田
Atsushi Tamaki
淳 玉木
Masatoshi Kato
雅敏 加藤
Tadahiko Hamaguchi
忠彦 浜口
Takeshi Takeda
岳 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Electric Corp filed Critical Mitsubishi Kasei Corp
Priority to JP4159783A priority Critical patent/JPH065833A/en
Priority to US08/077,443 priority patent/US5350915A/en
Priority to DE69315895T priority patent/DE69315895T2/en
Priority to EP93304757A priority patent/EP0575187B1/en
Publication of JPH065833A publication Critical patent/JPH065833A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Abstract

PURPOSE:To obtain a picture reading element which is composed of integrated pixels which are composed of a common electrode and individual electrodes made to face each other with a photoconducting layer therebetween and which has a large S/N ratio and a high MTF (spatial resolution) in an image sensor employing the picture reading element by a method wherein the line capacitance is not larger than 35% of the sum of the capacitances of the pixels and the respective output capacitances of the individual electrodes. CONSTITUTION:Lights which are applied to a copy surface 4 by light sources composed of LED arrays 3 and reflected are applied to the photoconducting part 1 of a line sensor by a rod lens array 2. Light signals are converted into electric signals by respective pixels and the electric signals are successively read through switching elements connected to individual electrodes as sequential signals. By reducing the widths or lengths of the individual electrodes which do not face a common electrode than the widths or lengths of the individual electrodes which face the common electrode, a line capacitance can be reduced and the degradation of an MTF can be avoided. By designing the shapes of the individual electrodes so as to have the line capacitance not larger than 35% of the sum of the capacitances of the respective pixels and the output capacitances of the individual electrodes, an MTF value necessary to binarize the output can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像信号を電気信号に変
換し、電気信号として取り出すイメージセンサーに用い
られる画像読み取り素子に関するものであり、有機系の
光導電材料を光電変換材料として使用したセンサーに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image reading element used in an image sensor for converting an image signal into an electric signal and extracting the electric signal as an electric signal. The sensor uses an organic photoconductive material as a photoelectric conversion material. It is about.

【0002】[0002]

【従来の技術】光センサーは光強度の計測に、またロボ
ット、各種オートメーションシステムにおける位置セン
サーとして、また情報通信、情報処理における画像情報
の読み取りなどに広く用いられている。特に画像情報処
理の技術、能力の進歩した今日、高性能な画像情報の入
力装置としてのイメージセンサーの進歩が強く望まれて
いる。ファクシミリ、ワードプロセッサ、電子ファイル
システムなどは画像入力装置を必要とする代表的な装置
である。
2. Description of the Related Art Optical sensors are widely used for measuring light intensity, as position sensors in robots and various automation systems, and for reading image information in information communication and information processing. In particular, with the recent advances in image information processing technology and capabilities, there is a strong demand for advances in image sensors as high-performance image information input devices. Facsimile machines, word processors, electronic file systems, etc. are typical devices that require an image input device.

【0003】このような入力装置としては、ビデオカメ
ラのような二次元情報を取り出すものと、ラインセンサ
ーを利用して画像をスキャンして読み出すイメージスキ
ャナーが考えられるが、通常十分な解像力(画素数)を
得るためにラインセンサーを使用したイメージスキャナ
が使用されている。ラインセンサーとしては、結晶シリ
コンを使用した電荷結合素子が代表的であるが、素子の
大きさに限界があって、大きな面積の画像を読み取るに
は縮小光学系を使用するか、素子を多数高精度に並べる
必要がある。それに対して硫化カドミウム、アモルファ
スシリコンを光導電面としたセンサーは比較的大きな面
積が可能であり、ロッドレンズアレイを併用して等倍密
着型のラインセンサーが一部実用化されている。
As such an input device, a device for taking out two-dimensional information such as a video camera and an image scanner for scanning and reading an image by using a line sensor can be considered, but usually a sufficient resolving power (number of pixels) is used. Image scanner using a line sensor is used to obtain). Charge-coupled devices that use crystalline silicon are typical line sensors, but there is a limit to the size of the devices, and a reduction optical system is used to read images with a large area, or a large number of devices are used. It is necessary to line up with accuracy. On the other hand, a sensor having a photoconductive surface of cadmium sulfide or amorphous silicon can have a relatively large area, and partly a line sensor of the same size contact type has been put into practical use by using a rod lens array together.

【0004】しかし、従来のこのような光導電材料は成
膜の方法に制約があって量産性が低く、実質的には大面
積の画像をスキャンする長いラインセンサーを作ること
は困難であった。一方光導電材料として有機系の材料を
使用したセンサーは、成膜が塗布液からの塗布によって
行うことができ容易であり、生産性に優れていること、
大面積化が容易であること、暗導電性が低くシグナル/
ノイズ比を大きく取れるなどいくつかの有利な点を有し
ている。そのため有機材料を光導電面に使用したイメー
ジセンサーの例がいくつか知られている(例えば特開昭
61−285262号公報、特開昭61−291657
号公報、特開平1−184961号公報等参照)。
However, such a conventional photoconductive material is low in mass productivity due to restrictions on the method of film formation, and it has been practically difficult to form a long line sensor for scanning an image of a large area. . On the other hand, a sensor using an organic material as the photoconductive material is easy to form a film by coating from a coating liquid, and has excellent productivity,
Easy to increase the area, low dark conductivity and signal /
It has some advantages such as a large noise ratio. Therefore, some examples of image sensors using an organic material for the photoconductive surface are known (for example, JP-A-61-285262 and JP-A-61-291657).
Japanese Patent Laid-Open Publication No. 1-184961, etc.).

【0005】ところがこうした有機系の光導電材料を使
用したイメージセンサーにおいては空間分解能(以下
「MTF」と略す。)が、無機系の光導電材料を使用し
たイメージセンサーに比べ低く、好ましい出力画像を得
ることが困難であった。ここで、MTFとは、イメージ
センサーの出力電圧の最大値をVmax 、最小値をVmin
とすると〔(Vmax −Vmin )/(Vmax +Vmin )〕
×100(%)で定義される値である。MTFはイメー
ジセンサーに白と黒が等間隔で並んだ原稿を入力して測
定できる。
However, an image sensor using such an organic photoconductive material has a lower spatial resolution (hereinafter abbreviated as "MTF") than an image sensor using an inorganic photoconductive material, and a preferable output image is obtained. It was difficult to get. Here, the MTF is the maximum value of the output voltage of the image sensor is V max and the minimum value is V min.
Then, [(V max −V min ) / (V max + V min )]
It is a value defined by × 100 (%). The MTF can be measured by inputting a document in which white and black are arranged at equal intervals to the image sensor.

【0006】実用上MTFが30%以上であると比較的
高解像度で原稿を読み取ることができ、秀れた出力画像
を得ることができる。
Practically, when the MTF is 30% or more, the original can be read with a relatively high resolution and an excellent output image can be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、成膜
が容易であって生産性に優れ、大面積化が容易であっ
て、暗導電性が低く、シグナル/ノイズ比を大きくとれ
ると共に、MTFが高い有機系の光導電材料を使用した
イメージセンサーを提供することにある。
An object of the present invention is to easily form a film, to improve productivity, to easily increase the area, to reduce the dark conductivity, and to obtain a large signal / noise ratio. , And to provide an image sensor using an organic photoconductive material having a high MTF.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成するために鋭意研究の結果、MTFが各画素出力間
の干渉の度合と関連することを見い出し本発明を完成す
るに至った。即ち本発明の要旨は、全ての画素に共通の
共通電極と各画素に対応した個別電極とを有機光導電体
層を介して設けた画素であって画像情報を電気信号に変
換する画素を集積してなる画像読み取り素子を用いたイ
メージセンサーにおいて、線間容量が該画素の電気容量
と各個別電極の出力容量との和の35%以下であること
を特徴とするイメージセンサーに存する。
As a result of intensive studies to achieve the above object, the present inventors have found that MTF is associated with the degree of interference between pixel outputs, and completed the present invention. . That is, the gist of the present invention is a pixel in which a common electrode common to all pixels and an individual electrode corresponding to each pixel are provided via an organic photoconductor layer, and the pixels for converting image information into electric signals are integrated. In the image sensor using the image reading device, the line capacitance is 35% or less of the sum of the electric capacitance of the pixel and the output capacitance of each individual electrode.

【0009】以下、本発明につき詳細に説明する。本発
明における画素は、有機光導電体層を介して個別電極と
共通電極が設けられている。こうした画素を集積してな
る画像読み取り素子を用いたイメージセンサーの電気信
号の読み出し方法としては、電荷をコンデンサに蓄積し
読み出す電荷蓄積型と、光電流そのものを読み出す光電
流型とがあるが、前者の方が感度の点から好ましく、そ
のコンデンサとしては、特別なコンデンサーを別に設け
ることなく各画素の電気容量を用いることが多い。
The present invention will be described in detail below. In the pixel of the present invention, an individual electrode and a common electrode are provided via an organic photoconductor layer. As a method of reading an electric signal of an image sensor using an image reading element formed by integrating such pixels, there are a charge storage type for reading and storing a charge in a capacitor and a photocurrent type for reading a photocurrent itself. Is preferable from the viewpoint of sensitivity, and as the capacitor, the electric capacitance of each pixel is often used without providing a special capacitor separately.

【0010】ここで各画素の電気容量とは個別電極と共
通電極間の容量のことである。この場合電荷は各画素の
電気容量と各個別電極の出力容量との和の容量に蓄積さ
れる。ここで各個別電極の出力容量とは、各個別電極と
基準電位との間に存する電気容量を言い、基準電位は通
常0ボルトを意味する。又、個別電極とそれと隣接する
他の個別電極との間に存する電気容量を線間容量として
表わすと、各画素出力間の干渉の度合は各素子の電気容
量と各個別電極の出力容量との和に対する線間容量の比
1/kによって表わせる。
Here, the electric capacitance of each pixel is the capacitance between the individual electrode and the common electrode. In this case, the electric charge is stored in the sum of the electric capacity of each pixel and the output capacity of each individual electrode. Here, the output capacitance of each individual electrode means the electric capacitance existing between each individual electrode and the reference potential, and the reference potential usually means 0 volt. Further, when the electric capacitance existing between the individual electrode and another adjacent individual electrode is expressed as a line capacitance, the degree of interference between the pixel outputs depends on the electric capacitance of each element and the output capacitance of each individual electrode. It can be expressed by the ratio of the line capacitance to the sum 1 / k.

【0011】この画素出力間の干渉の度合をある特定値
以下にすることによりMTFが30%以上のイメージセ
ンサーを得ることができることがわかった。即ち、イメ
ージセンサー出力のMTFは線間容量に対する各素子の
電気容量と個別電極の出力容量との和の比kと関連し、
具体的にはkが大きいほどMTFは大きくなり、またM
TFに対するkの影響は空間周波数fが高いほど大きく
なる。
It has been found that an image sensor having an MTF of 30% or more can be obtained by setting the degree of interference between pixel outputs to be a certain value or less. That is, the MTF of the image sensor output is related to the ratio k of the sum of the electric capacitance of each element to the line capacitance and the output capacitance of the individual electrode,
Specifically, the larger k is, the larger MTF is.
The influence of k on TF becomes larger as the spatial frequency f becomes higher.

【0012】従ってMTFが30%以上のイメージセン
サーを得るには、線間容量が、各画素の電気容量と各個
別電極の出力容量との和の35%以下、より好ましくは
30%以下となるようにすればよい。しかしながら、有
機系の材料を使用したセンサーにおいて、有機光導電体
層を塗布液からの塗布で成膜する場合、成膜の精度の点
から膜厚を1μm以下にすることは困難であり、また有
機光導電体の比誘電率は3.5以下と小さい為、各画素
の電気容量は0.1から1pF(ピコファラット)であ
って、無機系の材料を使用したセンサーに比べて小さ
く、その結果、各画素の電気容量と各個別電極の出力容
量との和に対する、線間容量の比を35%以下にするこ
とは困難であった。
Therefore, in order to obtain an image sensor having an MTF of 30% or more, the line capacitance is 35% or less, more preferably 30% or less of the sum of the electric capacitance of each pixel and the output capacitance of each individual electrode. You can do it like this. However, in a sensor using an organic material, when the organic photoconductor layer is formed by coating from a coating liquid, it is difficult to reduce the film thickness to 1 μm or less from the viewpoint of film forming accuracy. Since the relative permittivity of the organic photoconductor is as small as 3.5 or less, the electric capacity of each pixel is 0.1 to 1 pF (picofarat), which is smaller than that of the sensor using the inorganic material. It was difficult to set the ratio of the line capacitance to the sum of the electric capacitance of each pixel and the output capacitance of each individual electrode to 35% or less.

【0013】本発明者らは、線間容量を小さくする手段
及び各画素の電気容量又は各個別電極の出力容量を大き
くする手段について検討した結果、線間容量を小さくす
るには個別電極を特定の形状の設計することが好ましい
こと、各画素の電気容量を大きくするには個別電極と共
通電極の少なくとも一部に絶縁層を設けることが好まし
いこと、又、各個別電極の出力容量を大きくするには一
定の電位に保った、個別電極もしくは共通電極以外の第
3の電極と個別電極の間に絶縁層を設けることが好まし
いことを見い出した。
The inventors of the present invention have studied the means for reducing the line capacitance and the means for increasing the electric capacitance of each pixel or the output capacitance of each individual electrode. As a result, the individual electrodes are specified to reduce the line capacitance. The shape is preferably designed, it is preferable to provide an insulating layer on at least a part of the individual electrode and the common electrode in order to increase the electric capacitance of each pixel, and the output capacitance of each individual electrode is increased. It has been found that it is preferable to provide an insulating layer between the third electrode other than the individual electrode or the common electrode and the individual electrode, which is kept at a constant potential.

【0014】以下、本発明を図面を用いて詳細に説明す
る。まず、本発明の画像読み取り素子を用いたセンサー
の全体構成の一例を図1に示す。この例ではいわゆる密
着型のラインセンサーの例が示されている。原稿面
(4)にLEDアレイ(3)よりなる光源から照射、反
射した光はロッドレンズアレイ(2)によってラインセ
ンサーの光導電部(1)に照射され、個々の画素で光電
変換された信号は個別電極につながったスイッチング素
子を介して逐次時系列信号として読み出されていく。光
電変換により各画素に生じた電流は電荷蓄積型で読み込
まれる。このように光導電体層と電極対からなる画素は
一次元に並べられラインセンサーとして使用される。
The present invention will be described in detail below with reference to the drawings. First, FIG. 1 shows an example of the overall configuration of a sensor using the image reading element of the present invention. In this example, an example of a so-called contact type line sensor is shown. The light radiated from the light source including the LED array (3) on the document surface (4) and reflected by the rod lens array (2) are radiated to the photoconductive portion (1) of the line sensor and photoelectrically converted by individual pixels. Are sequentially read out as time series signals via the switching elements connected to the individual electrodes. The current generated in each pixel by photoelectric conversion is read in as a charge storage type. In this way, the pixels composed of the photoconductor layer and the electrode pairs are arranged one-dimensionally and used as a line sensor.

【0015】センサー中の画像読み取り素子のうちいわ
ゆるサンドイッチ型素子の構成例を図2に示す。この場
合、個別電極(5)を設けた支持体(8)上にブロッキ
ング層(6)と光導電体層(7)が形成され、さらにそ
の上に共通電極(9)が設けられる。この場合、ブロッ
キング層(6)は個別電極(5)に直接接して設けられ
る。電極対におけるいずれかの電極は個別電極であり、
個別電極の一つ及びこれが対向する電極との電極対並び
に電極対の間に介在する光導電体層とブロッキング層と
で一つの画素が構成され、個別の画素の光に応じた信号
を取り出せる。電極対の一方及び光導電体層並びにブロ
ッキング層は各画素共通でよい。少なくとも一方の電極
は光の入射通路になり十分光を透過する透明電極である
ことが必要である。透明電極としては酸化インジウム、
酸化スズ、インジウム・スズ酸化物膜などの金属酸化
物、また金、アルミニウムなどの金属の薄い膜が挙げら
れる。もう一方の対向する電極には種々の金属が使用で
き、例えばアルミニウム、チタン、金、銀、銅、ニッケ
ル、クロム、モリブデン、タンタル、タングステンなど
が挙げられる。支持体側から露光を行う場合、支持体も
十分光を透過することが必要である。有機光導電体層と
してはアゾ顔料、フタロシアニン顔料、多環キノン顔
料、ペリレン顔料、メロシアニン顔料、スクウェアリウ
ム顔料等の電荷発生物質をバインダー中に分散させた層
構成が挙げられる。また、該電荷発生物質および電荷移
動物質を有効成分として含有し、両物質をバインダー樹
脂に分散した層構成、また電荷発生層、電荷移動層を積
層した層構成が挙げられる。
FIG. 2 shows a structural example of a so-called sandwich type element among the image reading elements in the sensor. In this case, the blocking layer (6) and the photoconductor layer (7) are formed on the support (8) provided with the individual electrodes (5), and the common electrode (9) is further provided thereon. In this case, the blocking layer (6) is provided in direct contact with the individual electrode (5). One of the electrodes in the electrode pair is an individual electrode,
One pixel is composed of one of the individual electrodes, an electrode pair with the electrode facing the individual electrode, and a photoconductor layer and a blocking layer interposed between the electrode pair, and a signal corresponding to the light of each individual pixel can be taken out. One of the electrode pairs, the photoconductor layer, and the blocking layer may be common to each pixel. At least one of the electrodes needs to be a transparent electrode that serves as an incident path for light and sufficiently transmits light. Indium oxide as the transparent electrode,
Examples thereof include metal oxides such as tin oxide and indium tin oxide films, and thin films of metals such as gold and aluminum. Various metals can be used for the other opposing electrode, and examples thereof include aluminum, titanium, gold, silver, copper, nickel, chromium, molybdenum, tantalum, and tungsten. When exposure is performed from the side of the support, the support must also sufficiently transmit light. Examples of the organic photoconductor layer include a layer structure in which a charge generating substance such as an azo pigment, a phthalocyanine pigment, a polycyclic quinone pigment, a perylene pigment, a merocyanine pigment, and a squarium pigment is dispersed in a binder. Further, a layer structure in which the charge generating substance and the charge transfer substance are contained as active ingredients and both substances are dispersed in a binder resin, and a layer structure in which the charge generation layer and the charge transfer layer are laminated are included.

【0016】個別電極の共通電極と対向している部分の
幅は各画素の出力を増加させるためにできるだけ大きく
設計されるので、各個別電極間の距離が小さくなり線間
容量は大きくなる結果、MTFが低下するという問題が
生じる。そこで個別電極の形状を線間容量が小さくなる
ように設計することによってMTFの低下を防ぐことが
好ましい。具体的には共通電極と対向していない部分の
個別電極の幅を対向している部分の幅に比べて細くする
かあるいは個別電極の長さを短くするなどの方法によっ
て、線間容量を小さくすることができる。
Since the width of the portion of the individual electrode facing the common electrode is designed to be as large as possible in order to increase the output of each pixel, the distance between the individual electrodes becomes small and the line capacitance becomes large. There is a problem that the MTF is lowered. Therefore, it is preferable to prevent the decrease of MTF by designing the shape of the individual electrode so that the line capacitance becomes small. Specifically, the line capacitance can be reduced by making the width of the individual electrode that is not facing the common electrode narrower than the width of the facing portion, or by shortening the length of the individual electrode. can do.

【0017】1mmあたり8個の画素(8dot/mm)で
構成されるイメージセンサーについて共通電極と対向し
ていない部分の個別電極の幅を変えることによって線間
容量を変化させたものを作製し、それらを用いて41p
/mmすなわち1mmあたり4ラインペアー、より具体的に
は1mmあたりに白と黒の線対が4組ある原稿を読み込ま
せてMTFを測定した結果を図3に示す。個別電極の長
さは1cmとした。ロッドレンズアイは41p/mmでMT
Fが70%の一般的なものを用いた。なお、41p/mm
というのは8dot/mmのイメージセンサーで読み取り
が可能な最も高い空間周波数である。MTFの低下は空
間周波数が高いほど大きいので、図3のMTF値はイメ
ージセンサー出力のMTFの最低値を示している。図3
の結果より、個別電極の形状を、線間容量が各画素の電
気容量と個別電極出力容量の和の35%以下、より好ま
しくは30%以下になるように設計することによって、
出力を2値化するのに必要なMTF値(30%以上)が
得られる事が分かった。
An image sensor having 8 pixels per 1 mm (8 dots / mm) was manufactured by changing the line capacitance by changing the width of the individual electrode in the portion not facing the common electrode. 41p using them
3 mm / mm, that is, 4 line pairs per 1 mm, more specifically, the result of measuring the MTF by reading a document having 4 pairs of white and black line pairs per 1 mm is shown in FIG. The length of the individual electrode was 1 cm. Rod lens eye is 41p / mm MT
A general one having F of 70% was used. 41p / mm
This is the highest spatial frequency that can be read by an 8 dot / mm image sensor. Since the decrease in MTF increases as the spatial frequency increases, the MTF value in FIG. 3 indicates the minimum value of the MTF of the image sensor output. Figure 3
From the result, by designing the shape of the individual electrode so that the line capacitance is 35% or less, more preferably 30% or less of the sum of the electric capacitance of each pixel and the output capacitance of the individual electrode,
It was found that the MTF value (30% or more) required for binarizing the output was obtained.

【0018】ここで、個別電極の幅を狭くすると電極の
抵抗値が増大するなどの問題が生じるが、共通電極と対
向していない部分の幅を対向している部分の半分にして
も電極部の抵抗の増加による各画素の出力信号への影響
は殆どなく、またこの形状で線間容量も十分小さくでき
る。各画素の電気容量を大きくするには、共通電極
(9)と個別電極(5)の間に、有機光導電体層(7)
とブロッキング層(6)で構成された部分と、絶縁層
(10)とブロッキング層(6)で構成された部分を設
けた素子構成(図4、もしくは図5)にすることによっ
て、絶縁層による電気容量の分だけ各画素の電気容量を
大きくすることができる。
Here, if the width of the individual electrode is narrowed, there arises a problem that the resistance value of the electrode increases, but even if the width of the portion not facing the common electrode is half that of the facing portion, the electrode portion There is almost no influence on the output signal of each pixel due to the increase in the resistance of, and the line capacitance can be made sufficiently small in this shape. In order to increase the electric capacity of each pixel, an organic photoconductor layer (7) is provided between the common electrode (9) and the individual electrode (5).
And the blocking layer (6) and the insulating layer (10) and the blocking layer (6) are provided in the element structure (FIG. 4 or 5) to provide the insulating layer. The electric capacity of each pixel can be increased by the amount of the electric capacity.

【0019】しかし、共通電極と個別電極の間に絶縁層
を設ける場合、有機光導電体層(7)と該絶縁層(1
0)の境界部に於て、有機光導電体層の端部形状が不均
一になると、各素子の電気容量が不均一となり、均一な
出力が得られないという問題が生じる。そこで、絶縁層
を設ける素子構成にする場合、該有機光導電体層と該絶
縁層の境界部において、個別電極の線幅を図8に示すよ
うに細くすることによって、端部形状が不均一でも各画
素の電気容量の均一性が失われないようにすることが可
能になり、出力の均一性が向上する。なお、図8は素子
構成が図4の場合を示しているが、図5の場合でも同様
である。
However, when an insulating layer is provided between the common electrode and the individual electrode, the organic photoconductor layer (7) and the insulating layer (1
If the edge shape of the organic photoconductor layer becomes non-uniform at the boundary of 0), the electric capacity of each element becomes non-uniform, and a uniform output cannot be obtained. Therefore, in the case of an element structure in which an insulating layer is provided, the line shape of the individual electrode is made thin at the boundary between the organic photoconductor layer and the insulating layer as shown in FIG. However, it is possible to prevent the uniformity of the electric capacity of each pixel from being lost, and the uniformity of output is improved. Although FIG. 8 shows the case where the element configuration is FIG. 4, the same applies to the case of FIG.

【0020】各個別電極の出力容量を大きくするには一
定の電位に保った第3の電極(11)と個別電極(5)
の間に絶縁層(10)を設けることが好ましく、絶縁層
による電気容量の分だけ各個別電極の出力容量を大きく
できる。(図6、もしくは図7)但し、この素子構成の
場合、特別に絶縁層を設けなくても、ブロッキング層が
絶縁層として機能するため、同じ効果が生じる。
In order to increase the output capacity of each individual electrode, the third electrode (11) and the individual electrode (5) kept at a constant potential are used.
It is preferable to provide an insulating layer (10) between them so that the output capacity of each individual electrode can be increased by the amount of the electric capacity of the insulating layer. (FIG. 6 or FIG. 7) However, in the case of this element structure, the blocking layer functions as an insulating layer without providing an insulating layer, so that the same effect is obtained.

【0021】本発明における絶縁層の材料としては6−
66−12、6−66−11、6−66−610、等の
共重合ナイロン樹脂、アルコキシアルキルナイロン、ポ
リウレタン、ポリイミド、酢酸ビニル、ポリエステル、
アクリル樹脂、フェノール樹脂、カゼイン、ポリビニル
アセタール、硬化エポキシ樹脂、酸化珪素、ポリスチレ
ン、塩化ビニル、ポリエチレン、シリカ等の無機物をバ
インダー中に分散させたものなどの、体積固有抵抗値が
107 Ω・cm以上の絶縁物が挙げられる。
The material of the insulating layer in the present invention is 6-
66-12, 6-66-11, 6-66-610, etc. copolymer nylon resin, alkoxyalkyl nylon, polyurethane, polyimide, vinyl acetate, polyester,
The volume specific resistance value of acrylic resin, phenol resin, casein, polyvinyl acetal, cured epoxy resin, inorganic oxide such as silicon oxide, polystyrene, vinyl chloride, polyethylene and silica dispersed in a binder is 10 7 Ω · cm. The above-mentioned insulators can be mentioned.

【0022】[0022]

【発明の効果】本発明によって得られたイメージセンサ
ーは、光導電体層の成膜が容易であって生産性に優れ、
大面積化が容易であって、暗導電性が低く、シグナル/
ノイズ比を大きくとれると共にMTFが高く、実用上多
くの利点を有する。
The image sensor obtained according to the present invention is easy to form a photoconductor layer and excellent in productivity,
Large area is easy, dark conductivity is low, and signal /
It has a large noise ratio and a high MTF, and has many practical advantages.

【0023】[0023]

【実施例】以下に本発明を実施例により詳細に説明する
が、本発明はその要旨を越えない限りこれらの実施例に
限定されるものではない。 実施例1 共重合ナイロン(ダイセル(株)製、商品名ダイアミド
T171)をn−プロパノールに溶解し、インジウム・
スズ酸化物(ITO)の透明電極を個別電極として1mm
あたり8素子、全体で1728素子を一次元上にパター
ンニングしたガラス板上に、乾燥後0.3μmの膜厚に
浸漬塗布した。なお、個別電極の形状は線間容量を少な
くするために図9に示す様にした。図9中のa1〜a5
はそれぞれ寸法を表しており、a1は100〔μm〕、
a2は25〔μm〕、a3は1〔cm〕、a4は75〔μ
m〕、a5は50〔μm〕である。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. Example 1 Copolymerized nylon (manufactured by Daicel Corp., trade name Daiamide T171) was dissolved in n-propanol to prepare indium
1mm as a transparent electrode of tin oxide (ITO) as an individual electrode
8 elements per piece, and 1728 elements in total, were dried and dip-coated to a film thickness of 0.3 μm on a one-dimensionally patterned glass plate. The shape of the individual electrode was set as shown in FIG. 9 in order to reduce the line capacitance. A1 to a5 in FIG.
Are the dimensions, and a1 is 100 [μm],
a2 is 25 [μm], a3 is 1 [cm], and a4 is 75 [μm]
m] and a5 are 50 [μm].

【0024】次に電荷発生物質としてオキシチタニウム
フタロシアニン10gをジメトキシエタンでサンドグラ
インダーによって分散処理し、ポリビニルブチラール樹
脂(積水化学(株)製、商品名エスレックBH−3)5
gをジメトキシエタンに溶解した液と混合し塗布液を得
た。この液を浸漬法によって上記共重合ナイロンからな
るブロッキング層上に塗布乾燥し、0.4μmの電荷発
生層を設けた。次にポリカーボネート(商品名ノバレッ
クス7025A、三菱化成(株)製)100g、下記式
(1)に示される化合物160g、式(2)で表される
化合物40gをジオキサン中に溶解し、上記電荷発生層
上に浸漬塗布し、乾燥後0.5μmの膜厚の電荷移動層
を設けた。さらにこの上にアルミニウムを真空蒸着し対
向電極を設け、図2のサンドイッチ型素子を作成した。
次に電荷蓄積型の基本回路で、アナログスイッチ、アン
プで増幅、2値化の回路を接続し受光部を形成した。こ
の結果、線間容量は0.2pF、各画素の電気容量は
0.3pF、各個別電極の出力容量は1.3pFとなっ
た。なお、線間容量の値は、電極パターンから算出し
た。また、各画素の電気容量の値は、ブロッキング層、
電荷発生層、電荷移動層の誘電率と膜厚、及び画素面積
から算出した。個別電極間の出力容量の値はアナログス
イッチの入力容量を測定しその値を用いた。
Next, 10 g of oxytitanium phthalocyanine as a charge generating substance was dispersed with dimethoxyethane by a sand grinder, and polyvinyl butyral resin (Sekisui Chemical Co., Ltd., trade name Eslec BH-3) 5
g was mixed with a solution dissolved in dimethoxyethane to obtain a coating solution. This solution was applied onto the blocking layer made of the above copolymerized nylon by a dipping method and dried to form a 0.4 μm charge generation layer. Next, 100 g of polycarbonate (trade name Novarex 7025A, manufactured by Mitsubishi Kasei Co., Ltd.), 160 g of a compound represented by the following formula (1), and 40 g of a compound represented by the formula (2) are dissolved in dioxane to generate the above charge. After dip coating on the layer and drying, a charge transfer layer having a thickness of 0.5 μm was provided. Further, aluminum was vacuum-deposited on this to provide a counter electrode, and the sandwich type element of FIG. 2 was prepared.
Next, a charge storage type basic circuit was connected to an analog switch and an amplifier for amplification and binarization to form a light receiving portion. As a result, the line capacitance was 0.2 pF, the electric capacitance of each pixel was 0.3 pF, and the output capacitance of each individual electrode was 1.3 pF. The line capacitance value was calculated from the electrode pattern. Also, the value of the electric capacity of each pixel is the blocking layer,
It was calculated from the dielectric constant and film thickness of the charge generation layer and the charge transfer layer, and the pixel area. The value of the output capacitance between the individual electrodes was obtained by measuring the input capacitance of the analog switch.

【0025】さらに、ロッドレンズアレイ、LED照明
系を取り付け、ラインイメージセンサーを作成した。ロ
ッドレンズアレイはSLA−20(日本板硝子(株)
製)を用い、光学的なMTFは41p/mmの原稿を入力
した場合、70%であった。また、LEDアレイはBU
4801(スタンレー電気(株)製、出力ピーク波長:
570nm)を用い、原稿面照度が100 luxとなるよう
に照明系を作製した。スイッチングの基本周波数は25
0kHz、ライン走査時間は(繰り返し時間)は20msec
である。このイメージセンサーにより、41p/mmの原
稿を読み込んだところ、MTFが50%と良好な値が得
られた。
Further, a rod lens array and an LED illumination system were attached to prepare a line image sensor. The rod lens array is SLA-20 (Nippon Sheet Glass Co., Ltd.)
Manufactured by K.K.) and the optical MTF was 70% when a 41 p / mm original was input. The LED array is BU
4801 (manufactured by Stanley Electric Co., Ltd., output peak wavelength:
570 nm) and an illumination system was prepared so that the illuminance on the original surface was 100 lux. Switching basic frequency is 25
0 kHz, line scan time (repetition time) is 20 msec
Is. When a 41 p / mm original was read by this image sensor, a good MTF value of 50% was obtained.

【0026】[0026]

【化1】 [Chemical 1]

【0027】実施例2 素子構成を図4に示すようにした他は、実施例1と同様
にして素子を作成した。個別電極及び共通電極の寸法は
図10に示す。図10中のb1〜b5はそれぞれ寸法を
表しており、b1は25〔μm〕、b2は100〔μ
m〕、b3は400〔μm〕、b4は1〔cm〕、b5は
250〔μm〕である。但し、特別に絶縁層は設けずブ
ロッキング層を絶縁層として用いた。
Example 2 An element was prepared in the same manner as in Example 1 except that the element structure was as shown in FIG. The dimensions of the individual electrodes and the common electrode are shown in FIG. B1 to b5 in FIG. 10 represent dimensions, respectively, b1 is 25 [μm] and b2 is 100 [μm].
m], b3 is 400 [μm], b4 is 1 [cm], and b5 is 250 [μm]. However, the blocking layer was used as an insulating layer without providing an insulating layer.

【0028】この結果、線間容量は0.4pF、各画素
の電気容量は1.2pF、各個別電極の出力容量は1.
3pFとなった。なお、各容量の値は実施例1と同様に
して求めた。このイメージセンサーを用いて41p/mm
の原稿を読み込んだ結果、MTF値は45%と良好な値
が得られた。また、各素子の出力値は±5%の範囲内で
変動しており、出力の均一性に問題はなかった。
As a result, the line capacitance is 0.4 pF, the electric capacitance of each pixel is 1.2 pF, and the output capacitance of each individual electrode is 1.
It became 3 pF. The value of each capacity was obtained in the same manner as in Example 1. 41p / mm using this image sensor
As a result of reading the original document, the MTF value was as good as 45%. Further, the output value of each element fluctuated within the range of ± 5%, and there was no problem in the output uniformity.

【0029】実施例3 素子構成を図5に示すようにした他は、実施例1と同様
にして素子を作成した。個別電極及び共通電極の寸法は
図10に示す。図10中のb1〜b5はそれぞれ寸法を
表しており、b1は25〔μm〕、b2は100〔μ
m〕、b3は400〔μm〕、b4は1〔cm〕、b5は
250〔μm〕である。但し、特別に絶縁層は設けずブ
ロッキング層を絶縁層として用いた。
Example 3 An element was prepared in the same manner as in Example 1 except that the element structure was as shown in FIG. The dimensions of the individual electrodes and the common electrode are shown in FIG. B1 to b5 in FIG. 10 represent dimensions, respectively, b1 is 25 [μm] and b2 is 100 [μm].
m], b3 is 400 [μm], b4 is 1 [cm], and b5 is 250 [μm]. However, the blocking layer was used as an insulating layer without providing an insulating layer.

【0030】この結果、線間容量は0.4pF、各画素
の電気容量は1.2pF、各個別電極の出力容量は1.
3pFとなる。なお、各容量の値は実施例1と同様にし
て求めた。このイメージセンサーを用いて41p/mmの
原稿を読み込んだ結果、MTF値が45%と良好な値が
得られた。また、各素子の出力値は±5%の範囲内で変
動しており、出力の均一性に問題はなかった。
As a result, the line capacitance is 0.4 pF, the electric capacitance of each pixel is 1.2 pF, and the output capacitance of each individual electrode is 1.
It becomes 3 pF. The value of each capacity was obtained in the same manner as in Example 1. As a result of reading a 41 p / mm original using this image sensor, a good MTF value of 45% was obtained. Further, the output value of each element fluctuated within the range of ± 5%, and there was no problem in the output uniformity.

【0031】実施例4 素子構成を図6に示すようにした他は、実施例1と同様
にして素子を作成した。寸法は図11に示す。なお、第
3の電極(11)は0〔V〕に保った。図11中のc1
〜c5はそれぞれ寸法を表しており、c1は25〔μ
m〕、c2は100〔μm〕、c3は300〔μm〕、
c4は1〔cm〕、c5は500〔μm〕である。但し、
特別に絶縁層は設けずブロッキング層を絶縁層として用
いた。
Example 4 An element was prepared in the same manner as in Example 1 except that the element structure was as shown in FIG. The dimensions are shown in FIG. The third electrode (11) was kept at 0 [V]. C1 in FIG.
To c5 represent the dimensions, and c1 is 25 [μ
m], c2 is 100 [μm], c3 is 300 [μm],
c4 is 1 [cm] and c5 is 500 [μm]. However,
The blocking layer was used as an insulating layer without providing an insulating layer.

【0032】この結果、線間容量は0.4pF、各画素
の電気容量は0.3pF、各個別電極の出力容量は2.
2pFとなる。なお、各容量の値は実施例1と同様にし
て求めた。但し、個別電極の出力容量は、第3の電極に
よる電気容量の値をブロッキング層の誘電率、膜厚、電
極パターンから算出し、これをアナログスイッチの入力
容量に加えた値を用いた。このイメージセンサーを用い
て41p/mmの原稿を読み込んだ結果、MTF値は45
%と良好な値が得られた。また、各素子の出力値は±5
%の範囲内で変動しており、出力の均一性に問題はなか
った。
As a result, the line capacitance is 0.4 pF, the electric capacitance of each pixel is 0.3 pF, and the output capacitance of each individual electrode is 2.
It becomes 2 pF. The value of each capacity was obtained in the same manner as in Example 1. However, as the output capacitance of the individual electrode, a value obtained by calculating the value of the electric capacitance of the third electrode from the dielectric constant of the blocking layer, the film thickness, and the electrode pattern and adding this to the input capacitance of the analog switch was used. As a result of reading a 41p / mm original with this image sensor, the MTF value is 45.
%, A good value was obtained. The output value of each element is ± 5
It fluctuated within the range of%, and there was no problem in the uniformity of output.

【0033】実施例5 個別電極の平面形状を図13に示すようにした他は実施
例2と同様にして素子を作成した。図13中のe1〜e
5はそれぞれ寸法を表しており、e1は25〔μm〕、
e2は100〔μm〕、e3は400〔μm〕、e4は
1〔cm〕、e5は250〔μm〕である。線間容量は
0.4pF、各画素の電気容量は1.2pF、各個別電
極の出力容量は1.3pFとなった。なお、各容量の値
は実施例1と同様にして求めた。
Example 5 An element was prepared in the same manner as in Example 2 except that the planar shape of the individual electrode was as shown in FIG. E1 to e in FIG.
5 represents dimensions, e1 is 25 [μm],
e2 is 100 [μm], e3 is 400 [μm], e4 is 1 [cm], and e5 is 250 [μm]. The line capacitance was 0.4 pF, the electric capacitance of each pixel was 1.2 pF, and the output capacitance of each individual electrode was 1.3 pF. The value of each capacity was obtained in the same manner as in Example 1.

【0034】この結果、各素子の出力値は±30%の範
囲内で変動していたが、このイメージセンサーを用いて
41p/mmの原稿を読み込んだ場合の、MTFの値は5
0%であった。
As a result, the output value of each element fluctuated within the range of ± 30%, but when reading a 41 p / mm original using this image sensor, the MTF value was 5
It was 0%.

【0035】比較例1 個別電極の平面形状を図12に示すようにした他は実施
例1と同様にして素子を作成し、実施例1と同様にMT
Fの測定を行った。図12中のd1〜d3はそれぞれ寸
法を表しており、d1は100〔μm〕、d2は25
〔μm〕、d3は1〔cm〕である。この結果、線間容量
は0.8pF、各画素の電気容量は0.3pF、各個別
電極の出力容量は1.3pFとなった。なお、各容量の
値は実施例1と同様にして求めた。41p/mmの原稿を
読み込んだ結果、MTF値が25%となり、実施例1に
比べて解像度が低下していることが分かった。
Comparative Example 1 An element was prepared in the same manner as in Example 1 except that the planar shape of the individual electrode was as shown in FIG.
The F was measured. In FIG. 12, d1 to d3 respectively represent dimensions, d1 is 100 [μm], and d2 is 25.
[Μm] and d3 are 1 [cm]. As a result, the line capacitance was 0.8 pF, the electric capacitance of each pixel was 0.3 pF, and the output capacitance of each individual electrode was 1.3 pF. The value of each capacity was obtained in the same manner as in Example 1. As a result of reading a 41 p / mm original, it was found that the MTF value was 25% and the resolution was lower than in Example 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明画像読み取り素子を用いるイメージセン
サーの全体構成の説明図。
FIG. 1 is an explanatory diagram of the overall configuration of an image sensor using an image reading device of the present invention.

【図2】サンドイッチ型の画像読み取り素子の一例を説
明する図面。図2a)は上面説明図、図2b)は図2
a)中のA−A’線に沿った断面説明図。
FIG. 2 is a diagram illustrating an example of a sandwich type image reading device. 2a) is a top view, and FIG. 2b) is FIG.
Sectional drawing explaining the AA 'line in a).

【図3】画素の電気容量と個別電極の出力容量との和と
線間容量の比を変化させた場合の、MTFの推移を示す
グラフ。
FIG. 3 is a graph showing the transition of MTF when the ratio of the sum of the electric capacity of the pixel and the output capacity of the individual electrode and the line capacity is changed.

【図4】個別電極と共通電極の間に絶縁層を設ける素子
構成を説明する図。
FIG. 4 is a diagram illustrating an element structure in which an insulating layer is provided between an individual electrode and a common electrode.

【図5】個別電極と共通電極の間に絶縁層を設ける素子
構成を説明する図。
FIG. 5 is a diagram illustrating a device configuration in which an insulating layer is provided between an individual electrode and a common electrode.

【図6】一定の電位に保った第3の電極と個別電極の間
に絶縁層を設ける素子構成を説明する図。
FIG. 6 is a diagram illustrating an element structure in which an insulating layer is provided between a third electrode kept at a constant potential and an individual electrode.

【図7】一定の電位に保った第3の電極と個別電極の間
に絶縁層を設ける素子構成を説明する図。
FIG. 7 is a diagram illustrating an element structure in which an insulating layer is provided between a third electrode kept at a constant potential and an individual electrode.

【図8】有機光導電体層の端部において、個別電極幅を
狭くすることを説明する図。
FIG. 8 is a diagram illustrating that the individual electrode width is narrowed at the end portion of the organic photoconductor layer.

【図9】個別電極の寸法についての説明図。FIG. 9 is an explanatory diagram of dimensions of individual electrodes.

【図10】個別電極の寸法についての説明図。FIG. 10 is an explanatory diagram of dimensions of individual electrodes.

【図11】個別電極の寸法についての説明図。FIG. 11 is an explanatory diagram of dimensions of individual electrodes.

【図12】個別電極の寸法についての説明図。FIG. 12 is an explanatory diagram of dimensions of individual electrodes.

【図13】個別電極の寸法についての説明図。FIG. 13 is an explanatory diagram of dimensions of individual electrodes.

【符号の説明】[Explanation of symbols]

1 センサー 2 ロッドレンズアレイ 3 LEDアレイ 4 原稿 5 個別電極 6 ブロッキング層 7 光導電体層 8 支持体 9 共通電極 10 絶縁層 11 個別電極もしくは共通電極以外の第3の電極 1 Sensor 2 Rod lens array 3 LED array 4 Original 5 Individual electrode 6 Blocking layer 7 Photoconductor layer 8 Support 9 Common electrode 10 Insulating layer 11 Third electrode other than individual electrode or common electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/0344 7210−4M H01L 31/08 T (72)発明者 玉木 淳 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成株式会社総合研究所内 (72)発明者 加藤 雅敏 神奈川県鎌倉市大船二丁目14番40号 三菱 電機株式会社生活システム研究所内 (72)発明者 浜口 忠彦 神奈川県鎌倉市大船二丁目14番40号 三菱 電機株式会社生活システム研究所内 (72)発明者 竹田 岳 神奈川県鎌倉市大船二丁目14番40号 三菱 電機株式会社生活システム研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number for FI Technical indication H01L 31/0344 7210-4M H01L 31/08 T (72) Inventor Atsushi Tamaki Midori Ward, Yokohama City, Kanagawa Prefecture 1000 Kamoshita-cho Sanryo Kasei Co., Ltd.Institute of General Research (72) Inventor Masatoshi Kato 2-14-40 Ofuna, Kamakura, Kanagawa 2-14-40 Mitsubishi Electric Corporation Living Systems Research Center (72) Inventor Takeda Takenada 2-14-40 Ofuna, Kamakura City, Kanagawa Prefecture Living Systems Research Institute Mitsubishi Electric Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 全ての画素に共通の共通電極と各画素に
対応した個別電極とを有機光導電体層を介して設けた画
素であって画像情報を電気信号に変換する画素を集積し
てなる画像読み取り素子を用いたイメージセンサーにお
いて、線間容量が該画素の電気容量と各個別電極の出力
容量との和の35%以下であることを特徴とするイメー
ジセンサー。
1. A pixel in which a common electrode common to all pixels and an individual electrode corresponding to each pixel are provided via an organic photoconductor layer, and the pixels for converting image information into electric signals are integrated. In the image sensor using the image reading element, the line capacitance is 35% or less of the sum of the electric capacitance of the pixel and the output capacitance of each individual electrode.
【請求項2】 前記個別電極と共通電極との間の少なく
とも一部又は前記個別電極と一定の電位に保った第3の
電極との間の少なくとも1部に絶縁層を設けることを特
徴とする請求項1記載のイメージセンサー。
2. An insulating layer is provided at least at a part between the individual electrode and the common electrode or at least a part between the individual electrode and a third electrode kept at a constant potential. The image sensor according to claim 1.
JP4159783A 1992-06-18 1992-06-18 Image sensor Pending JPH065833A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4159783A JPH065833A (en) 1992-06-18 1992-06-18 Image sensor
US08/077,443 US5350915A (en) 1992-06-18 1993-06-17 Image sensor using organic photoconductor
DE69315895T DE69315895T2 (en) 1992-06-18 1993-06-17 Image sensor
EP93304757A EP0575187B1 (en) 1992-06-18 1993-06-17 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4159783A JPH065833A (en) 1992-06-18 1992-06-18 Image sensor

Publications (1)

Publication Number Publication Date
JPH065833A true JPH065833A (en) 1994-01-14

Family

ID=15701178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4159783A Pending JPH065833A (en) 1992-06-18 1992-06-18 Image sensor

Country Status (4)

Country Link
US (1) US5350915A (en)
EP (1) EP0575187B1 (en)
JP (1) JPH065833A (en)
DE (1) DE69315895T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2572741A (en) * 2018-02-14 2019-10-16 Flexenable Ltd Pixelated sensor devices with organic photoactive layer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994713A (en) * 1997-06-25 1999-11-30 Quantum Imaging Corp. Filmless photon imaging apparatus
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
EP2298547A1 (en) * 1998-08-19 2011-03-23 The Trustees Of Princeton University Organic photosensitive optoelectronic device
US6352777B1 (en) 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US6451415B1 (en) * 1998-08-19 2002-09-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
US6657378B2 (en) 2001-09-06 2003-12-02 The Trustees Of Princeton University Organic photovoltaic devices
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US7746681B2 (en) 2005-01-07 2010-06-29 Invisage Technologies, Inc. Methods of making quantum dot films
US7742322B2 (en) 2005-01-07 2010-06-22 Invisage Technologies, Inc. Electronic and optoelectronic devices with quantum dot films
WO2005101530A1 (en) 2004-04-19 2005-10-27 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
CA2519608A1 (en) 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics
US7297926B2 (en) * 2005-08-18 2007-11-20 Em4, Inc. Compound eye image sensor design
CN101313413B (en) * 2005-11-18 2011-08-31 株式会社半导体能源研究所 Photoelectric converter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921172A (en) * 1982-04-23 1984-02-03 Fuji Xerox Co Ltd Image pickup device
JPS58207766A (en) * 1982-05-28 1983-12-03 Fuji Xerox Co Ltd Image sensor
JPS61263156A (en) * 1985-05-16 1986-11-21 Fuji Electric Co Ltd Image sensor
JPS61285262A (en) * 1985-06-12 1986-12-16 Ricoh Co Ltd Equal magnification image-pickup sensor
JPS61291657A (en) * 1985-06-17 1986-12-22 Ricoh Co Ltd Image reading unmagnified sensor
JPH0673372B2 (en) * 1985-06-24 1994-09-14 三菱電機株式会社 Optical reading device and manufacturing method thereof
JPS6212157A (en) * 1985-07-09 1987-01-21 Fuji Xerox Co Ltd Image sensor
US4914504A (en) * 1987-08-10 1990-04-03 Siemens Aktiengesellschaft Opto-electronic image sensor arrangement
JPH01184961A (en) * 1988-01-20 1989-07-24 Canon Inc Image sensor
DE68920448T2 (en) * 1988-02-10 1995-05-18 Kanegafuchi Chemical Ind Photodetector assembly and reader.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2572741A (en) * 2018-02-14 2019-10-16 Flexenable Ltd Pixelated sensor devices with organic photoactive layer

Also Published As

Publication number Publication date
EP0575187A1 (en) 1993-12-22
EP0575187B1 (en) 1997-12-29
DE69315895D1 (en) 1998-02-05
DE69315895T2 (en) 1998-05-28
US5350915A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JPH065833A (en) Image sensor
US4603356A (en) Imaging system with light valve and photodetector
US5329112A (en) Multi-capacitance photodiode image sensor
JPS59158553A (en) Optical solid device
US4922117A (en) Photoelectric conversion device having a constant potential wiring at the sides of the common wiring
US4714836A (en) Photosensitive pixel with exposed blocking element
JPH0568132A (en) Original reader
EP0449638B1 (en) Spectral resolving and sensing apparatus
US6549684B2 (en) Image sensor having an array with integrated control circuitry which includes constantly-illuminated photodiodes
US5334856A (en) Image readout element with oxytitanium phthalocyanine
JPH05129576A (en) Image reading element
JPH05130327A (en) Image sensor
Ozawa et al. Amorphous silicon linear image sensor
JPH05183146A (en) Image reading device
JPH07221925A (en) Image sensor
JPH07202155A (en) Image sensor
Ozawa et al. Recent development in amorphous silicon image sensor
JPH0799350A (en) Image reading element
JPH0747874Y2 (en) Contact image sensor
JP2769812B2 (en) Document reading device
JPS6111505B2 (en)
GB2161952A (en) Optical processors
US5204762A (en) Image reading device
JP2002353472A (en) Device and method for photodetection
JPS6211545B2 (en)