JPH0658104U - Power plant with fluidized bed furnace - Google Patents

Power plant with fluidized bed furnace

Info

Publication number
JPH0658104U
JPH0658104U JP14593U JP14593U JPH0658104U JP H0658104 U JPH0658104 U JP H0658104U JP 14593 U JP14593 U JP 14593U JP 14593 U JP14593 U JP 14593U JP H0658104 U JPH0658104 U JP H0658104U
Authority
JP
Japan
Prior art keywords
fluidized bed
exhaust
gas
exhaust gas
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14593U
Other languages
Japanese (ja)
Other versions
JP2583428Y2 (en
Inventor
聰樹 甕
敬古 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11465866&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0658104(U) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1993000145U priority Critical patent/JP2583428Y2/en
Publication of JPH0658104U publication Critical patent/JPH0658104U/en
Application granted granted Critical
Publication of JP2583428Y2 publication Critical patent/JP2583428Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】 【目的】 加圧流動床ボイラプラント等の流動床炉を備
えた発電プラントにおいて、脱硝効果を維持しつつ、排
ガス中のSO3 がアンモニアと作用して酸性硫安(NH
4 HSO4 )が発生することを抑制する。 【構成】 流動床炉(加圧流動床ボイラ1)、同流動床
炉の生成ガスで駆動されるガスタービン8、及びガスタ
ービン8の出口に接続された排ガス系統23に設置され
た脱硝装置12と排熱回収熱交換器を備えた流動床炉を
備えた発電プラントにおいて、排ガス系統23に上流側
の第1の排熱回収熱交換器10と下流側の排熱回収熱交
換器11を設け、両熱交換器10,11の間に脱硝装置
12を配置した。また、脱硝装置12の入口ガス温度を
温度計40で検出し、給水バイパス系統16の流量制御
弁13を制御して、第1の排熱回収熱交換器10の熱吸
収量を制御して、脱硝装置12の入口ガス温度を一定に
保持するようにした。
(57) [Summary] [Purpose] In a power plant equipped with a fluidized bed furnace, such as a pressurized fluidized bed boiler plant, SO 3 in the exhaust gas acts on ammonia while maintaining the denitration effect, and acidic ammonium sulfate (NH
4 HSO 4 ) is suppressed. [Structure] A denitration device 12 installed in a fluidized bed furnace (pressurized fluidized bed boiler 1), a gas turbine 8 driven by generated gas of the fluidized bed furnace, and an exhaust gas system 23 connected to an outlet of the gas turbine 8. In a power plant equipped with a fluidized bed furnace equipped with an exhaust heat recovery heat exchanger, an exhaust gas system 23 is provided with an upstream first exhaust heat recovery heat exchanger 10 and a downstream exhaust heat recovery heat exchanger 11. A denitration device 12 is arranged between the heat exchangers 10 and 11. Further, the inlet gas temperature of the denitration device 12 is detected by the thermometer 40, the flow control valve 13 of the feed water bypass system 16 is controlled, and the heat absorption amount of the first heat recovery heat exchanger 10 is controlled. The inlet gas temperature of the denitration device 12 was kept constant.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、脱硝装置でのSO3 への転換率を低減させることができるようにし た加圧流動床ボイラプラント、ガス化コンバインドプラント等の流動床炉を備え た発電プラントに関する。The present invention relates to a power plant equipped with a fluidized bed furnace, such as a pressurized fluidized bed boiler plant or a gasification combined plant, capable of reducing the conversion rate of SO 3 in a denitration device.

【0002】[0002]

【従来の技術】[Prior art]

従来の脱硝装置を装備した石炭焚ボイラ又は油焚ボイラにおいては、燃焼排ガ スを排出する煙突の前に脱硫装置又は電気集じん器を装備することによって、燃 焼ガス中のSO3 と脱硝装置からの残留アンモニアの化学反応にって発生する酸 性硫安(NH4 HSO4 )を完全に除去することが可能であった。In a coal-fired boiler or oil-fired boiler equipped with a conventional denitration device, SO 3 in the combustion gas and denitration are installed by equipping the desulfurization device or the electric precipitator before the chimney that discharges the combustion exhaust gas. It was possible to completely remove the acidic ammonium sulfate (NH 4 HSO 4 ) generated by the chemical reaction of residual ammonia from the equipment.

【0003】 しかし、燃焼ガスによって駆動されるガスタービンを装備した加圧流動床ボイ ラプラントでは、加圧流動床ボイラ内で脱硫が可能なために脱硫装置を設置して いない。また、全体のプラント効率を向上させる観点から、煙突よりの排出ガス 温度を極力低下させるために、排熱回収熱交換器が装備されている。However, in a pressurized fluidized bed boiler plant equipped with a gas turbine driven by combustion gas, a desulfurizer is not installed because desulfurization is possible in the pressurized fluidized bed boiler. Also, from the viewpoint of improving the overall plant efficiency, an exhaust heat recovery heat exchanger is equipped to reduce the temperature of the exhaust gas from the stack as much as possible.

【0004】 従来の前記加圧流動床ボイラプラントを、図4に示す。1は加圧容器2を備え た加圧流動床ボイラであって、同加圧流動床ボイラ1内には、石炭・石灰石供給 システム3から石炭と石灰石が供給され、また供給空気系統21を経て後述する 空気圧縮機からの空気が供給され、石炭・石灰石及び空気によって加圧流動床ボ イラ1内に加圧流動層が形成され、石炭が燃焼すると共に石灰石によって燃焼ガ ス中の脱硫が行われる。FIG. 4 shows the conventional pressurized fluidized bed boiler plant. Reference numeral 1 is a pressurized fluidized bed boiler equipped with a pressurized container 2. In the pressurized fluidized bed boiler 1, coal and limestone are supplied from a coal / limestone supply system 3 and also via a supply air system 21. Air from an air compressor, which will be described later, is supplied, and a pressurized fluidized bed is formed in the pressurized fluidized bed boiler 1 by the coal, limestone, and air, and coal burns and limestone desulfurizes the combustion gas. Be seen.

【0005】 一方、加圧流動床ボイラ1内には、給水系統25から水が供給される伝熱管4 aが装備されており、同伝熱管4a内で発生した蒸気は、主蒸気系統26aを経 て発電機31に直結された蒸気タービン32の駆動用主蒸気として蒸気タービン 32へ供給され、また蒸気タービン32から抽気された蒸気は、加圧流動床ボイ ラ1内の伝熱管4bへ供給されて再熱された上再熱蒸気系統26bを経て蒸気タ ービン32へ再び供給される。On the other hand, the pressurized fluidized bed boiler 1 is equipped with a heat transfer tube 4a to which water is supplied from a water supply system 25, and steam generated in the heat transfer tube 4a is fed to the main steam system 26a. After that, the steam is supplied to the steam turbine 32 as the main steam for driving the steam turbine 32 directly connected to the generator 31, and the steam extracted from the steam turbine 32 is supplied to the heat transfer tube 4b in the pressurized fluidized bed boiler 1. The reheated steam is supplied to the steam turbine 32 through the reheated steam system 26b.

【0006】 加圧流動床ボイラ1で発生した燃焼ガスは、同加圧流動床ボイラ1内のサイク ロン5及び同加圧流動床ボイラ1外の高温脱じん装置6で脱じんされた上、高温 ガス系統22を経て発電機7と空気圧縮機9に直結されたガスタービン8へ供給 されて同ガスタービン8を駆動する。空気圧縮機9で発生した圧力空気は、前記 のように空気系統21を経て加圧流動床ボイラ1内へ供給され、また、その1部 は石炭・石灰石供給システム3の搬送用空気として利用される。The combustion gas generated in the pressurized fluidized bed boiler 1 is dedusted by a cyclone 5 in the pressurized fluidized bed boiler 1 and a high temperature dedusting device 6 outside the pressurized fluidized bed boiler 1, and It is supplied to the gas turbine 8 directly connected to the generator 7 and the air compressor 9 via the high temperature gas system 22, and drives the gas turbine 8. The compressed air generated in the air compressor 9 is supplied into the pressurized fluidized bed boiler 1 through the air system 21 as described above, and a part of the compressed air is used as the carrier air of the coal / limestone supply system 3. It

【0007】 前記ガスタービン8の出口を煙突18に接続する低温ガス系統23には、アン モニア(NH3 )を排ガス中に注入し、かつ、脱硝触媒が充填された脱硝装置1 2及び同脱硝装置12の下流側に排熱回収熱交換器11が設置されており、ガス タービン8を出た排ガスは、脱硝及び熱回収が行われた上煙突18から排出され る。In the low temperature gas system 23 connecting the outlet of the gas turbine 8 to the chimney 18, ammonia (NH 3 ) is injected into the exhaust gas, and a denitration device 12 and a denitration device which are filled with a denitration catalyst. An exhaust heat recovery heat exchanger 11 is installed on the downstream side of the device 12, and the exhaust gas discharged from the gas turbine 8 is exhausted from the upper chimney 18 where denitration and heat recovery have been performed.

【0008】 前記蒸気タービン32を出た蒸気は、復水器23で凝縮されて復水となり、復 水ポンプ35で加圧され、給水加熱器34で加熱され復水系統24を経て給水ポ ンプ36に入り、同給水ポンプ36で加圧された水は、給水系統25へ入り前記 排熱回収熱交換器11で排ガスと熱交換して加熱された上、加圧流動床ボイラ1 内の前記伝熱管4aへ供給される。The steam exiting the steam turbine 32 is condensed in a condenser 23 to become condensed water, pressurized by a condensate pump 35, heated by a feed water heater 34, and passed through a condensate system 24 to a feed water pump. The water that has entered 36 and has been pressurized by the water supply pump 36 enters the water supply system 25 and is heated by exchanging heat with the exhaust gas in the exhaust heat recovery heat exchanger 11 and then in the pressurized fluidized bed boiler 1. It is supplied to the heat transfer tube 4a.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

前記の従来の加圧流動床ボイラプラントにおいては、排熱回収熱交換器11に よって熱回収されて排ガスの温度が低下して煙突18から排出されるが、このよ うに排ガスの温度が低下することに伴なって、排ガスに含まれるSO3 と脱硝装 置12からの残留アンモニア(NH3 )が反応して酸性硫安(NH4 HSO4 ) がミスト状態で排ガス中に析出してくる。この酸性硫安の発生量を抑えるために は、脱硝装置における脱硝触媒によるSO2 のSO3 への転換率を極力低減させ る必要があるが、従来は有効な手段がなかった。In the above-mentioned conventional pressurized fluidized bed boiler plant, heat is recovered by the exhaust heat recovery heat exchanger 11 and the temperature of the exhaust gas lowers and is discharged from the chimney 18. However, the temperature of the exhaust gas lowers in this way. Accompanying this, SO 3 contained in the exhaust gas reacts with residual ammonia (NH 3 ) from the denitration device 12, and acidic ammonium sulfate (NH 4 HSO 4 ) precipitates in the exhaust gas in the mist state. In order to suppress the amount of generated acidic ammonium sulfate, it is necessary to reduce the conversion rate of SO 2 to SO 3 by the denitration catalyst in the denitration device as much as possible, but heretofore no effective means has been available.

【0010】 この問題を解決する一つの対策として、従来のボイラと同様に、ガスタービン 出口の下流側に電気集じん器を装備することも考えられるが、加圧流動床ボイラ はコンバインドプラントであるためガスタービンの排出側に電気集じん器をつけ ると、単にコストが上昇するだけでなくガスタービンの排気圧力が上昇してガス タービンの出力が低下する。この結果、プラント効率も低下するという問題があ った。As one measure to solve this problem, it is conceivable to equip an electrostatic precipitator on the downstream side of the gas turbine outlet as in the conventional boiler, but the pressurized fluidized bed boiler is a combined plant. Therefore, if an electric precipitator is attached to the discharge side of the gas turbine, not only the cost will increase, but also the exhaust pressure of the gas turbine will increase and the output of the gas turbine will decrease. As a result, there was a problem that the plant efficiency was also reduced.

【0011】 本考案は、以上の問題点を解決することができる流動床炉発電プラントを提供 しようとするものである。The present invention is intended to provide a fluidized bed reactor power plant that can solve the above problems.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

(1) 本考案は、流動床炉、前記流動床炉の生成ガスで駆動されるガスタービ ン、及び前記ガスタービンの出口に接続された排ガス系統に設置された排熱回収 熱交換器とアンモニアが注入された排ガスが流過する脱硝触媒が充填された脱硝 装置を備えた流動床炉を備えた発電プラントにおいて、前記ガスタービンの出口 に接続された排ガス系統に上流側の第1排熱回収熱交換器と下流側の第2の排熱 回収熱交換器を設け、前記排ガス系統の前記両排熱回収熱交換器の間に脱硝装置 を設置したことを特徴とする。 (1) The present invention provides a fluidized bed furnace, a gas turbine driven by the gas produced by the fluidized bed furnace, and an exhaust heat recovery heat exchanger and ammonia installed in an exhaust gas system connected to the outlet of the gas turbine. In a power plant equipped with a fluidized bed furnace equipped with a denitration device filled with a denitration catalyst through which the injected exhaust gas flows, the first exhaust heat recovery heat upstream of the exhaust gas system connected to the outlet of the gas turbine. An exchanger and a second exhaust heat recovery heat exchanger on the downstream side are provided, and a denitration device is installed between the both exhaust heat recovery heat exchangers of the exhaust gas system.

【0013】 (2)また、本考案は、前記(1)の流動床炉を備えた発電プラントにおいて 、前記脱硝装置の入口の排ガスの温度を検出する温度計及び前記温度計の信号に よって制御され前記第1の排熱回収熱交換における排ガスからの熱吸収量を制御 する手段を設けたことを特徴とする。(2) Further, in the present invention, in a power plant equipped with the fluidized bed furnace of (1), a thermometer for detecting the temperature of the exhaust gas at the inlet of the denitration device and control by a signal of the thermometer. Means for controlling the amount of heat absorbed from the exhaust gas in the first exhaust heat recovery heat exchange is provided.

【0014】[0014]

【作用】[Action]

前記のように、排ガスの温度が低下すると、脱硝装置出口の残留アンモニアと 排ガス中のSO3 とが反応して酸性硫安が発生して析出するために、この酸性硫 安の発生,析出を避けるためには、脱硝装置におけるSO2 からのSO3 への転 換率を小さく抑える必要がある。このためには、図3に示すように、脱硝装置に おけるガス温度を低くすることが望ましい。一方、脱硝装置におけるガス温度を あまり低くすると、脱硝触媒の量を多くする必要があり、かつ、反応温度以下の ガス温度とした時には脱硝作用が消滅することとなる。As mentioned above, when the temperature of the exhaust gas decreases, the residual ammonia at the outlet of the denitration device reacts with SO 3 in the exhaust gas to generate and precipitate ammonium ammonium sulfate, so avoid the generation and precipitation of this ammonium sulfate. Therefore, it is necessary to suppress the conversion rate from SO 2 to SO 3 in the denitration device to be small. For this purpose, as shown in FIG. 3, it is desirable to lower the gas temperature in the denitration device. On the other hand, if the gas temperature in the denitration device is too low, it is necessary to increase the amount of denitration catalyst, and the denitration action disappears when the gas temperature is lower than the reaction temperature.

【0015】 前記(1)の本考案では、脱硝装置の上流側に適当な熱吸収量をもつ第1の排 熱回収熱交換器を設け、脱硝装置へ流入するガスタービンよりの排ガスを適当な 温度に下げることによって、脱硝装置においては、SO2 からSO3 への転換率 を小さく抑えると共に必要な脱硝作用が行われる。このように、SO3 の含有量 が少く、かつ、脱硝作用を受けた排ガスは、脱硝装置から第2の排熱回収熱交換 器へ流入してその排熱が回収される。第2の排熱回収熱交換器を出る排ガスの温 度は低下しているが、前記のようにSO3 の含有量は少いために、これが残留ア ンモニアと反応して酸性硫安を発生することが抑制される。In the present invention of (1) above, a first exhaust heat recovery heat exchanger having an appropriate heat absorption amount is provided on the upstream side of the denitration device, and the exhaust gas from the gas turbine flowing into the denitration device is appropriately disposed. By lowering the temperature, in the denitration apparatus, the conversion rate from SO 2 to SO 3 is kept small and the required denitration action is performed. As described above, the exhaust gas having a low SO 3 content and subjected to the denitration action flows from the denitration device into the second exhaust heat recovery heat exchanger to recover the exhaust heat. Although the temperature of the exhaust gas exiting the second heat recovery heat exchanger is low, the SO 3 content is low as described above, and this reacts with residual ammonia to generate acidic ammonium sulfate. Is suppressed.

【0016】 前記(2)の本考案では、前記(1)の本考案において、脱硝装置の入口の排 ガスの温度を温度計によって検出し、この信号によって、第1排熱回収熱交換器 の熱吸収量が制御される。これによって、プラント負荷の変動等があっても、脱 硝装置内の排ガスの温度が所定の値、即ち、前記のように脱硝作用を充分に行う と共にSO2 からSO3 への変換率を低く抑えることができるような値に保持さ れる。In the invention of (2) above, in the invention of (1) above, the temperature of the exhaust gas at the inlet of the denitration device is detected by a thermometer, and this signal is used to detect the temperature of the first exhaust heat recovery heat exchanger. The amount of heat absorption is controlled. As a result, even if the plant load fluctuates, the temperature of the exhaust gas in the denitration device will reach the specified value, that is, the denitration effect will be sufficient as described above and the conversion rate from SO 2 to SO 3 will be low. It is held at a value that can be suppressed.

【0017】[0017]

【実施例】【Example】

本考案の一実施例を、図1に示す。本実施例は、図4に示す加圧流動床ボイラ プラントと同様な構成をもつ加圧流動床ボイラプラントであり、以下、相違する 点について説明する。なお、図1において対応する部分には図4におけると同じ 符号が付せられている。 One embodiment of the present invention is shown in FIG. The present embodiment is a pressurized fluidized bed boiler plant having the same configuration as the pressurized fluidized bed boiler plant shown in FIG. 4, and the differences will be described below. The corresponding parts in FIG. 1 are designated by the same reference numerals as in FIG.

【0018】 ガスタービン8の出口に接続された低温ガス系統23には、上流側に第1の排 熱回収熱交換器10、下流側に第2の排熱回収熱交換器11が設けられ、前記低 ガス系統23の両熱交換器10,11の間には、アンモニアが注入された排ガス が流過する脱硝触媒が充填された脱硝装置12が設けられている。The low temperature gas system 23 connected to the outlet of the gas turbine 8 is provided with a first exhaust heat recovery heat exchanger 10 on the upstream side and a second exhaust heat recovery heat exchanger 11 on the downstream side, Between the heat exchangers 10 and 11 of the low gas system 23, there is provided a denitration device 12 filled with a denitration catalyst through which exhaust gas injected with ammonia flows.

【0019】 給水ポンプ36に接続された給水系統25は、先ず第2の排熱回収熱交換器1 1を通り、次いで第1の排熱回収熱交換器10を通った上、加圧流動床ボイラ1 の伝熱管4aに供給されるようになっている。The water supply system 25 connected to the water supply pump 36 first passes through the second exhaust heat recovery heat exchanger 11 and then the first exhaust heat recovery heat exchanger 10 and then the pressurized fluidized bed. The heat is transferred to the heat transfer tube 4a of the boiler 1.

【0020】 前記給水系統25の第1及び第2の排熱回収熱交換器10,11の間から流量 調整弁13をもつ給水バイパス系統16が分岐し、同給水バイパス系統16は第 1の排熱回収熱交換器10をバイパスして同熱交換器10の出口側に設けられた 流量調整弁14の下流側で給水系統に25に合流している。A water supply bypass system 16 having a flow rate adjusting valve 13 branches from between the first and second exhaust heat recovery heat exchangers 10 and 11 of the water supply system 25, and the water supply bypass system 16 has a first exhaust heat recovery system. It bypasses the heat recovery heat exchanger 10 and joins the water supply system 25 downstream of the flow rate adjusting valve 14 provided on the outlet side of the heat exchanger 10.

【0021】 40は脱硝装置12の入口側の排ガス温度を検出する温度計であり、その信号 はガス温度制御器41に入力され、同制御器41の信号によって前記流量調整弁 13,14が制御されるようになっている。Reference numeral 40 is a thermometer for detecting the temperature of the exhaust gas at the inlet side of the denitration device 12, the signal of which is input to the gas temperature controller 41, and the flow rate adjusting valves 13 and 14 are controlled by the signal of the controller 41. It is supposed to be done.

【0022】 本実施例では、適当な熱吸収量をもつ第1の排熱回収熱交換器10において、 排ガスと給水との間に熱交換が行われて排ガスの温度が降下し、排ガスは、充分 な脱硝作用を行うことができると共にSO2 からのSO3 の転換率を低く抑える ことができる温度で脱硝装置12へ流入する。In the present embodiment, in the first exhaust heat recovery heat exchanger 10 having an appropriate heat absorption amount, heat exchange is performed between the exhaust gas and the feed water, the temperature of the exhaust gas drops, and the exhaust gas is It flows into the denitration device 12 at a temperature at which a sufficient denitration action can be performed and the conversion rate of SO 3 from SO 2 can be suppressed to a low level.

【0023】 脱硝装置12で脱硝され、かつ、SO3 の発生を抑えられた排ガスは、第2の 排熱回収熱交換器11で給水との間に熱交換を行って更に温度を下げた上、脱硝 され、かつ、酸性硫安(NH4 HSO4 )の発生,析出がない状態で煙突18か ら排出される。The exhaust gas that has been denitrified by the denitration device 12 and has suppressed the generation of SO 3 undergoes heat exchange with the feed water by the second exhaust heat recovery heat exchanger 11 to further lower the temperature. After being denitrified, and without generating or depositing acidic ammonium sulfate (NH 4 HSO 4 ), it is discharged from the stack 18.

【0024】 また、プラント負荷の減低下等によって、脱硝装置12へ流入する排ガスの温 度が低下した時には、温度計40の信号によってガス温度制御器41は流量調整 弁14の開度を減ずると共に流量調整弁13を開く。これにより、給水の一部は 給水バイパス系統16を経て流れることとなり、第1の排熱回収熱交換器10を 流れる給水流量が減少し、これによって、同熱交換器10の熱吸収量が調整され 、脱硝装置12に流入する排ガスの温度を適正な値に保つ。このようにして、本 実施例では、プラント負荷の変動等があっても、脱硝装置12へ流入する排ガス の温度を常に適正な値に保持し、SO2 のSO3 への転換を抑えながら充分な脱 硝を行うことができる。なお、本実施例において、第1の排熱回収熱交換器10 における排ガス温度の低下は、通常のプラント負荷において50℃程度とするの が望ましい。When the temperature of the exhaust gas flowing into the denitration device 12 decreases due to a decrease in the plant load or the like, the signal from the thermometer 40 causes the gas temperature controller 41 to decrease the opening degree of the flow control valve 14. The flow rate adjusting valve 13 is opened. As a result, a part of the water supply flows through the water supply bypass system 16, and the flow rate of the water supply flowing through the first exhaust heat recovery heat exchanger 10 is reduced, whereby the heat absorption amount of the heat exchanger 10 is adjusted. Then, the temperature of the exhaust gas flowing into the denitration device 12 is maintained at an appropriate value. In this way, in this embodiment, the temperature of the exhaust gas flowing into the denitration device 12 is always kept at an appropriate value even if there is a fluctuation in the plant load, and the conversion of SO 2 to SO 3 is suppressed while being sufficient. Denitration can be performed. In the present embodiment, it is desirable that the temperature of the exhaust gas in the first exhaust heat recovery heat exchanger 10 is lowered to about 50 ° C. under a normal plant load.

【0025】 本実施例と図4に示す従来のプラントにおける脱硝装置の入口ガス温度とSO 2 →SO3 転換率のプラント出力に対する関係を図2に示す。同図2においては 、本実施例は本考案として示されている。図2に示すように、本実施例において は、従来のプラントに比して脱硝装置の入口ガス温度を50℃程度低くしており 、また、SO3 転換率はプラント出力以下に拘らず従来のプラントに比して著し く低くすることができる。The inlet gas temperature and SO of the denitration device in this example and the conventional plant shown in FIG. 2 → SO3The relationship between conversion rate and plant output is shown in FIG. In FIG. 2, this embodiment is shown as the present invention. As shown in FIG. 2, in the present embodiment, the inlet gas temperature of the denitration device is lower by about 50 ° C. than in the conventional plant, and the SO3The conversion rate can be markedly lower than that of conventional plants regardless of plant output or less.

【0026】 なお、本実施例は加圧流動床ボイラを用いたプラントに係るが、本考案では、 常圧の流動床ボイラを用いることもでき、また、本考案は、ガス化炉の高温生成 ガスによってガスタービンを駆動するプラント等流動床炉を備えた発電プラント にひろく適用することができる。In addition, although the present embodiment relates to a plant using a pressurized fluidized bed boiler, a fluidized bed boiler at normal pressure can be used in the present invention, and the present invention is directed to high temperature generation of a gasification furnace. It can be widely applied to a power plant equipped with a fluidized bed furnace such as a plant that drives a gas turbine with gas.

【0027】[0027]

【考案の効果】[Effect of device]

以上詳述したように、本考案は登録請求の範囲の請求項1及び2に記載の構成 を具備することによって、脱硝装置入口の排ガス温度を最適値にすることができ るので、脱硝触媒量又は触媒の種類を変更することなく充分な脱硝を行うことが できると共に、SO2 のSO3 への転換率を低く保つことが可能となる。これに より、脱硝装置から排出される残留アンモニアと排ガス中に含まれるSO3 とが 低温度域で反応することによって発生しバイジンとして取扱われる酸性硫安を大 幅に減少することができ、環境対策上有効である。As described above in detail, the present invention can optimize the exhaust gas temperature at the inlet of the denitration device by providing the configurations described in claims 1 and 2 of the registration claim, and therefore the denitration catalyst amount Alternatively, sufficient denitration can be performed without changing the type of catalyst, and the conversion rate of SO 2 to SO 3 can be kept low. As a result, it is possible to greatly reduce the amount of acidic ammonium sulfate that is generated as a result of reaction between residual ammonia discharged from the denitration equipment and SO 3 contained in the exhaust gas in the low temperature range and is treated as virgin. It is very effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】同実施例と従来の加圧流動床ボイラプラントの
脱硝装置入口ガス温度とSO2→SO3 転換率のプラン
ト出力に対する関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a denitration unit inlet gas temperature and a SO 2 → SO 3 conversion rate of the same example and a conventional pressurized fluidized bed boiler plant with respect to a plant output.

【図3】脱硝装置における入口ガス温度とSO3 転換率
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an inlet gas temperature and a SO 3 conversion rate in a denitration device.

【図4】従来の加圧流動床ボイラプラントの系統図であ
る。
FIG. 4 is a system diagram of a conventional pressurized fluidized bed boiler plant.

【符号の説明】[Explanation of symbols]

1 加圧流動床ボイラ 2 加圧容器 3 石炭・石灰石供給システム 4a,4b 伝熱管 7 発電機 8 ガスタービン 9 空気圧縮機 10 第1の排熱回収熱交換器 11 第2の排熱回収熱交換器 12 脱硝装置 13,14 流量調整弁 16 給水バイパス系統 23 低温ガス系統 25 給水系統 31 発電機 32 蒸気タービン 40 温度計 41 ガス温度制御器 1 Pressurized Fluidized Bed Boiler 2 Pressurized Container 3 Coal / Limestone Supply System 4a, 4b Heat Transfer Tube 7 Generator 8 Gas Turbine 9 Air Compressor 10 First Exhaust Heat Recovery Heat Exchanger 11 Second Exhaust Heat Recovery Heat Exchange 12 Denitration equipment 13, 14 Flow rate control valve 16 Water supply bypass system 23 Low temperature gas system 25 Water supply system 31 Generator 32 Steam turbine 40 Thermometer 41 Gas temperature controller

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 流動床炉、前記流動床炉の生成ガスで駆
動されるガスタービン、及び前記ガスタービンの出口に
接続された排ガス系統に設置された排熱回収熱交換器と
アンモニアが注入された排ガスが流過する脱硝触媒が充
填された脱硝装置を備えた流動床炉を備えた発電プラン
トにおいて、前記ガスタービンの出口に接続された排ガ
ス系統に上流側の第1の排熱回収熱交換器と下流側の第
2の排熱回収熱交換器を設け、前記排ガス系統の前記両
排熱回収熱交換器の間に脱硝装置を設置したことを特徴
とする流動床炉を備えた発電プラント。
1. An exhaust heat recovery heat exchanger installed in a fluidized bed furnace, a gas turbine driven by generated gas of the fluidized bed furnace, and an exhaust gas system connected to an outlet of the gas turbine, and ammonia are injected. In a power plant equipped with a fluidized bed furnace equipped with a denitration device filled with a denitration catalyst through which exhaust gas flows, a first exhaust heat recovery heat exchange upstream of the exhaust gas system connected to the outlet of the gas turbine Plant and a second exhaust heat recovery heat exchanger on the downstream side, and a denitration device is installed between both of the exhaust heat recovery heat exchangers of the exhaust gas system, the power plant having a fluidized bed furnace .
【請求項2】 前記脱硝装置の入口の排ガスの温度を検
出する温度計及び前記温度計の信号によって制御され前
記第1の排熱回収熱交換における排ガスからの熱吸収量
を制御する手段を設けたことを特徴とする請求項1に記
載の流動床炉を備えた発電プラント。
2. A thermometer for detecting the temperature of the exhaust gas at the inlet of the denitration device and means for controlling the amount of heat absorbed from the exhaust gas in the first exhaust heat recovery heat exchange controlled by a signal from the thermometer. A power plant comprising the fluidized bed furnace according to claim 1.
JP1993000145U 1993-01-07 1993-01-07 Power plant with pressurized fluidized bed boiler Expired - Lifetime JP2583428Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1993000145U JP2583428Y2 (en) 1993-01-07 1993-01-07 Power plant with pressurized fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1993000145U JP2583428Y2 (en) 1993-01-07 1993-01-07 Power plant with pressurized fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH0658104U true JPH0658104U (en) 1994-08-12
JP2583428Y2 JP2583428Y2 (en) 1998-10-22

Family

ID=11465866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1993000145U Expired - Lifetime JP2583428Y2 (en) 1993-01-07 1993-01-07 Power plant with pressurized fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP2583428Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514491A (en) * 2011-03-30 2014-06-19 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Exhaust purification device for watercraft and method of operating the exhaust purification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122604U (en) * 1984-01-20 1985-08-19 株式会社日立製作所 Combined power plant
JPS60216010A (en) * 1984-04-11 1985-10-29 Toshiba Corp Combined cycle plant
JPS6433417A (en) * 1987-07-29 1989-02-03 Mitsubishi Heavy Ind Ltd Exhaust gas heat recovering system with denitrating device
JPH04272410A (en) * 1991-02-28 1992-09-29 Hitachi Ltd Pressurized fluid layer boiler power generating plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122604U (en) * 1984-01-20 1985-08-19 株式会社日立製作所 Combined power plant
JPS60216010A (en) * 1984-04-11 1985-10-29 Toshiba Corp Combined cycle plant
JPS6433417A (en) * 1987-07-29 1989-02-03 Mitsubishi Heavy Ind Ltd Exhaust gas heat recovering system with denitrating device
JPH04272410A (en) * 1991-02-28 1992-09-29 Hitachi Ltd Pressurized fluid layer boiler power generating plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514491A (en) * 2011-03-30 2014-06-19 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Exhaust purification device for watercraft and method of operating the exhaust purification device

Also Published As

Publication number Publication date
JP2583428Y2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
JP7207810B2 (en) Method and system for improving boiler efficiency
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US5943865A (en) Reheating flue gas for selective catalytic systems
US4353206A (en) Apparatus for removing NOx and for providing better plant efficiency in combined cycle plants
US7651389B2 (en) Exhaust smoke-processing system
EP2561919B1 (en) Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
EP0676587A1 (en) Method for optimizing the operating efficiency of a fossil fuel-fired power generation system
US5555849A (en) Gas temperature control system for catalytic reduction of nitrogen oxide emissions
US5878675A (en) Flue gas desulfurizer, boiler equipment and thermal electric power generation equipment
WO2014103682A1 (en) Exhaust gas processing equipment and gas turbine power generation system using same
JP2002206701A (en) Exhaust gas heat recovering device and method
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
CN202762308U (en) Deep energy-saving system based on flue gas desulfurization and denitrification process optimization
Yu et al. Advanced concept of coupling solar-aided flue gas treatment and solar-aided power generation in power plants
KR100606438B1 (en) Flue gas treatment system to recover exhaust heat from the downstream of scr
CN105889899B (en) A kind of overheating steam temperature regulating system and method suitable for putting into operation under SCR underloads
CN111804138A (en) Biomass boiler flue gas denitration system and application process thereof
JP2004154683A (en) Exhaust gas treatment equipment and its operation method
JPH0658104U (en) Power plant with fluidized bed furnace
JP2020121267A (en) Exhaust gas treatment equipment
CN109603526A (en) A kind of biomass electric power plant smoke processing system
CN112403224B (en) CO oxidation and denitration system and method
CN209630983U (en) A kind of biomass electric power plant smoke processing system
CN211753798U (en) CO oxidation and denitration system
JP6667867B2 (en) Boiler equipment and its operation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980707