JPH065769B2 - Photovoltaic device manufacturing method - Google Patents

Photovoltaic device manufacturing method

Info

Publication number
JPH065769B2
JPH065769B2 JP59057429A JP5742984A JPH065769B2 JP H065769 B2 JPH065769 B2 JP H065769B2 JP 59057429 A JP59057429 A JP 59057429A JP 5742984 A JP5742984 A JP 5742984A JP H065769 B2 JPH065769 B2 JP H065769B2
Authority
JP
Japan
Prior art keywords
solar cell
layer
manufacturing
photovoltaic device
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59057429A
Other languages
Japanese (ja)
Other versions
JPS60201667A (en
Inventor
健司 中谷
満明 矢野
宏 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59057429A priority Critical patent/JPH065769B2/en
Publication of JPS60201667A publication Critical patent/JPS60201667A/en
Publication of JPH065769B2 publication Critical patent/JPH065769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 [利用分野] 本発明は太陽光の有効利用を可能ならしめる可撓性の非
晶質薄膜太陽電池からなる光発電装置の製造方法に関す
る、さらに詳しくは太陽電池の表面、その光起電力層と
透明導電層及び下部電気導電層との界面等で反射された
光を再利用可能とした光発電装置の製造方法に関する。
Description: FIELD OF APPLICATION The present invention relates to a method for manufacturing a photovoltaic device comprising a flexible amorphous thin-film solar cell that enables effective use of sunlight, and more specifically, the surface of the solar cell. The present invention relates to a method for manufacturing a photovoltaic device in which light reflected at an interface between the photovoltaic layer, the transparent conductive layer and the lower conductive layer can be reused.

[従来技術] 非晶質半導体特に非晶質シリコン半導体は製造方法の容
易さや省エネルギー的利点、及び大面積半導体膜の得や
すさから、太陽電池用半導体として研究されている。し
かしながら非晶質シリコン半導体は単晶質シリコン半導
体に比較して多数の局在準位が禁制帯中に存在しており
そのため少数キャリヤーの拡散長が著しく制限されてい
る。それ故光吸収によって生じた発生キャリヤーを有効
に分離し、電流として取り出す為にはその膜厚を0.2〜
1μmとするのが好ましいと云われている。一方非晶質
シリコン膜の吸収係数は単結晶に比して1ケタ以上大き
いという利点を有するが禁制帯エッジ付近に相当する55
0〜800nmの光を有効に利用する為にはそれでも1μm以
上の膜厚が必要と云われている。従って、電気的特性か
ら望まれる膜厚では入射光を十分吸収出来ずこれが発生
光電流量を制限する原因となっている。この問題点を解
決するものとしては、特開昭58-159383号公報に開示さ
れた光線指向装置を有する太陽電池があるがそれのみで
は未だ入射光の利用率が低く、いっそうの改善が望まれ
ていた。
[Prior Art] Amorphous semiconductors, especially amorphous silicon semiconductors, are being researched as semiconductors for solar cells because of their ease of manufacturing method, energy-saving advantages, and ease of obtaining large-area semiconductor films. However, in the amorphous silicon semiconductor, a large number of localized levels are present in the forbidden band as compared with the single crystal silicon semiconductor, so that the diffusion length of minority carriers is significantly limited. Therefore, in order to effectively separate the carriers generated by light absorption and to extract it as a current, the film thickness should be 0.2-
It is said that 1 μm is preferable. On the other hand, the absorption coefficient of the amorphous silicon film has an advantage that it is larger than the single crystal by one digit or more, but it is equivalent to the vicinity of the forbidden band edge.
It is said that a film thickness of 1 μm or more is still required to effectively use the light of 0 to 800 nm. Therefore, incident light cannot be sufficiently absorbed at a film thickness desired from the electrical characteristics, which causes the generated photoelectric flow rate to be limited. As a solution to this problem, there is a solar cell having a light beam directing device disclosed in Japanese Patent Laid-Open No. 58-159383, but the utilization rate of incident light is still low only by that, and further improvement is desired. Was there.

また、米国特許第4,376,228号明細書には、光起電力層
が0.25μm以下の超薄膜太陽電池を入射光に対して傾斜
させ非晶質半導体中での光路長を実質的に長くする事及
びフラットな反射パネルをV字型に対設した光捕集構造
体の底部に太陽電池を設けて光利用率の向上を計る事が
開示されている。しかしながら、この方式ではフラット
パネルあるいは湾曲パネル部品を光捕集構造体に組立て
る事が必要であり、又各光捕集構造体に太陽電池を設置
すると共にそれらからの集電用の電気配線を必要とする
等の実用上の問題があると共に、光利用率がまだ十分で
ない。
Also, U.S. Pat. No. 4,376,228 discloses that an ultrathin film solar cell having a photovoltaic layer of 0.25 μm or less is tilted with respect to incident light to substantially lengthen the optical path length in an amorphous semiconductor. It is disclosed that a solar cell is provided at the bottom of a light collecting structure in which a flat reflective panel is arranged in a V shape so as to improve the light utilization rate. However, in this method, it is necessary to assemble a flat panel or a curved panel component into the light collecting structure, and a solar cell is installed in each light collecting structure and electric wiring for collecting current from them is required. There is a practical problem such as the above, and the light utilization rate is not yet sufficient.

[発明の目的] 本発明はかかる現状に鑑みなされたもので、非晶質薄膜
太陽電池を用いた構成簡単で光利用率の良い光発電装置
を容易に生産性良く製造できる光発電装置の製造方法を
目的としたものである。
[Object of the Invention] The present invention has been made in view of the above circumstances, and manufactures a photovoltaic power generation device that uses an amorphous thin-film solar cell and has a simple structure and a high light utilization rate, and that can be easily manufactured with high productivity. It is intended as a method.

[発明の構成及び作用] ところで、入射太陽光の利用率上昇を考える時透明導電
層表面及び透明導電層と非晶質半導体界面で反射されて
有効に非晶質半導体層に到達しない光成分が存在し、こ
れらの有効利用が必要となる。そして、その対策として
これらの反射光を減少させる為の反射防止層を設ける事
が考えられるが、有効な反射防止を行なう為には正確な
膜厚制御で多数の透明層を積層する必要があり、技術
的、工業的にも、問題が有る。本発明者らは非晶質半導
体の禁制帯エッジ付近に相当する波長の光の有効利用及
び太陽電池表面、各層界面での反射光の有効利用の観点
から非晶質太陽電池を研究し、本発明に到達した。
[Structure and Action of Invention] By the way, when considering the increase in the utilization rate of incident sunlight, light components reflected on the surface of the transparent conductive layer and at the interface between the transparent conductive layer and the amorphous semiconductor and not effectively reaching the amorphous semiconductor layer are detected. They exist, and effective use of them is required. As a countermeasure, it is conceivable to provide an antireflection layer for reducing these reflected lights, but in order to effectively prevent reflection, it is necessary to stack a large number of transparent layers with accurate film thickness control. There are technical and industrial problems as well. The present inventors have studied amorphous solar cells from the viewpoints of effective use of light having a wavelength corresponding to the vicinity of the forbidden band edge of an amorphous semiconductor and effective use of reflected light at the surface of each solar cell and at the interface between layers. The invention was reached.

すなわち、本発明は平らな同一基板上に形成され、複数
のセルが電気的に接続された可撓性の非晶質薄膜太陽電
池を用い、入射光側表面及び非晶質半導体/透明導電層
界面,非晶質半導体層/電気導電層界面で反射される入
射光の少なくとも一部を有効利用するようにしたもの
で、該可撓性の非晶質薄膜太陽電池を製作し、次いで該
非晶質薄膜太陽電池を一方の面で反射された、包絡面に
垂直な入射光の一部が、他方の面に入射する傾斜角で対
向した斜面を有する波板状に配置することを特徴とする
光発電装置の製造方法である。
That is, the present invention uses a flexible amorphous thin-film solar cell formed on the same flat substrate and having a plurality of cells electrically connected to each other. The incident light side surface and the amorphous semiconductor / transparent conductive layer are used. The flexible amorphous thin-film solar cell is manufactured by effectively utilizing at least a part of incident light reflected at the interface, the amorphous semiconductor layer / electrically conductive layer interface, and then the amorphous Characterized in that a thin film solar cell is arranged in a corrugated plate shape having inclined surfaces opposed to each other at an inclination angle where a part of incident light reflected on one surface and perpendicular to the envelope surface is incident on the other surface. It is a manufacturing method of a photovoltaic device.

以下、本発明の詳細を説明する。Hereinafter, the details of the present invention will be described.

第1図は本発明の一構成例の側断面図である。図におい
て、1は成型体、10は太陽電池、100は入射光である。
FIG. 1 is a side sectional view of an example of the configuration of the present invention. In the figure, 1 is a molded body, 10 is a solar cell, and 100 is incident light.

太陽電池10は、平らな同一基板上に形成された公知の可
撓性の非晶質薄膜太陽電池であり、高分子樹脂フイルム
からなる可撓性の基板11上に電気導電層からなる下部電
極12、非晶質半導体からなる光起電力層13及び透明導電
層からなる上部電極14を順次積層した公知の構成を有す
る。
The solar cell 10 is a well-known flexible amorphous thin film solar cell formed on the same flat substrate, and a lower electrode composed of an electrically conductive layer on a flexible substrate 11 composed of a polymer resin film. 12. It has a known structure in which a photovoltaic layer 13 made of an amorphous semiconductor and an upper electrode 14 made of a transparent conductive layer are sequentially laminated.

成型体1は、高分子樹脂、金属等の構造材料からなり、
その表面は以下の波型となっている。すなわち、図示の
通り表面は、側断面が後述の傾斜角θの対向した斜面
1a,1bからなる略三角波状の波型に形成されている。そ
して斜面1a,1bの傾斜角θは、波面の包絡面2(図の
鎖線)に垂直な入射光100の一方の斜面例えば図の斜面1
aからの反射光101が対向した斜面すなわち図の斜面1bに
入射する角度となっている。なお傾斜角θは包絡面2
に平行な面2′を基準とし斜面1a,1b共基準面2′との
交角の小さい方で表わす。そして、図示の通り、成型体
1の表面に太陽電池10を接着剤等により貼り付けてあ
る。太陽電池10は前述の通り可撓性の非晶質薄膜太陽電
池であるので、図示の通り容易に成型体1の表面の波型
に密着できる。特に同一基板上に形成されたものでは、
単に成型体1に貼着するのみ、あるいは後述するように
波型に配置するのみで、簡単に光発電装置が構成できる
利点がある。
The molded body 1 is made of a structural material such as polymer resin or metal,
The surface has the following corrugations. That is, as shown in the figure, the surface is a slope whose side cross section has an inclination angle θ 1 which will be described later.
It is formed in a substantially triangular wave shape composed of 1a and 1b. The inclination angle θ 1 of the slopes 1a and 1b is one slope of the incident light 100 perpendicular to the wavefront envelope 2 (chain line in the figure), for example, slope 1 in the figure.
The angle is such that the reflected light 101 from a is incident on the facing slope, that is, slope 1b in the figure. The inclination angle θ 1 is the envelope surface 2
The surface 2'parallel to the reference plane is used as a reference, and the slopes 1a and 1b are represented by the smaller angle of intersection with the reference plane 2 '. Then, as shown in the figure, the solar cell 10 is attached to the surface of the molded body 1 with an adhesive or the like. Since the solar cell 10 is a flexible amorphous thin-film solar cell as described above, it can be easily adhered to the corrugation on the surface of the molded body 1 as shown in the figure. Especially on those formed on the same substrate,
There is an advantage that the photovoltaic device can be easily configured by simply sticking it to the molded body 1 or by arranging it in a corrugated form as described later.

ところで、本発明の前述の傾斜角θ以上の対向せる傾
斜1a,1bを有する光発電装置では入射光100の内、太陽電
池10表面及び各層界面で反射され表面より放射される反
射光101,102,103を再度対向させ斜面1bに指向させその
斜面1b上に貼着されている太陽電池10に入射させ、発生
光電流量を増加させる効果を発揮する。
By the way, in the photovoltaic device having the inclinations 1a and 1b facing each other with the inclination angle θ 1 or more of the present invention, among the incident light 100, the reflected light 101, 102, 103 reflected on the surface of the solar cell 10 and the interface of each layer is emitted. It is made to face again to the slope 1b and is directed to the slope 1b to be incident on the solar cell 10 attached to the slope 1b, thereby exerting the effect of increasing the generated photoelectric flow rate.

ところで、斜面1a,1bの傾斜角θは斜面1a,1bの長さ及
び頂点部の曲率半径等とも関連し、適宜選定されるが、
斜面1a,1bが十分長い波型の場合は、傾斜角θは31度
以上にすることが好ましい。
By the way, the inclination angle θ 1 of the slopes 1a, 1b is appropriately selected in connection with the length of the slopes 1a, 1b, the radius of curvature of the apex, etc.
When the slopes 1a and 1b have a corrugated shape that is sufficiently long, the inclination angle θ 1 is preferably 31 degrees or more.

傾斜角31度以上にすると上述の効果を確実に発揮するば
かりでなく下部電極12と光起電力層13との界面で反射さ
れた反射光103を光起電力層13と上部電極14との界面で
再反射させ、反射光104として光起電力層13中にとじ込
める効果を発揮し得る。すなわち通常以下のスネルの式
で表わされる入射角θ(第1図参照)以上の場合生じ
る全反射効果である。
When the inclination angle is 31 degrees or more, not only the above effect is surely exhibited but also reflected light 103 reflected at the interface between the lower electrode 12 and the photovoltaic layer 13 is transferred to the interface between the photovoltaic layer 13 and the upper electrode 14. It is possible to exhibit the effect of being re-reflected by and confined in the photovoltaic layer 13 as the reflected light 104. That is, it is the total reflection effect that usually occurs when the incident angle θ 2 (see FIG. 1) represented by the Snell's formula below is greater than or equal to.

Sin-1θ=n/n:低屈折率層 n:高屈折率層 光起電力層13の屈折率を代表的な非晶質シリコン層の可
視光域での屈折率の3.7とし、上部電極14の透明導電層
の屈折率を代表的な酸化インシュム層あるいは酸化スズ
層の屈折率の1.9とすると前述の入射角θ=30.8度と
なる。従って傾斜角31度以上の対向せる斜面に入射した
光100は下部電極12と光起電力層13との界面で反射され
た後、光起電力層13と上部電極14との界面へ、入射角31
度以上で入射され、全反射して光起電力層13内にとじ込
められる。
Sin −1 θ 2 = n 1 / n 2 n 1 : Low refractive index layer n 1 : High refractive index layer Refractive index of photovoltaic layer 13 A typical amorphous silicon layer has a refractive index in the visible light range And the refractive index of the transparent conductive layer of the upper electrode 14 is 1.9 of the refractive index of a typical indium oxide layer or tin oxide layer, the above incident angle θ 2 = 30.8 degrees. Therefore, the light 100 incident on the facing slopes with an inclination angle of 31 degrees or more is reflected at the interface between the lower electrode 12 and the photovoltaic layer 13, and then the incident angle at the interface between the photovoltaic layer 13 and the upper electrode 14. 31
The light is incident at an angle of more than 100 degrees, is totally reflected, and is confined in the photovoltaic layer 13.

ところで高分子フイルムを基板とした可撓性太陽電池を
用いるものでは、波形断面形状の曲面部分に容易に適応
させるばかりでなく、ロール状貼付装置を用いて連続的
に貼付可能である。さらに高分子フイルム基板は電気絶
縁物である為、その波形形状に合わせて同一フイルム基
板上に太陽電池ユニツトをパターン化させて形成出来、
真空蒸着法や印刷法、メッキ法などによって収集電極や
各太陽電池ユニツト間の配線電極用金属層を設ける事に
よって、斜面構造に貼付した時にも新たに電池間の接続
工程を必要とせずに同一基板で大面積化出来る利点を有
している。
By the way, in the case of using a flexible solar cell using a polymer film as a substrate, not only can it be easily adapted to a curved portion having a corrugated cross-sectional shape, but also it can be continuously stuck using a roll-shaped sticking device. Furthermore, since the polymer film substrate is an electrical insulator, it can be formed by patterning the solar cell unit on the same film substrate according to its corrugated shape.
By providing a collecting electrode and a metal layer for the wiring electrode between each solar cell unit by the vacuum deposition method, the printing method, the plating method, etc., even if it is attached to the slope structure, the same connection step is not required between the cells. It has the advantage that the area of the substrate can be increased.

さらに本発明の別の利点として非晶質半導体の膜厚依存
効果の有効利用を可能ならしめる事がある。すなわち非
晶質半導体には膜厚に依存した光劣化効果−スティーブ
ラーロンスキー効果−が存在する事が知られており膜厚
が薄いと劣化を著しく防止出来る利点が有る。
Another advantage of the present invention is that the film thickness-dependent effect of the amorphous semiconductor can be effectively used. That is, it is known that an amorphous semiconductor has a photo-deterioration effect-Stebler-Lonski effect-depending on the film thickness, and if the film thickness is thin, there is an advantage that deterioration can be remarkably prevented.

さらに光起電力層内に形成されているpin接合−もちろ
んこの接合形態のみに限定されるものではないが−によ
って生じる内部電界は膜厚が薄いと大きくなり半導体内
で生じたキャリヤーの収集効率を上昇させる効果を生じ
る。通常の太陽電池においては、光起電力層の厚みを薄
くすると入射光を十分吸収しきれず発生光電流量が低下
する問題点があったが、本発明の光発電装置では光の多
重利用によって光電流量を低下される事なく太陽電池の
光起電力層の厚みを薄くでき、光劣化の防止、内部電流
の増加効果を利用出来る。
Furthermore, the internal electric field generated by the pin junction formed in the photovoltaic layer-of course, but not limited to this junction form-is large when the film thickness is thin and the efficiency of collecting carriers generated in the semiconductor is improved. Has the effect of increasing. In a normal solar cell, when the thickness of the photovoltaic layer is made thin, there is a problem that the incident light cannot be sufficiently absorbed and the generated photoelectric flow rate decreases, but in the photovoltaic device of the present invention, the photoelectric flow rate is increased by the multiple use of light. It is possible to reduce the thickness of the photovoltaic layer of the solar cell without decreasing the temperature, prevent photodegradation, and use the effect of increasing the internal current.

なお、成形体1としては、前述した所定の波形の表面を
有するものであれば良く、板状体、箱状体等如何なる構
造でも良く傾斜角の要件を満足すれば市販の波板等も適
用できる。
It should be noted that the molded body 1 may be any one having any of the above-mentioned predetermined corrugated surfaces, and may have any structure such as a plate-shaped body or a box-shaped body, and a commercially available corrugated plate or the like may be applied as long as the requirements for the inclination angle are satisfied. it can.

以上、充分な機械的強度が得られる成型体で太陽電池を
波形に配置する構成のものを示したが、かかる成型体は
省略できる。第2図は、その一例の斜視図で、太陽電池
10を支持ローラ21,押えローラ22は図示省略した支持体
に支持されている。そして太陽電池10の対向する斜面の
傾斜角θが前述の角度以上になるように配置してあ
る。従って、前述した第1図のものと全く同じ作用効果
を奏する。その上、配置に際しては、長尺の同一基板上
に形成され且つ接続された太陽電池10を図示の如く、支
持ローラ21と押えローラ22とに沿って張設するのみで良
く、組立が容易でコストも大巾に低減できる利点があ
る。
As described above, the molded body having sufficient mechanical strength and having the solar cells arranged in a corrugated shape is shown, but the molded body can be omitted. FIG. 2 is a perspective view of an example of the solar cell.
The supporting roller 21 and the pressing roller 22 are supported by a supporting body (not shown). Then, the solar cells 10 are arranged so that the inclination angle θ 1 of the opposing slopes is equal to or larger than the above-mentioned angle. Therefore, the same operation and effect as those of FIG. 1 described above are obtained. In addition, at the time of arrangement, the solar cells 10 formed and connected on the same long substrate are simply stretched along the supporting roller 21 and the pressing roller 22 as shown in the drawing, and the assembly is easy. There is an advantage that the cost can be greatly reduced.

特に、支持ローラ21,及び押えローラ22のローラ間隔を
調整可能とする共に、支持ローラ21に対し押えローラ22
を図で上下方向に移動可能に設けることにより、前述の
組立作業を合理化できると共に、斜面の長さ、傾斜角も
調整可能となり、光利用率の最適化が容易となる。
In particular, the distance between the support roller 21 and the pressing roller 22 can be adjusted, and the pressing roller 22 can be pressed against the supporting roller 21.
By arranging so as to be movable in the vertical direction in the figure, the above-mentioned assembling work can be rationalized, and the length and inclination angle of the slope can be adjusted, so that the optimization of the light utilization rate becomes easy.

また、支持ローラ21,押えローラ22は太陽電池敷設時の
便のためローラとしてあるが固定棒等でも良い。しか
し、その半径は太陽電池の性能を低下させない半径以
上、具体的は7.5mm以上とするのが好ましい。
Further, although the supporting roller 21 and the pressing roller 22 are rollers for convenience of laying the solar cell, they may be fixed rods or the like. However, the radius is preferably not less than the radius that does not deteriorate the performance of the solar cell, specifically 7.5 mm or more.

さらに、押えローラ22はその下側の太陽電池を有効に利
用できる点から透明とすることが好ましい。
Further, it is preferable that the pressing roller 22 is transparent in that the solar cell therebelow can be effectively used.

以上の通り本発明は種々の態様で実施できるものであ
る。
As described above, the present invention can be implemented in various modes.

ところで、本発明に用いられる太陽電池としては、平ら
な同一基板上に形成され、複数のセルが電気的に接続さ
れた可撓性の非晶質薄膜太陽電池である。具体的云え
ば、同一基板上に多数のセルを形成し、必要に応じ直列
若しくは/及び並列に接続したもの、同一基板上に形成
した集積型太陽電池等が適用できるが、以下好ましいも
のを説明する。
By the way, the solar cell used in the present invention is a flexible amorphous thin-film solar cell formed on the same flat substrate and having a plurality of cells electrically connected. Specifically, a large number of cells formed on the same substrate and connected in series or / and in parallel as necessary, an integrated solar cell formed on the same substrate, and the like can be applied, but preferred ones will be described below. To do.

基板としては高分子樹脂フイルム、金属薄板等可撓性の
あるものであれば良く、高分子樹脂フイルムとしては15
0℃以上の耐熱性を有する高分子樹脂で例えばポリエチ
レンテタレフタレート,ポリエチレンナフタレート,芳
香族ポリエステル,芳香族ポリアミド,ポリスルホン
酸,ポリイミド,ポリアリレート,ポリエーテルエーテ
ルケトン等が用いられる。もちろんこれら例示されたフ
イルムに限定されるものではない。なお、これら高分子
樹脂フイルムのうち、可撓性を発揮し且つ取り扱いが容
易な点から50〜200μmの厚みのフイルムが良く、さら
に好ましくは75〜175μmのフイルムである。
A flexible substrate such as a polymer resin film or a thin metal plate may be used as the substrate.
As a polymer resin having heat resistance of 0 ° C. or higher, for example, polyethylene terephthalate, polyethylene naphthalate, aromatic polyester, aromatic polyamide, polysulfonic acid, polyimide, polyarylate, polyether ether ketone, etc. are used. Of course, the film is not limited to these exemplified films. Among these polymer resin films, a film having a thickness of 50 to 200 μm is preferable, and a film having a thickness of 75 to 175 μm is more preferable, from the viewpoint of exhibiting flexibility and being easy to handle.

高分子基板上に設ける下部電極としては非晶質シリコン
層との電気的接合の見地からTi,Mo,V,Cr,ステンレ
ス,ニクロム合金などが良いが、さらに本発明の効果が
より一層発揮される点から可視域での反射率が高い下部
電極が望ましく、本発明者らが先に出願した特開昭60-1
5980号公報で提案した低抵抗金属層と、非晶質半導体層
との電気的接合の良好なバリヤー層との少なくとも2層
からなり、且つ650nmにおける反射率が少なくとも70%
以上である導電性層からなる下部電極がより好ましく適
用できる。かかる下部電極の具体的構成としては、Al,
Au,Ag,Cu等の該反射率の高い金属又はその合金からな
る低抵抗金属層と、前述のTi,Mo,V,Cr,ステンレス
合金、ニクロム合金などからなる膜厚が10Å〜100Å程
度の薄いバリヤー層との組合せが挙げられる。
The lower electrode provided on the polymer substrate is preferably Ti, Mo, V, Cr, stainless steel, nichrome alloy, or the like from the viewpoint of electrical connection with the amorphous silicon layer, but the effect of the present invention is further exerted. In view of the above, a lower electrode having a high reflectance in the visible region is desirable, and the inventors of the present invention previously filed JP-A-60-1.
It comprises at least two layers of a low resistance metal layer proposed in Japanese Patent Publication No. 5980 and a barrier layer having good electrical contact with an amorphous semiconductor layer, and has a reflectance of at least 70% at 650 nm.
The lower electrode made of the conductive layer described above can be more preferably applied. As a specific configuration of the lower electrode, Al,
A low resistance metal layer made of a metal having high reflectance such as Au, Ag, or Cu or an alloy thereof, and a film thickness made of the above Ti, Mo, V, Cr, stainless alloy, nichrome alloy, etc., of about 10Å to 100Å In combination with a thin barrier layer.

光起電力層は公知のものがそのまま適用できる。以下代
表的な光起電力層のシリコンを主成分とした非晶質半導
体層について説明する。
As the photovoltaic layer, a known layer can be applied as it is. An amorphous semiconductor layer containing silicon as a main component of a typical photovoltaic layer will be described below.

非晶質シリコン薄膜を堆積するにはグロー放電法、スパ
ッタリング法,イオンプレーティング法など公知の方法
を用いる。例えばグロー放電法の場合、10〜0.1torrに
維持された真空槽内で、該基板を100〜400℃に加熱した
基板ホルダーに密着させる。この基板ホルダーを一方の
電極とし、それと対向するる電極との間に13.56MHZ
の高周波電力を供給する。真空槽内にはシラン(SiH
),ジボラン(B),ホスフィン(PH)な
どのガスを導入してグロー放電を起こし、所定の構造に
前記ガスの分解生成物を堆積せしめ、非晶質半導体層を
設ける。フッ素原子を第三成分元素として導入する時は
フッ素ガスあるいは4フッ化シラン(SiF)ガス
を、炭素原子を導入する時はメタン,エタンなどの炭化
水素を、窒素原子を導入する時は窒素ガスあるいはアン
モニアガスを、Ge原子を導入する時はGeHガス
を、Sn原子を導入する時はSnHガスをシランガス
あるいは水素ガス中に適当量混入させる事によって可能
である。
A known method such as a glow discharge method, a sputtering method, or an ion plating method is used to deposit the amorphous silicon thin film. For example, in the case of the glow discharge method, the substrate is brought into close contact with the substrate holder heated to 100 to 400 ° C. in a vacuum chamber maintained at 10 to 0.1 torr. This substrate holder is used as one electrode and 13.56 MHZ is placed between it and the opposite electrode.
Supply high frequency power. Silane (SiH
4 ), diborane (B 2 H 6 ), phosphine (PH 3 ) or the like gas is introduced to cause glow discharge, and a decomposition product of the gas is deposited in a predetermined structure to form an amorphous semiconductor layer. When introducing a fluorine atom as a third component element, fluorine gas or tetrafluorosilane (SiF 4 ) gas is introduced, when introducing a carbon atom, hydrocarbons such as methane and ethane, and when introducing a nitrogen atom, nitrogen is introduced. It is possible to mix an appropriate amount of gas or ammonia gas with GeH 4 gas when introducing Ge atoms, and SnH 4 gas when introducing Sn atoms into silane gas or hydrogen gas.

また、投入高周波電力を増加させ、非晶質シリコン層中
に一部微結晶層を混入させても良い。
Further, the input high-frequency power may be increased and a part of the microcrystalline layer may be mixed in the amorphous silicon layer.

光起電力層はホウ素を含んだp層,ホスフィルあるいは
ヒ素を含んだn層,これらを含まないi層などによりな
るが、これらの構成順は適宜選択される。又i層の化学
的禁制帯幅を光吸収量を考慮して変化させ、pinpin,pi
npinpinタイプのタンデム構造を用いる事が出来る。
The photovoltaic layer is composed of a p-layer containing boron, an n-layer containing phosphyl or arsenic, an i-layer not containing them, etc., but the order of their construction is appropriately selected. In addition, the chemical band gap of the i layer is changed in consideration of the amount of light absorption,
An npin pin type tandem structure can be used.

そして、公知の通り、以下のようにして太陽電池を構成
する。すなわち、光起電力層上に酸化インジューム,酸
化スズ,スズ酸カドニウムなどの導電性酸化物層あるい
は白金,金,パラシューム等の金属層を50〜2000Å前後
の膜厚になる様にスパッタ法や真空蒸着法で堆積し透明
導電層の上部電極を形成する。次に収集電極を上部電極
の透明導電層表面上に設けて非晶質シリコン太陽電池と
する。
Then, as is known, the solar cell is configured as follows. That is, a conductive oxide layer such as indium oxide, tin oxide, and cadmium stannate or a metal layer such as platinum, gold, and parasum is formed on the photovoltaic layer by a sputtering method or a sputtering method so as to have a film thickness of about 50 to 2000 Å. The upper electrode of the transparent conductive layer is formed by vacuum deposition. Next, a collecting electrode is provided on the surface of the transparent conductive layer of the upper electrode to form an amorphous silicon solar cell.

以上の通り本発明は先ず平らな基板を用いて可撓性の非
晶質薄膜太陽電池を製作し、次いでこれを波板状に配置
することを特徴とするもので、製作容易で生産性良く製
造できると共に、照射される光の利用率を向上させるこ
とにより、非晶質太陽電池の変換効率とは無関係に、光
発電装置としての変換効率を大巾に向上させる作用を奏
するものである。
As described above, the present invention is characterized in that a flexible amorphous thin film solar cell is first manufactured using a flat substrate, and then this is arranged in a corrugated plate shape. By being able to be manufactured and improving the utilization rate of the irradiated light, it has the effect of greatly improving the conversion efficiency as a photovoltaic device, regardless of the conversion efficiency of the amorphous solar cell.

従って、波板状の波の形状は、第1図,第2図に示した
ものに限定されず、一方の面で反射された包絡面に垂直
な入射光の一部が他方の面に入射する傾斜角で対向した
斜面を有するものであれば良く、例示の三角波状は勿
論、正弦波状、あるいは非対称波等も適用できる。また
周期性も特に必要ではない。重要な点は孤立波でなく連
続波であることである。連続波において、入射光のうち
対向斜面に再入射して再利用される再入射利用率が向上
する。そして、後述の実施例からも明らかのように、再
入射利用率が40%になると、光発電装置の変換効率が約
10%以上と大巾に上昇する。これらの点を考慮すると、
波の形状としては、傾斜角が所定以上の斜面ができるだ
け長くなる形状が好ましい。そして、実用面からは、前
述の再入射利用率が40%以上になるようにすることが好
ましい。このようにすることにより、光発電装置として
大幅な変換効率の向上が達成される。
Therefore, the shape of the corrugated wave is not limited to that shown in FIGS. 1 and 2, and a part of the incident light perpendicular to the envelope surface reflected on one surface is incident on the other surface. Any sine wave or asymmetric wave can be applied as well as the illustrated triangular wave, as long as they have slopes facing each other at an inclination angle. Moreover, the periodicity is not particularly necessary. The important point is that it is a continuous wave, not a solitary wave. In the continuous wave, the re-injection utilization ratio of the incident light that is re-incident on the opposite slope and reused is improved. And, as is clear from the examples described later, when the re-injection utilization rate is 40%, the conversion efficiency of the photovoltaic device is about
Greatly increases to over 10%. Considering these points,
As the shape of the wave, a shape in which the slope having an inclination angle of a predetermined value or more is as long as possible is preferable. Then, from the practical point of view, it is preferable that the above-mentioned re-injection utilization rate is 40% or more. By doing so, the conversion efficiency of the photovoltaic device is significantly improved.

以下実施例を挙げて、本発明を説明する。The present invention will be described below with reference to examples.

[実施例及び比較例] 75μm厚のポリエステルフイルムを基板とし1μmA
層と50Åのステンレス層をそれぞれアルゴンガス雰囲気
下でスパッタリング法により順次積層堆積し、下部電極
とした。この下部電極は650nmでの垂直反射率が75%以
上有する高反射性下部電極である。このポリエステルフ
イルム/A/ステンレス積層基板をRFグロー放電C
VD装置の加熱電極上にセットし基板温度200℃の加熱
状態下で光起電力層として非晶質シリコン半導体層を以
下のように堆積した。非晶質シリコン層はまずSi
,B,Hの混合ガス雰囲気下、10Wの高周
波電力を投入してグロー放電分解によりp型層を約500
Å堆積し、次にSiHガス雰囲気下5Wの投入電力に
よってi型層を約0.5μm堆積した。最後にSiH
PH,Hの混合ガス雰囲気下、270Wの高パワー電
力を投入して約200Åの微結晶相を含んだn型層を形成
し、pin接合を有する非晶質シリコン層の光起電力層と
した。
[Examples and Comparative Examples] A polyester film having a thickness of 75 μm was used as a substrate, and 1 μmA was used.
Layer and a 50Å stainless steel layer were sequentially laminated and deposited by a sputtering method in an argon gas atmosphere to form a lower electrode. This lower electrode is a highly reflective lower electrode having a vertical reflectance of 75% or more at 650 nm. This polyester film / A / stainless steel laminated substrate is subjected to RF glow discharge C
An amorphous silicon semiconductor layer was deposited as a photovoltaic layer under the heating condition of a substrate temperature of 200 ° C. on a heating electrode of a VD device as follows. First, the amorphous silicon layer is Si
Approximately 500 p-type layers were formed by glow discharge decomposition by applying high-frequency power of 10 W in a mixed gas atmosphere of H 4 , B 2 H 6 , and H 2.
Å Deposition, and then an i-type layer of about 0.5 μm was deposited under a SiH 4 gas atmosphere with an input power of 5 W. Finally SiH 4 ,
Photovoltaic layer of amorphous silicon layer having pin junction by applying high power of 270 W in a mixed gas atmosphere of PH 3 and H 2 to form an n-type layer containing a microcrystalline phase of about 200 Å And

次いで電子ビーム反応性蒸着法により10×10cm角の大き
さにマスクを用いて酸化インジュームからなる透明導電
層の上部電極を約650Å厚に堆積した。
Then, an upper electrode of a transparent conductive layer made of indium oxide was deposited to a thickness of about 650 Å using a mask having a size of 10 × 10 cm square by electron beam reactive evaporation.

さらに電子ビーム蒸着によりAgを主体とした収集電極
パターンをマスク法により設けた。得られた太陽電池20
1を第4図に示す。図において、202は収集電極で、バス
バー部202aとフィンガー部202bとからなる。得られた
太陽電池の可撓性は十分であった。
Further, a collecting electrode pattern mainly composed of Ag was provided by a mask method by electron beam evaporation. The obtained solar cell 20
1 is shown in FIG. In the figure, reference numeral 202 denotes a collecting electrode, which includes a bus bar portion 202a and a finger portion 202b. The obtained solar cell had sufficient flexibility.

この可撓性を有する薄膜太陽電池をフラットな状態で垂
直方向の入射光で照射して電池性能を測定しまず比較例
とした。太陽電池性能はAir Mass=1,100mA/cm2
に設定したソーラーシュミレーター下で測定した。
The thin-film solar cell having flexibility was irradiated with incident light in a vertical direction in a flat state, and the cell performance was measured to be a comparative example. Solar cell performance is Air Mass = 1,100mA / cm 2
It measured under the solar simulator set to.

フラットな状態での光照射面積は収集電極面積を含んだ
面積(実効セル面積)で10cm×10cm=100cm2である。
The light irradiation area in the flat state is 10 cm × 10 cm = 100 cm 2 in the area including the collecting electrode area (effective cell area).

次に、実施例として、上述の可撓性の非晶質薄膜太陽電
池を用い、第3図に示す光発電装置とし、その性能を評
価した。図において、201は上述の太陽電池であり、210
は太陽電池201を波板状に配置するための成型体であ
る。成型体210は、高分子樹脂よりなり、少なくとも一
部が傾斜角43゜前後の対向した斜面を有する波板であ
り、その上面に接着剤200により太陽電池201を貼着して
光発電装置としてある。図から明らかな通り、成型体21
0の波の形状は、正弦波状であり、その一周期における
再入射利用率は約40%である。すなわち、包絡面2に垂
直な入射光のうちその反射光が対向斜面に再入射して有
効利用されるものは、図示の通り反射光105,106が対向
斜面の接線となる入射光107,108の間の入射光である。
そして、図のものは、図示の通り全斜面長の射影長16mm
に対し、有効入射光の範囲は6.5mmであり、従って、再
入射利用率は約40%となる。
Next, as an example, the above-mentioned flexible amorphous thin-film solar cell was used to obtain a photovoltaic power generation device shown in FIG. 3, and its performance was evaluated. In the figure, 201 is the above-mentioned solar cell, 210
Is a molded body for arranging the solar cells 201 in a corrugated plate shape. The molded body 210 is a corrugated plate made of a polymer resin and at least a part of which has an inclined surface with an inclination angle of about 43 °, and the solar cell 201 is attached to the upper surface of the solar cell 201 with an adhesive 200 to form a photovoltaic device. is there. As you can see from the figure, the molded body 21
The wave shape of 0 is sinusoidal, and the re-injection utilization rate in one period is about 40%. That is, among the incident light perpendicular to the envelope surface 2, the reflected light is re-incident on the opposite slope and is effectively used. As shown in the figure, the reflected light 105, 106 is the incident light 107, 108 which is the tangent to the opposite slope. Is the incident light between.
And as shown in the figure, the projected length of the entire slope is 16 mm as shown.
On the other hand, the range of effective incident light is 6.5 mm, so the re-injection utilization rate is about 40%.

ところで、第4図に示す一辺10cmの太陽電池201を用い
第3図の光発電装置とする場合太陽電池の位置により形
成される斜面対が変わるが、代表的な例として第5図
(a),(b)に示す実施例1,2を作成して評価した。第5
図(a)の実施例1の場合は収集電極のバスバー202a面を
含んで、太陽電池201はほぼ3対近くの対向する斜面を
被い、第5図(b)の実施例2の場合には2対の対向する
斜面上を完全に被う配置となっている。本構成におい
て、実効セル面積は、入射光に垂直な平面に投影された
太陽電池の面積で両実施例とも84.0cm2であった。そし
て、比較例と同様、Airm Mass=1,100mW/cm2に設
定したソーラーシュレーター下で包絡面に垂直に光が入
射するように配置して測定した。測定結果を比較例と共
に第1表にまとめて示す。
By the way, in the case of using the solar cell 201 having a side of 10 cm shown in FIG. 4 as the photovoltaic device of FIG. 3, the slope pair formed varies depending on the position of the solar cell.
Examples 1 and 2 shown in (a) and (b) were prepared and evaluated. Fifth
In the case of the example 1 of FIG. 5 (a), the solar cell 201 covers nearly 3 pairs of facing slopes including the surface of the collecting electrode bus bar 202a, and in the case of the example 2 of FIG. 5 (b). Are arranged to completely cover two pairs of opposite slopes. In this configuration, the effective cell area was the area of the solar cell projected on the plane perpendicular to the incident light, and was 84.0 cm 2 in both Examples. Then, similarly to the comparative example, the measurement was performed by arranging so that the light would enter the envelope surface vertically under the solar insulator set to Airm Mass = 1,100 mW / cm 2 . The measurement results are summarized in Table 1 together with the comparative examples.

第1表に示されるごとく、光の有効利用による発生電流
量の増加によってそのエネルギー変換効率が、実施例1
の場合に約12%、実施例2の場合に約9%向上すること
が認められた。
As shown in Table 1, the energy conversion efficiency is increased by increasing the amount of current generated by effective use of light.
It was confirmed that the improvement was about 12% in the case of, and about 9% in the case of Example 2.

He−Neレーザー光(633nm波長)のスポット光(直
径約0.5mm)を包絡面に垂直に照射しながら第5図(a),
(b)の断面にそって走行させ、発生光電流の分布を測定
した。その結果、実施例1の場合には第1図中の101,1
02,103の反射光の有効利用の他に収集電極202のバスバ
ー202a面上に照射された光が反射し、対向する斜面上の
太陽電池に入射され、光電流を発生させており、比較例
では光電流発生に寄与しない収集電極のスペースも本発
明の構成では有効に利用されている事がわかった。
While irradiating the spot light (diameter about 0.5 mm) of He-Ne laser light (wavelength of 633 nm) perpendicularly to the envelope surface, FIG.
After traveling along the cross section of (b), the distribution of the generated photocurrent was measured. As a result, in the case of Example 1, 101, 1 in FIG.
In addition to the effective use of the reflected light of 02 and 103, the light irradiated on the surface of the bus bar 202a of the collecting electrode 202 is reflected and is incident on the solar cell on the opposite slope to generate a photocurrent. It was found that the space of the collecting electrode, which does not contribute to the generation of photocurrent, is effectively used in the structure of the present invention.

実施例2の場合には実施例1の様な収集電極202のバス
バー202a面上での反射光の有効利用はないが、2対の対
向する斜面での第1図中に、示された101,102,103の
反射光が有効利用されていることが確認された。
In the case of the second embodiment, there is no effective use of the reflected light on the surface of the bus bar 202a of the collecting electrode 202 as in the first embodiment, but 101 shown in FIG. It was confirmed that the reflected lights of, 102, 103 were effectively used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一構成例の側断面、第2図は本発明の
他の構成例の斜視図、第3図(a),(b)は実施例の斜視図
及びその部分Aの拡大図、第4図は実施例、比較例に用
いた太陽電池の平面図、第5図(a),(b)は実施例1,2
の側断面図である。 1,201:波形成形体,10,201,:太陽電池 21:支持ローラ,22押えローラ, 100:入射光
FIG. 1 is a side cross-sectional view of one structural example of the present invention, FIG. 2 is a perspective view of another structural example of the present invention, and FIGS. 3 (a) and 3 (b) are perspective views of the embodiment and part A thereof. FIG. 4 is an enlarged view, FIG. 4 is a plan view of a solar cell used in Examples and Comparative Examples, and FIGS. 5 (a) and 5 (b) are Examples 1 and 2.
FIG. 1,201: corrugated molded body, 10,201 ,: solar cell 21: support roller, 22 pressing roller, 100: incident light

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】平らな同一基板上に複数のセルが電気的に
接続された可撓性の非晶質薄膜太陽電池を製作し、次い
で該非晶質薄膜太陽電池を一方の面で反射された包絡面
に垂直な入射光の一部が他方の面に入射する傾斜角で対
向した斜面を有する波板状に配置することを特徴とする
光発電装置の製造方法。
1. A flexible amorphous thin-film solar cell in which a plurality of cells are electrically connected on the same flat substrate is fabricated, and the amorphous thin-film solar cell is then reflected on one side. A method for manufacturing a photovoltaic device, comprising arranging in a corrugated plate shape having inclined surfaces facing each other at an inclination angle at which a part of incident light perpendicular to the envelope surface is incident on the other surface.
【請求項2】前記傾斜角が31度以上である特許請求の範
囲第1項記載の光発電装置の製造方法。
2. The method for manufacturing a photovoltaic device according to claim 1, wherein the inclination angle is 31 degrees or more.
【請求項3】山と谷の高低差が5mm以上の波板状である
特許請求の範囲第1項若しくは第2項記載の光発電装置
の製造方法。
3. The method for manufacturing a photovoltaic device according to claim 1 or 2, wherein the height difference between peaks and valleys is a corrugated plate shape having a height of 5 mm or more.
【請求項4】前記波板状の表面を有する成形体に前記非
晶質薄膜太陽電池を貼着して、波板状に配置する特許請
求の範囲第1項、第2項若しくは第3項記載の光発電装
置の製造方法。
4. The method according to claim 1, wherein the amorphous thin-film solar cell is attached to a molded body having the corrugated plate surface and arranged in a corrugated plate shape. A method for manufacturing the described photovoltaic device.
【請求項5】前記入射光のうち他方の面に再入射する比
率である再入射利用率が40%以上になるように斜面が形
成された波板状に配置する特許請求の範囲第1項、第2
項、第3項若しくは第4項記載の光発電装置の製造方
法。
5. A corrugated plate having slopes formed so that a re-injection utilization ratio, which is a ratio of re-incident light to the other surface of the incident light, is 40% or more. , Second
Item 3. The method for manufacturing a photovoltaic device according to Item 3 or 4.
【請求項6】前記基板が高分子樹脂フイルムである特許
請求の範囲第1項、第2項、第3項、第4項若しくは第
5項記載の光発電装置の製造方法。
6. The method of manufacturing a photovoltaic device according to claim 1, 2, 3, 4, or 5, wherein the substrate is a polymer resin film.
【請求項7】前記非晶質薄膜太陽電池が基板上に下部電
極、非晶質半導体光起電力層、透明な上部電極を順次形
成した構造を有し、該下部電極が低抵抗金属層と、非晶
質半導体光起電力層と電気的接触が良好なバリヤー層と
の少なくとも2層からなると共に波長650nmでの光反射
率が70%以上である特許請求の範囲第6項記載の光発電
装置の製造方法。
7. The amorphous thin film solar cell has a structure in which a lower electrode, an amorphous semiconductor photovoltaic layer and a transparent upper electrode are sequentially formed on a substrate, and the lower electrode is a low resistance metal layer. 7. The photovoltaic power generation according to claim 6, comprising at least two layers of an amorphous semiconductor photovoltaic layer and a barrier layer having good electrical contact, and having a light reflectance of 70% or more at a wavelength of 650 nm. Device manufacturing method.
JP59057429A 1984-03-27 1984-03-27 Photovoltaic device manufacturing method Expired - Lifetime JPH065769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057429A JPH065769B2 (en) 1984-03-27 1984-03-27 Photovoltaic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057429A JPH065769B2 (en) 1984-03-27 1984-03-27 Photovoltaic device manufacturing method

Publications (2)

Publication Number Publication Date
JPS60201667A JPS60201667A (en) 1985-10-12
JPH065769B2 true JPH065769B2 (en) 1994-01-19

Family

ID=13055408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057429A Expired - Lifetime JPH065769B2 (en) 1984-03-27 1984-03-27 Photovoltaic device manufacturing method

Country Status (1)

Country Link
JP (1) JPH065769B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430858U (en) * 1987-08-20 1989-02-27
DE19543037A1 (en) * 1995-11-07 1997-05-15 Launicke Karl Otto Photovoltaic layer component used as building element for energy production
US6215060B1 (en) 1997-04-21 2001-04-10 Canon Kabushiki Kaisha Method for manufacturing a solar cell module
EP2161758A1 (en) * 2008-09-05 2010-03-10 Flexucell ApS Solar cell and method for the production thereof
JP5225305B2 (en) * 2010-03-11 2013-07-03 株式会社東芝 Organic thin film solar cell and method for producing the same
CN102800718A (en) * 2012-08-23 2012-11-28 蔡宏生 Three-dimensional solar photovoltaic working surface
WO2014109282A1 (en) * 2013-01-10 2014-07-17 三洋電機株式会社 Solar cell module
CN111446372A (en) * 2020-03-20 2020-07-24 杭州电子科技大学 Wavy ITO transparent electrode and organic solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376228A (en) * 1979-07-16 1983-03-08 Massachusetts Institute Of Technology Solar cells having ultrathin active layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376228A (en) * 1979-07-16 1983-03-08 Massachusetts Institute Of Technology Solar cells having ultrathin active layers

Also Published As

Publication number Publication date
JPS60201667A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
JP2719230B2 (en) Photovoltaic element
KR101319750B1 (en) Photovoltaic module and method of manufacturing a photovoltaic module having multiple semiconductor layer stacks
EP2279530B1 (en) Method for improving pv aesthetics and efficiency
US4644091A (en) Photoelectric transducer
EP2180526A2 (en) Photovoltaic device and method for manufacturing the same
US20130000695A1 (en) Light harvesting in photovoltaic systems
JP2023549905A (en) Solar power cells and solar power modules
US20050022860A1 (en) Thin-film photovoltaic module
JPH065769B2 (en) Photovoltaic device manufacturing method
US9184320B2 (en) Photoelectric conversion device
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
US20120152346A1 (en) Light absorption-enhancing substrate stacks
WO2006006359A1 (en) Thin-film photoelectric converter
KR101584376B1 (en) Silicon thin film solar cell
JP4222910B2 (en) Photovoltaic device manufacturing method
Fujimoto et al. Improvement in the efficiency of amorphous silicon solar cells utilizing the optical confinement effect by means of a TiO2/Ag/SUS back-surface reflector
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
US20130118547A1 (en) Photovoltaic window with light-turning features
JPS60201668A (en) Amorphous solar cell
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
TWI453928B (en) Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks
Green et al. 23.6% efficient low resistivity silicon concentrator solar cell
JP2869178B2 (en) Photovoltaic device
JP2003046108A (en) Thin film solar battery and method for installing the same
JPH0521891Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term