JPH0656901B2 - Cryogenic container - Google Patents

Cryogenic container

Info

Publication number
JPH0656901B2
JPH0656901B2 JP58076719A JP7671983A JPH0656901B2 JP H0656901 B2 JPH0656901 B2 JP H0656901B2 JP 58076719 A JP58076719 A JP 58076719A JP 7671983 A JP7671983 A JP 7671983A JP H0656901 B2 JPH0656901 B2 JP H0656901B2
Authority
JP
Japan
Prior art keywords
container
helium
vacuum
cryogen
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58076719A
Other languages
Japanese (ja)
Other versions
JPS59201477A (en
Inventor
忠利 山田
昭徳 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58076719A priority Critical patent/JPH0656901B2/en
Publication of JPS59201477A publication Critical patent/JPS59201477A/en
Publication of JPH0656901B2 publication Critical patent/JPH0656901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 この発明は極低温容器、特にその構造に関し、耐真空性
および磁性の改善に関するものである。
The present invention relates to a cryogenic container, and particularly to the structure thereof, and relates to improvement in vacuum resistance and magnetism.

従来、この種の極低温容器の一例として第1図に示すも
のがあつた。図において、(1)は超電導コイル、(2)は超
導電コイル(1)とヘリウム容器(4)との間の絶縁物、(3)
は超電導コイル(1)を冷却する液体ヘリウムである。ヘ
リウム容器(4)は耐真空2重円筒構造をなし、これら2
つの円筒ではさまれた空間に被冷却体である超電導コイ
ル(1)や液体ヘリウム(3)などを収納し、上部には液体ヘ
リウム(3)を注入するためのポート(41)がついている。
(5)は超電導コイル(1)とヘリウム容器(4)との間に介在
するスペーサ、(6)は液体ヘリウム(3)よりも温度の高い
寒剤(例えば液体水素や液体窒素など)、(7)は寒剤を
収納する寒剤容器、(70)は寒剤容器(7)に接合された熱
良導体であり、この例では寒剤容器(7)と熱良導体(70)
とでヘリウム容器(4)を収納する熱シールド容器を構成
している。(8)はヘリウム容器(4)と熱シールド容器
(7)、(70)とを真空中に保持するための真空容器であ
り、(9)、(10)は真空空間である。なお、上記極低温容
器はA−A軸を中心とする軸対称構造となつているので
一部断面で示した。
Conventionally, as an example of this type of cryogenic container, there is one shown in FIG. In the figure, (1) is a superconducting coil, (2) is an insulator between the superconducting coil (1) and the helium container (4), (3)
Is liquid helium that cools the superconducting coil (1). The helium container (4) has a vacuum resistant double cylindrical structure.
A superconducting coil (1), liquid helium (3), etc., to be cooled are housed in a space sandwiched by two cylinders, and a port (41) for injecting liquid helium (3) is attached to the upper part.
(5) is a spacer interposed between the superconducting coil (1) and the helium container (4), (6) is a cryogen having a temperature higher than that of liquid helium (3) (for example, liquid hydrogen or liquid nitrogen), (7) ) Is a cryogen container for storing the cryogen, and (70) is a good thermal conductor joined to the cryogen container (7) .In this example, the cryogen container (7) and the good thermal conductor (70)
And constitute a heat shield container for accommodating the helium container (4). (8) is a helium container (4) and a heat shield container
A vacuum container for holding (7) and (70) in a vacuum, and (9) and (10) are vacuum spaces. The cryogenic container has an axially symmetric structure centered on the AA axis and is therefore shown in a partial cross section.

従来の極低温容器は以上のように構成されており、空温
から低温部(ヘリウム容器(4)、熱シールド容器(7)、(7
0)など)を断熱するためには真空空間が不可欠である。
なお、真空空間(9)、(10)には断熱効果を高めるため
に、スーパーインシユレーシヨンと呼ばれる多層断熱材
が通常設置されているが、この図では略した。
The conventional cryogenic container is configured as described above, and it can be used for changing from the air temperature to the low temperature part (helium container (4), heat shield container (7), (7
A vacuum space is indispensable for insulating (0) etc.).
In addition, in order to enhance the heat insulating effect, a multilayer heat insulating material called a super insulation is usually installed in the vacuum spaces (9) and (10), but they are omitted in this figure.

以上の説明から明らかなように、極低温容器を構成する
ヘリウム容器(4)、寒剤容器(7)、真空容器(8)は耐真空
容器でなければならない。更に、ヘリウム容器(4)や寒
剤容器(7)は極低温で使用される。すなわち、常温で製
作後、極低温に冷却してもこれら容器(4)、(7)の真空特
性が劣化してはいけない。このような条件を満足するた
めに、通常これらの容器(4)、(7)は耐真空性の非磁性ス
テンレス鋼で作られる場合が多い。また、これらの容器
(4)、(7)は構造から明らかなように、板状の素材を曲げ
て溶接し、それを加工して作られているが普通である。
As is clear from the above description, the helium container (4), the cryogen container (7), and the vacuum container (8) forming the cryogenic container must be vacuum resistant containers. Furthermore, the helium container (4) and the cryogen container (7) are used at an extremely low temperature. That is, the vacuum characteristics of these containers (4) and (7) should not deteriorate even if they are manufactured at room temperature and then cooled to an extremely low temperature. In order to satisfy such conditions, these containers (4) and (7) are often made of vacuum-resistant non-magnetic stainless steel. Also these containers
As is clear from the structure, (4) and (7) are usually made by bending and welding a plate-shaped material and processing it.

一般に、非磁性ステンレス鋼でも微小磁性を有している
し、強度の加工を施こしたり、溶接をすると磁性を帯び
る。特に、溶接棒には溶接割れを防ぐために磁性相が多
少含まれている。
Generally, non-magnetic stainless steel also has a small magnetism, and becomes magnetic when subjected to strong processing or welding. In particular, the welding rod contains some magnetic phase in order to prevent weld cracking.

しかるに、ヘリウム容器(4)は超電導コイル(1)の巻枠を
兼用しているのが普通であり、超電導コイル(1)の巻線
時には、ある程度超電導線を引つ張つた状態で巻く。こ
れは、コイルを整巻にして巻線内の隙間を無くし巻線の
占積率を高くすると共にコイルに通電する度に超導電線
が動くのを防ぐためである。このような巻張力の存在の
ため、ヘリウム容器(4)の内筒には、巻張力に十分耐え
るだけの機械的強度が必要である。コイルの巻数が多い
程、ヘリウム容器(4)の内筒に印加される圧縮力は増加
する(1ターン当りの張力は一定だから)ので、巻数の
増加に従つてヘリウム容器(4)の内筒の肉厚は厚くな
る。また、円筒度や真空度などのコイルの寸法精度は巻
枠の寸法精度によつて決まるので、コイルの寸法精度を
上げるためには巻枠、すなわちヘリウム容器(4)の内筒
の寸法精度を良くする必要がある。このためには、ヘリ
ウム容器(4)の内筒の肉厚を厚くして、機械加工などに
より寸法精度を良くしなければならない。以上のような
理由から、ヘリウム容器(4)の厚板から作られており、
溶接部の体積が比較的大である。このため、ヘリウム容
器(4)には比較的多くの磁性体が含まれる。
However, the helium container (4) usually doubles as a winding frame for the superconducting coil (1), and when the superconducting coil (1) is wound, the superconducting wire is stretched to some extent. This is because the coil is wound in order to eliminate the gap in the winding to increase the space factor of the winding and prevent the superconducting wire from moving each time the coil is energized. Due to the presence of such winding tension, the inner cylinder of the helium container (4) must have sufficient mechanical strength to withstand the winding tension. As the number of coil turns increases, the compressive force applied to the inner cylinder of the helium container (4) increases (since the tension per turn is constant), so the inner cylinder of the helium container (4) increases as the number of turns increases. Will be thicker. Further, since the dimensional accuracy of the coil such as cylindricity and vacuum is determined by the dimensional accuracy of the winding frame, in order to improve the dimensional accuracy of the coil, the dimensional accuracy of the winding frame, that is, the inner cylinder of the helium container (4) I need to get better. For this purpose, it is necessary to increase the wall thickness of the inner cylinder of the helium container (4) and improve the dimensional accuracy by machining or the like. For the above reasons, it is made from the thick plate of the helium container (4),
The volume of the weld is relatively large. Therefore, the helium container (4) contains a relatively large amount of magnetic material.

しかるに、超電導コイル(1)が発生する磁界に高い空間
均一度が要求されるような場合、ヘリウム容器(4)は完
全非磁性に近いものでなければならない。なぜならば、
ヘリウム容器(4)は超電導コイル(1)に近接しており、ヘ
リウム容器(4)中に含まれる磁性体はそこに磁界を集中
させ、その結果、超電導コイル(1)の発生磁界の空間均
一度を悪くさせる。以上のような理由から、高均一磁界
マグネツトではヘリウム容器(4)は、アルミニウム、銅
などの磁性を全く帯びない材料で作られる。なお、熱シ
ールド容器(7)、(70)および真空容器(8)も通常、磁性を
全く帯びない材料で作られる。
However, in the case where the magnetic field generated by the superconducting coil (1) requires high spatial homogeneity, the helium container (4) must be nearly non-magnetic. because,
The helium container (4) is close to the superconducting coil (1), and the magnetic substance contained in the helium container (4) concentrates the magnetic field there, and as a result, the spatial distribution of the magnetic field generated by the superconducting coil (1). Make one bad. For the above reasons, in the high uniform magnetic field magnet, the helium container (4) is made of a material having no magnetism such as aluminum and copper. The heat shield containers (7) and (70) and the vacuum container (8) are also usually made of a material having no magnetism.

しかし、アルミニウムや銅などの磁性を全く帯びない材
料は熱良導体であり、ステンレス鋼などに比べ溶接が難
しい材料である。特に、極低温に冷却する耐真空容器
(4)、(7)では、溶接箇所から真空漏れを起こすというト
ラブルが多数発生している。
However, materials having no magnetism, such as aluminum and copper, are good conductors of heat, and are more difficult to weld than stainless steel. In particular, vacuum resistant containers that cool to extremely low temperatures
In (4) and (7), there are many problems that vacuum leakage occurs from the welded part.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、ヘリウム容器または寒剤容器の
少なくとも一方は、耐真空性の非磁性金属を用いた薄板
よりなる第1の容器と磁性を全く帯びない材料を用いた
第2の容器とを密接した2重構造とすることにより、機
械的強度および耐真空の信頼度が高く、磁性体の含有量
の少ない極低温容器を提供することを目的としている。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional ones, and at least one of the helium container and the cryogen container is a first container made of a thin plate using a vacuum-resistant non-magnetic metal. By providing a double structure in close contact with a second container made of a material having no magnetism, it is possible to provide a cryogenic container having a high reliability of mechanical strength and vacuum resistance and a low magnetic substance content. Is intended.

以下、この発明の一実施例を図をもとに説明する。第2
図はこの発明の一実施例に係わるヘリウム容器の一部を
示す断面図である。ヘリウム容器は、従来例の非磁性ス
テンレスに相当するニツケル合金鋼やチタンを代表とす
る非磁性金属の薄板より成る第1の容器(4a)と、アルミ
ニウム、銅、および繊維強化複合材(Fiber Reinforceme
nt Plastics)を代表とする磁性を全く帯びない材料で作
られた厚板より成る第2の容器(4b)とを密接した2重構
造となつている。薄板より成る第1の容器(4a)は耐真空
用の容器である。この容器(4a)の材料は従来より用いら
れている耐真空性の非磁性金属であるから、耐真空の溶
接が比較的容易であり、極低温での使用実積も多く、極
低温に冷却しても真空漏れを生じる危険性は少ない。ま
た、薄板で構成されているため溶接部の体積は小さく磁
性体の含有量も少ないので、超電導コイル(1)の発生磁
界を乱すことも殆んどない。第2の容器(4b)は、アルミ
ニウム、銅、および繊維強化複合材を代表とする磁性を
全く帯びない材料で作られた厚板で構成されており、機
械的強度や寸法精度を保証するためのものである。もち
ろん、第2の容器(4b)は耐真空容器である必要はない。
したがつて、溶接にはあまり困難が伴なわない。
An embodiment of the present invention will be described below with reference to the drawings. Second
FIG. 1 is a sectional view showing a part of a helium container according to an embodiment of the present invention. The helium container is composed of a first container (4a) made of a thin plate of non-magnetic metal typified by nickel alloy steel or titanium corresponding to the conventional non-magnetic stainless steel, aluminum, copper, and a fiber reinforced composite material (Fiber Reinforceme
nt Plastics) and a second container (4b) made of a thick plate made of a material having no magnetism, and has a double structure in close contact. The first container (4a) made of a thin plate is a vacuum resistant container. Since the material of this container (4a) is a vacuum-resistant non-magnetic metal that has been used conventionally, it is relatively easy to weld with vacuum resistance, has many practical uses at cryogenic temperatures, and is cooled to cryogenic temperatures. However, the risk of vacuum leakage is low. Further, since it is made of a thin plate, the volume of the welded portion is small and the content of the magnetic material is small, so that the magnetic field generated by the superconducting coil (1) is hardly disturbed. The second container (4b) is composed of a thick plate made of aluminum, copper, and a material that does not have any magnetism such as fiber-reinforced composite material, in order to guarantee mechanical strength and dimensional accuracy. belongs to. Of course, the second container (4b) does not have to be a vacuum resistant container.
Therefore, welding is not very difficult.

ヘリウム容器(4)は真空中に設置され、その中には通常
1気圧程度の液体ヘリウムが充填されているので、内圧
1気圧程度の圧力容器である。したがつて、第2図に示
すように、薄板より成る第1の容器(4b)を内側に、厚板
より成る第2の容器(4b)をその外側に配置するのが合理
的である。すなわち、耐真空用の第1の容器(4a)が1気
圧程度の内圧で膨張しようとするのを、第2の容器(4b)
が機械的に補強するからである。
The helium container (4) is placed in a vacuum, and since it is filled with liquid helium having a pressure of about 1 atm, it is a pressure container having an internal pressure of about 1 atm. Therefore, as shown in FIG. 2, it is rational to arrange the first container (4b) made of a thin plate inside and the second container (4b) made of a thick plate outside thereof. That is, the first container (4a) for vacuum resistance is about to expand at an internal pressure of about 1 atm while the second container (4b)
Is mechanically reinforced.

第3図a、b、cは第2図のヘリウム容器の製作工程の
一例を示すものである。まず、aに示すように、薄板よ
り成る第1の容器本体(4a)と厚板より成る第2の容器本
体(4b)を重ね、第1の容器本体(4a)の内側に絶縁物(2)
を施こし、超電導コイル(1)を巻回し、その外周に絶縁
物(2)およびスペーサ(5)を設ける。次に、bに示すよう
に、薄板より成る円筒(40a)を挿入し、第1の容器本体
(4a)と耐真空溶接する。最後に、cに示すように、厚板
より成る円筒(40b)と円板(400b)を挿入し、第2の容器
本体(4b)と溶接により接合する。このようにして、この
発明の一実施例に係わるヘリウム容器(4)が組み立てら
れる。なお、薄板より成る円筒(40a)と厚板より成る円
筒(40b)には、それぞれ液体ヘリウム注入用ポート(41)
を溶接するための穴があけられている。
FIGS. 3a, 3b and 3c show an example of the manufacturing process of the helium container shown in FIG. First, as shown in a, the first container body (4a) made of a thin plate and the second container body (4b) made of a thick plate are overlapped, and an insulator (2) is placed inside the first container body (4a). )
Then, the superconducting coil (1) is wound, and an insulator (2) and a spacer (5) are provided on the outer circumference thereof. Next, as shown in b, the cylinder (40a) made of a thin plate is inserted, and the first container body is inserted.
Vacuum resistance welding with (4a). Finally, as shown in c, a cylinder (40b) made of a thick plate and a disc (400b) are inserted and joined to the second container body (4b) by welding. In this way, the helium container (4) according to the embodiment of the present invention is assembled. The cylinder (40a) made of a thin plate and the cylinder (40b) made of a thick plate are respectively provided with a liquid helium injection port (41).
There is a hole for welding.

なお、上記実施例ではヘリウム容器(4)にこの発明を適
用した場合について示したが、寒剤容器(7)にこの発明
を適用しても同様の効果がある。
It should be noted that, although the case where the present invention is applied to the helium container (4) has been shown in the above embodiment, the same effect can be obtained by applying the present invention to the cryogen container (7).

以上のように、この発明によれば、ヘリウム容器または
寒剤容器の少なくとも一方は、耐真空性の非磁性金属を
用いた薄板よりなる第1の容器と磁性を全く帯びない材
料を用いた第2の容器とを密接した2重構造とすること
により、機械的強度および耐真空の信頼度が高く、磁性
体の含有量の少ない極低温容器が得られる効果がある。
As described above, according to the present invention, at least one of the helium container and the cryogen container has the first container made of a thin plate made of a vacuum-resistant non-magnetic metal and the second container made of a material having no magnetism. By forming a double structure in close contact with the container (1), there is an effect that a cryogenic container having high reliability of mechanical strength and vacuum resistance and a small content of a magnetic material can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の極低温容器を示す部分断面図、第2図は
この発明の一実施例に係わるヘリウム容器の一部を示す
断面図、第3図(a)(b)(c)は第2図のヘリウム容器の製
作工程を説明する断面図である。 図において、(1)は被冷却体である超電導コイル、(3)は
液体ヘリウム、(4)はヘリウム容器、(4a)は第1の容
器、(4b)は第2の容器、(6)は寒剤、(7)は寒剤容器、
(8)は真空容器、(9)(10は真空空間である。 なお、図中同一符号は同一または相当部分を示すものと
する。
FIG. 1 is a partial sectional view showing a conventional cryogenic container, FIG. 2 is a sectional view showing a part of a helium container according to an embodiment of the present invention, and FIGS. 3 (a) (b) (c) are FIG. 6 is a cross-sectional view illustrating a manufacturing process of the helium container of FIG. 2. In the figure, (1) is a superconducting coil to be cooled, (3) is liquid helium, (4) is a helium container, (4a) is a first container, (4b) is a second container, (6). Is a cryogen, (7) is a cryogen container,
(8) is a vacuum container, (9) (10 is a vacuum space. In addition, the same reference numerals in the drawings indicate the same or corresponding parts.

フロントページの続き (56)参考文献 特開 昭50−118697(JP,A) 特開 昭56−134786(JP,A) 特開 昭57−68089(JP,A) 特開 昭54−136415(JP,A)Continuation of front page (56) Reference JP-A-50-118697 (JP, A) JP-A-56-134786 (JP, A) JP-A-57-68089 (JP, A) JP-A-54-136415 (JP , A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】耐真空2重構造をなし、その内部空間に液
体ヘリウムおよび被冷却体を収納するヘリウム容器、並
びに上記液体ヘリウムより温度の高い寒剤を収納する寒
剤容器を備える極低温容器において、上記ヘリウム容器
または寒剤容器の少なくとも一方は、耐真空性の非磁性
金属を用いた薄板よりなる第一の容器と磁性を全く帯び
ない材料を用いた厚板よりなる第二の容器とを密接した
2重構造としたことを特徴とする極低温容器。
1. A cryogenic container comprising a vacuum resistant double structure, a helium container for storing liquid helium and an object to be cooled in its internal space, and a cryogen container for storing a cryogen having a temperature higher than that of the liquid helium, At least one of the helium container and the cryogen container is in close contact with a first container made of a thin plate made of a vacuum-resistant non-magnetic metal and a second container made of a thick plate made of a material having no magnetism. A cryogenic container having a double structure.
JP58076719A 1983-04-29 1983-04-29 Cryogenic container Expired - Lifetime JPH0656901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58076719A JPH0656901B2 (en) 1983-04-29 1983-04-29 Cryogenic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58076719A JPH0656901B2 (en) 1983-04-29 1983-04-29 Cryogenic container

Publications (2)

Publication Number Publication Date
JPS59201477A JPS59201477A (en) 1984-11-15
JPH0656901B2 true JPH0656901B2 (en) 1994-07-27

Family

ID=13613364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58076719A Expired - Lifetime JPH0656901B2 (en) 1983-04-29 1983-04-29 Cryogenic container

Country Status (1)

Country Link
JP (1) JPH0656901B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118697A (en) * 1974-03-01 1975-09-17
JPS56134786A (en) * 1980-03-26 1981-10-21 Hitachi Ltd Super low temperature device

Also Published As

Publication number Publication date
JPS59201477A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
US7705701B2 (en) Thin metal layer vacuum vessels with composite structural support
US5278502A (en) Refrigerated superconducting MR magnet with integrated cryogenic gradient coils
EP0981057B1 (en) MRI magnet assembly with non-conductive inner wall
US5179338A (en) Refrigerated superconducting MR magnet with integrated gradient coils
EP1016815B1 (en) Superconducting magnet suspension assembly
JPH04225503A (en) Active shield type resonance magnet eliminating the need for refrigerating agent
US5225782A (en) Eddy current free MRI magnet with integrated gradient coils
CA1273561A (en) Low cost intermediate radiation shield for a magnet cryostat
US6147579A (en) Superconducting magnet non-uniform thermal insulation blankets
JPH0722231A (en) Superconducting magnet for mri system
US7049913B2 (en) Superconductivity magnet apparatus
JP3824412B2 (en) Superconducting magnet device for crystal pulling device
JPH0656901B2 (en) Cryogenic container
JP2593466B2 (en) Cryogenic equipment
JPH09102414A (en) Superconducting coil
EP0110400A2 (en) Superconducting wire and method of producing the same
JPH03174706A (en) Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus
JPH09306723A (en) Refrigerator cooled superconducting magnet device
JPS59191308A (en) Cryostat
JPH0746648B2 (en) Superconducting coil
JP2021077810A (en) Superconducting coil device and current lead structure of superconducting coil
JP4114766B2 (en) Cryogenic lead-through
JPH0367326B2 (en)
JPH0719919B2 (en) Cryostat
JP2021077811A (en) Superconducting coil device