JPH0656581A - Formation of single crystal thin film of oxide high-temperature superconductor and substrate for formation of single crystal thin film of oxide high-temperature superconductor and its formation - Google Patents

Formation of single crystal thin film of oxide high-temperature superconductor and substrate for formation of single crystal thin film of oxide high-temperature superconductor and its formation

Info

Publication number
JPH0656581A
JPH0656581A JP4211169A JP21116992A JPH0656581A JP H0656581 A JPH0656581 A JP H0656581A JP 4211169 A JP4211169 A JP 4211169A JP 21116992 A JP21116992 A JP 21116992A JP H0656581 A JPH0656581 A JP H0656581A
Authority
JP
Japan
Prior art keywords
thin film
single crystal
oxide
substrate
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4211169A
Other languages
Japanese (ja)
Other versions
JP2747173B2 (en
Inventor
Junya Kobayashi
潤也 小林
Yasuo Tazo
康夫 田雑
Shintaro Miyazawa
信太郎 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4211169A priority Critical patent/JP2747173B2/en
Publication of JPH0656581A publication Critical patent/JPH0656581A/en
Application granted granted Critical
Publication of JP2747173B2 publication Critical patent/JP2747173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide the method for formation of the single crystal thin film of an oxide high-temp. superconductor which can form the oxide superconductor thin film having high quality and crystal temp. and critical current density higher than heretofore and the substrate for formation of the single crystal thin film of the oxide high-temp. superconductor as well as the method for formation of this substrate. CONSTITUTION:In the method for forming the oxide superconductor thin film 4 on the oxide single crystal substrate 1 heated at a prescribed temp., a substrate 3 formed with a buffer layer 2 whose lattice mismatching rate with this oxide superconductor at this prescribed temp is <=1% and whose crystallinity and surface flatness are excellent respectively more than those of the oxide single crystal substrate 1 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物単結晶基板上
へ、高品質の酸化物超伝導体単結晶薄膜を得るために、
酸化物超伝導体との格子整合性に優れ、結晶構造の類似
したバッファー層を導入し高品質の基板とする酸化物高
温超伝導体単結晶薄膜形成方法並びに酸化物高温超伝導
体単結晶薄膜形成用基板及びその形成方法に関するもの
である。
BACKGROUND OF THE INVENTION The present invention provides a high-quality oxide superconductor single crystal thin film on an oxide single crystal substrate.
Method for forming high-temperature oxide superconductor single-crystal thin film and high-quality oxide high-temperature superconductor single-crystal thin film, which has excellent lattice matching with oxide superconductor and introduces a buffer layer having a similar crystal structure into a high-quality substrate The present invention relates to a forming substrate and a forming method thereof.

【0002】[0002]

【従来の技術】電子デバイスの高性能化を目的として、
異種材料の複合化に関する研究が近年盛んになってい
る。特に、超伝導転移温度が液体窒素の沸点を越えたL
nBaCu7−y系(Ln:Yあるいはランタノ
イド系元素)、BiSrCaCuO系、TlBaCaC
uO系酸化物超伝導体が発見されてからは、この新材料
の電子デバイス応用を目指し薄膜化の研究が様々な研究
機関で進められている。
2. Description of the Related Art In order to improve the performance of electronic devices,
In recent years, research on compounding different kinds of materials has become active. Especially, when the superconducting transition temperature exceeds the boiling point of liquid nitrogen, L
nBa 2 Cu 3 O 7-y system (Ln: Y or lanthanoid system element), BiSrCaCuO system, TlBaCaC
Since the discovery of the uO-based oxide superconductor, various research institutes have been conducting research on thinning of this new material aiming at application to electronic devices.

【0003】この場合、最も重要となることは、内部の
みならず基板と薄膜との界面付近においても高臨界温
度、高臨界電流密度である薄膜を実現することである。
そのためにはへテロエピタキシヤル成長した高品質の酸
化物超伝導体単結晶薄膜を形成する事が必須となる。
In this case, the most important thing is to realize a thin film having a high critical temperature and a high critical current density not only inside but also near the interface between the substrate and the thin film.
For that purpose, it is indispensable to form a high quality oxide epitaxial superconductor single crystal thin film grown by heteroepitaxial growth.

【0004】特に、斜方晶構造を有する酸化物超伝導体
において良好なへテロエピタキシャル成長を実現するた
めのには、堆積させる基板と薄膜との間での薄膜形成温
度における格子定数の整合性を良好としただけでは不十
分であり、整合性のみならず、基板の結晶性(クラッ
ク、ツイン、サブグレイン、表面の劣化層の存在)、基
板表面の平坦性を良好にすることが非常に重要であるこ
とを知見した。
In particular, in order to realize good heteroepitaxial growth in an oxide superconductor having an orthorhombic structure, the lattice constant matching at the thin film forming temperature between the substrate to be deposited and the thin film is required. It is not enough to make it good, and it is very important to improve not only the conformity, but also the crystallinity of the substrate (the presence of cracks, twins, subgrains, and deteriorated layers on the surface) and the flatness of the substrate surface. It was discovered that

【0005】かかる観点から従来の基板を検討した。From this point of view, the conventional substrate has been studied.

【0006】現在、酸化物超伝導体薄膜の形成用基板と
して最も良く用いられているものはSrTiOであ
る。しかし、この材料は、高融点材料であるため単結晶
の育成方法はべルヌイ法に限られ、ベルヌイ法で育成し
た単結晶中にはサブグレインが形成され結晶性は著しく
悪い。これらの理由から、この基板上ヘ形成した酸化物
超伝導体薄膜の界面付近での結晶性は悪い。
At present, SrTiO 3 is most often used as a substrate for forming an oxide superconductor thin film. However, since this material is a high-melting-point material, the method for growing a single crystal is limited to the Bernoulli method, and subgrains are formed in the single crystal grown by the Bernoulli method, so that the crystallinity is extremely poor. For these reasons, the crystallinity near the interface of the oxide superconductor thin film formed on this substrate is poor.

【0007】最近、ヘテロエピタキシャル成長の観点か
ら、新基板材料として酸化物超伝導体との格子整合性に
優れたPrGaO、NdGaOが注目され始め、引
き上げ法によるバルク単結晶成長の研究が行われてい
る。
From the viewpoint of heteroepitaxial growth, recently, PrGaO 3 and NdGaO 3 which are excellent in lattice matching with oxide superconductors have begun to attract attention as new substrate materials, and bulk single crystal growth by a pulling method has been studied. ing.

【0008】しかしながら、PrGaOにおいては、
その単結晶育成時にツイン、サブグレイン、クラックが
形成され、結晶性の良い単結晶が得られない。
However, in PrGaO 3 ,
Twins, subgrains, and cracks are formed during the growth of the single crystal, and a single crystal with good crystallinity cannot be obtained.

【0009】また、NdGaOにおいては、ツインフ
リーの単結晶が得られるが、その基板表面の平滑化は機
械研磨により行われる。そのため、NdGaO単結晶
基板の表面には、機械研磨時に受けた応力により生じた
転位あるいは表面反応物を含む劣化層が存在し、これ
が、界面付近の酸化物超伝導体薄膜の結晶性を劣化させ
る。このように、PrGaO,NdGaOのよう
な、形成しようとする酸化物超伝導体との間における、
格子整合性に優れた酸化物超伝導体形成用の基板材料は
存在するが、直接基板として利用できる材料は存在しな
いのが現状である。
Further, with NdGaO 3 , a twin-free single crystal is obtained, but the surface of the substrate is smoothed by mechanical polishing. Therefore, on the surface of the NdGaO 3 single crystal substrate, there is a deteriorated layer containing dislocations or surface reactants generated by the stress applied during mechanical polishing, which deteriorates the crystallinity of the oxide superconductor thin film near the interface. Let Thus, between the oxide superconductor to be formed, such as PrGaO 3 and NdGaO 3 ,
Although there are substrate materials for forming oxide superconductors having excellent lattice matching, there is currently no material that can be directly used as a substrate.

【0010】[0010]

【発明が解決しようとする課題】本発明は、基板の結晶
性、表面平坦性に起因して、酸化物超伝導体薄膜(特に
界面付近)の結晶性、超伝導特性が劣化するという問題
を解決し、高品質であり、従来よりも高い臨界温度、臨
界電流密度を有する酸化物超伝導体薄膜を形成すること
が可能な酸化物高温超伝導体単結晶薄膜形成方法並びに
酸化物高温超伝導体単結晶薄膜形成用基板及びその形成
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problem that the crystallinity and superconductivity of an oxide superconductor thin film (especially near the interface) are deteriorated due to the crystallinity and surface flatness of a substrate. Solved, high quality oxide high temperature superconductor single crystal thin film forming method capable of forming oxide superconductor thin film having higher critical temperature and critical current density than before, and high temperature oxide superconductor It is an object of the present invention to provide a body single crystal thin film forming substrate and a method for forming the same.

【0011】[0011]

【課題を解決するための手段】本発明の酸化物高温超伝
導体単結晶薄膜形成方法は、所定の温度に加熱された酸
化物単結晶基板上へ、酸化物超伝導体薄膜を形成する方
法において、前記加熱温度における前記酸化物超伝導体
との格子不整合率が1%以下であり、前記酸化物単結晶
基板よりも結晶性、表面平坦性に優れた酸化物単結晶薄
膜がバッファー層として形成されている基板を用いるこ
とを特徴とする。
The method for forming an oxide high temperature superconductor single crystal thin film of the present invention is a method for forming an oxide superconductor thin film on an oxide single crystal substrate heated to a predetermined temperature. In the buffer layer, the oxide single crystal thin film having a lattice mismatch with the oxide superconductor at the heating temperature of 1% or less and being superior in crystallinity and surface flatness to the oxide single crystal substrate. It is characterized by using a substrate formed as.

【0012】本発明の酸化物高温超伝導体単結晶薄膜形
成用基板は、酸化物単結晶基板と前記酸化物単結晶基板
上に形成された酸化物単結晶薄膜を有する酸化物高温超
伝導体単結晶薄膜形成用基板であって、前記酸化物単結
晶薄膜の格子と前記酸化物高温超伝導体の内のl種の酸
化物高温超伝導体の格子との不整合が、前記l種の酸化
物高温超伝導体のエピタキシヤル成長温度以上の所定の
温度範囲においてl%以下であり、前記酸化物単結晶薄
膜の平坦性と結晶性が前記酸化物単結晶基板のそれより
優れていることを特徴とする。
A substrate for forming an oxide high temperature superconductor single crystal thin film of the present invention is an oxide high temperature superconductor having an oxide single crystal substrate and an oxide single crystal thin film formed on the oxide single crystal substrate. In the substrate for forming a single crystal thin film, the mismatch between the lattice of the oxide single crystal thin film and the lattice of an oxide high temperature superconductor of the oxide high temperature superconductor is 1% or less in a predetermined temperature range above the epitaxial growth temperature of the high temperature oxide superconductor, and the flatness and crystallinity of the oxide single crystal thin film are superior to those of the oxide single crystal substrate. Is characterized by.

【0013】上記酸化物高温超伝導体単結晶薄膜は、R
Fマグネトロンスパッタ法において、アルゴンと酸素
を、それぞれ、0.1mTorrから1Torr、0T
orrから1Torrの範囲で混合したガスをスパッタ
リングガスとし、RFパワーが50〜200W(パワー
密度1.9〜7.6W/cm)、基板温度が550℃
から950℃の範囲である薄膜形成条件で上記バッファ
ー層を形成することが好ましい。
The oxide high-temperature superconductor single crystal thin film is R
In the F magnetron sputtering method, the amounts of argon and oxygen were changed from 0.1 mTorr to 1 Torr and 0 T, respectively.
A gas mixed in the range of orr to 1 Torr was used as a sputtering gas, RF power was 50 to 200 W (power density was 1.9 to 7.6 W / cm 2 ), and substrate temperature was 550 ° C.
It is preferable to form the buffer layer under thin film forming conditions in the range of from 950 ° C to 950 ° C.

【0014】ここで、アルゴンの圧力を0.1mTor
r未満にするとターゲットをスパッタするために十分な
プラズマが発生しない。一方、1Torrを越えると、
プラズマが不安定となり、薄膜が不均一となってしま
う。酸素は、0Torr(すなわち酸素を含有しない)
でもよい。これは、ターゲットが酸素供給源となるから
である。しかし、酸素を1Torr以下で混合せしめる
ことが好ましい。酸素を混合せしめた場合、薄膜の結晶
性が良好となる(特に平坦性が良好になる。)。
Here, the pressure of argon is 0.1 mTorr.
When it is less than r, sufficient plasma is not generated for sputtering the target. On the other hand, when it exceeds 1 Torr,
The plasma becomes unstable and the thin film becomes non-uniform. Oxygen is 0 Torr (ie contains no oxygen)
But it's okay. This is because the target serves as an oxygen supply source. However, it is preferable to mix oxygen at 1 Torr or less. When oxygen is mixed, the crystallinity of the thin film becomes good (especially the flatness becomes good).

【0015】RFパワーが50W未満あるいは200W
を越えるとプラズマの発生が十分ではなくなる。
RF power less than 50W or 200W
If it exceeds, the plasma will not be generated sufficiently.

【0016】基板温度が550℃未満では超伝導体薄膜
がアモルファス化してしまう。一方、950℃を越える
と組成が不均一な超伝導体薄膜が形成されてしまう。こ
れは一旦堆積した原子(特に低融点のもの)が再蒸発し
てしまうためと考えられる。
When the substrate temperature is lower than 550 ° C., the superconductor thin film becomes amorphous. On the other hand, if the temperature exceeds 950 ° C., a superconductor thin film having a nonuniform composition will be formed. It is considered that this is because the once deposited atoms (especially those having a low melting point) are re-evaporated.

【0017】なお、バッファー層の層厚は100Å〜2
00Åとすることが好ましく、その平坦性は表面粗度を
max数Å〜数十Åとすることが、高臨界温度、高臨界
電流密度を有する超伝導薄膜を基板板上に形成する上か
ら好ましい。
The layer thickness of the buffer layer is 100Å to 2
00 Å is preferable, and the flatness is such that the surface roughness is R max number Å to several tens Å in order to form a superconducting thin film having a high critical temperature and a high critical current density on a substrate plate. preferable.

【0018】また、酸化物単結晶薄膜が酸化物単結晶基
板よりも結晶性に優れるとは、酸化物単結晶薄膜が酸化
物単結晶基板よりもクラック、ツイン、サブグレイン、
表面の劣化層が少ないことを意味し、酸化物単結晶薄膜
が酸化物単結晶基板よりも表面平坦性に優れるとは、酸
化物単結晶薄膜の表面粗度が酸化物単結晶基板の表面粗
度よりも細かいことを意味する。
The oxide single crystal thin film is superior in crystallinity to the oxide single crystal substrate because the oxide single crystal thin film has cracks, twins, subgrains, and
It means that the oxide single crystal thin film has better surface flatness than the oxide single crystal substrate, which means that the surface deterioration of the oxide single crystal thin film is less than the surface roughness of the oxide single crystal substrate. It means more detailed than degree.

【0019】格子不整合率は、次の式により算出され
る。
The lattice mismatch rate is calculated by the following equation.

【0020】 100(d1−d2)/{(d1+d2)÷2} d1は酸化物単結晶基板のa軸あるいはb軸の格子定
数、d2は酸化物単結晶薄膜のa軸あるいはb軸の格子
定数である。
100 (d 1 −d 2 ) / {(d 1 + d 2 ) / 2} d 1 is the a-axis or b-axis lattice constant of the oxide single crystal substrate, and d 2 is the a of the oxide single crystal thin film. It is the lattice constant of the axis or the b axis.

【0021】[0021]

【作用】従来、酸化物超伝導体薄膜形成用の基板として
は、バルクの単結晶が用いられてきた。しかし、単結晶
基板の結晶性、表面平坦性が、その基板上に形成された
酸化物超伝導体薄膜の結晶性を劣化させる(特に界面付
近での結晶性を劣化させる)ため本来の超伝導特性は得
られていない。
In the past, a bulk single crystal has been used as a substrate for forming an oxide superconductor thin film. However, since the crystallinity and surface flatness of the single crystal substrate deteriorate the crystallinity of the oxide superconductor thin film formed on the substrate (especially the crystallinity near the interface), the original superconductivity Characteristics have not been obtained.

【0022】本発明では、酸化物単結晶基板上に酸化物
超伝導体との薄膜形成温度における格子不整合率が1%
以下であり、結晶性、表面平坦性に優れた酸化物からな
るバッファー層薄膜が形成されているため、単結晶基板
の結晶性、表面平坦性に起因する、界面付近での酸化物
超伝導体薄膜の結晶性、超伝導特性の劣化を防ぐことが
でき、従来よりも高い臨界温度、臨界電流密度を有する
酸化物超伝導体薄膜を形成することができる。
In the present invention, the lattice mismatch rate with the oxide superconductor on the oxide single crystal substrate is 1% at the thin film forming temperature.
Since the buffer layer thin film made of an oxide having excellent crystallinity and surface flatness is formed, the oxide superconductor near the interface due to the crystallinity and surface flatness of the single crystal substrate is as follows. It is possible to prevent deterioration of crystallinity and superconducting properties of the thin film, and to form an oxide superconductor thin film having a higher critical temperature and higher critical current density than ever before.

【0023】[0023]

【実施態様例】以下図面を参照して本発明の実施態様例
を詳細に説明する。
Embodiments Embodiments of the present invention will be described in detail below with reference to the drawings.

【0024】図1は本発明によって形成された酸化物薄
膜形成用基板の基本構成を示す概念図である。lは酸化
物単結晶基板、2はバッファー層である。
FIG. 1 is a conceptual diagram showing the basic structure of an oxide thin film forming substrate formed according to the present invention. 1 is an oxide single crystal substrate, and 2 is a buffer layer.

【0025】酸化物単結晶基板lは結晶性、表面平坦性
に劣っているため、直接この基板上に酸化物超伝導体薄
膜を形成した場合、界面付近での結晶性、超伝導特性を
劣化させる。この問題を解決するために、この酸化物単
結晶基板l上ヘ薄膜結晶成長によりバッファー層2を形
成する。バッファー層2は結晶性、表面平坦性に優れた
高品質の酸化物単結晶薄膜である。これら酸化物単結晶
基板l、バッファー層2とにより、結晶性、表面平坦性
が優れている酸化物超伝導体単結晶薄膜形成用基板3が
構成されている。従って、酸化物超伝導体単結晶薄膜形
成用基板3上には界面付近においても結晶性、超伝導特
性の優れた酸化物超伝導体単結晶薄膜4が形成されてい
る。
Since the oxide single crystal substrate 1 is inferior in crystallinity and surface flatness, when an oxide superconductor thin film is formed directly on this substrate, the crystallinity and superconducting properties near the interface are deteriorated. Let In order to solve this problem, the buffer layer 2 is formed on the oxide single crystal substrate 1 by thin film crystal growth. The buffer layer 2 is a high-quality oxide single crystal thin film having excellent crystallinity and surface flatness. The oxide single crystal substrate 1 and the buffer layer 2 constitute a substrate 3 for forming an oxide superconductor single crystal thin film having excellent crystallinity and surface flatness. Therefore, the oxide superconductor single crystal thin film 4 having excellent crystallinity and superconducting properties is formed on the oxide superconductor single crystal thin film forming substrate 3 even near the interface.

【0026】バッファー層2の材料系をへテロエピタキ
シャル成長の観点から明確にする。ヘテロエピタキシャ
ル成長を考える場合、基本条件の一つに薄膜形成温度に
おける格子定数の整合性がある。特に界面付近での薄膜
の結晶性を優れたものにするためには、これが重要とな
る。酸化物超伝導体との薄膜形成温度における格子不整
合率が〜1.0%であるSrTiOをバッファー層2
としたときに表面平坦性、結晶性に優れた酸化物超伝導
体単結晶薄膜4が得られている事から、本発明において
許容されうるバッファー層2と酸化物超伝導体との格子
不整合率はl%以下とする。
The material system of the buffer layer 2 is clarified from the viewpoint of heteroepitaxial growth. When considering heteroepitaxial growth, one of the basic conditions is the matching of lattice constants at the thin film forming temperature. This is important in order to improve the crystallinity of the thin film especially near the interface. The buffer layer 2 was made of SrTiO 3 having a lattice mismatch of up to 1.0% at the thin film forming temperature with the oxide superconductor.
Since the oxide superconductor single crystal thin film 4 having excellent surface flatness and crystallinity is obtained, the lattice mismatch between the buffer layer 2 and the oxide superconductor which is acceptable in the present invention is obtained. The rate is 1% or less.

【0027】従って、酸化物単結晶基板lと、酸化物超
伝導体単結晶薄膜4との格子不整合率が薄膜形成温度に
おいてl%以下であるバッファー層2とによって、結晶
性、表面平坦性に優れた酸化物超伝導体単結晶薄膜形成
用基板3が構成される。酸化物超伝導体単結晶薄膜形成
用基板3と酸化物超伝導体単結晶薄膜4との格子整合性
は極めて優れているため、この酸化物超伝導体単結晶薄
膜形成用基板3上にエピタキシャル成長した高品質の酸
化物超伝導体単結晶薄膜4が形成される。
Therefore, the crystallinity and the surface flatness are made by the oxide single crystal substrate 1 and the buffer layer 2 in which the lattice mismatch ratio between the oxide superconductor single crystal thin film 4 is 1% or less at the thin film forming temperature. A substrate 3 for forming an oxide superconductor single crystal thin film excellent in heat resistance is constituted. Since the lattice matching between the oxide superconductor single crystal thin film forming substrate 3 and the oxide superconductor single crystal thin film 4 is extremely excellent, epitaxial growth is performed on the oxide superconductor single crystal thin film forming substrate 3. The high-quality oxide superconductor single crystal thin film 4 is formed.

【0028】(第2実施態様例)第lの実施態様例で示
したように、酸化物単結晶基板l上に形成されるバッフ
ァー層2は基本的には酸化物超伝導体単結晶薄膜4との
格子定数の不整合が薄膜形成温度においてl%以下の酸
化物であれば良い。しかしながら、酸化物超伝導体単結
晶薄膜形成用基板3上に形成した酸化物超伝導体単結晶
薄膜4を実際の電子デバイスに用いる場合には、界面に
トラップ準位の無い、急峻な界面を持った薄膜である必
要がある。そのためにはバッファー層2は酸化物超伝導
体薄膜4の結晶構造と類似した材料で有ることが好まし
い。
(Second Embodiment) As shown in the first embodiment, the buffer layer 2 formed on the oxide single crystal substrate 1 is basically an oxide superconductor single crystal thin film 4. It suffices if the lattice constant mismatch with the oxide is 1% or less at the thin film forming temperature. However, when the oxide superconductor single crystal thin film 4 formed on the oxide superconductor single crystal thin film forming substrate 3 is used in an actual electronic device, a steep interface having no trap level is formed at the interface. It must be a thin film. For that purpose, the buffer layer 2 is preferably made of a material similar to the crystal structure of the oxide superconductor thin film 4.

【0029】第2の実施態様例ではバッファー層2を酸
化物超伝導体単結晶薄膜4の結晶構造であるぺロウスカ
イト構造、あるいはこれに類似したGdFeO構造を
持つ複酸化物とする。複酸化物は、熱的、化学的に安定
であるため、酸化物超伝導体との界面反応を防ぐ効果も
ある。したがって、バッファー層2は酸化物超伝導体単
結晶薄膜4との格子定数の不整合率が薄膜形成温度にお
いてl%以下であり、ペロウスカイト構造、あるいはG
dFeO構造を持つ複酸化物となる。このバッファー
層2と酸化物単結晶基板lとによって、結晶性、表面平
坦性に優れた酸化物超伝導体単結晶薄膜形成用基板3が
構成される。この酸化物超伝導体単結晶薄膜形成用基板
3と酸化物超伝導体単結晶薄膜4は、格子整合性に優れ
結晶構造も類似しているため、理想的なエピタキシャル
成長の関係となり酸化物超伝導体単結晶薄膜形成用基板
3上に高品質の酸化物超伝導体単結晶薄膜4を形成する
ことが出来る。
In the second embodiment, the buffer layer 2 is a double oxide having a perovskite structure which is the crystal structure of the oxide superconductor single crystal thin film 4 or a GdFeO 3 structure similar thereto. Since the double oxide is thermally and chemically stable, it also has an effect of preventing an interfacial reaction with the oxide superconductor. Therefore, the buffer layer 2 has a mismatch rate of the lattice constant with the oxide superconductor single crystal thin film 4 of 1% or less at the thin film forming temperature, and the perovskite structure or G
It becomes a double oxide having a dFeO 3 structure. The buffer layer 2 and the oxide single crystal substrate 1 constitute a substrate 3 for forming an oxide superconductor single crystal thin film having excellent crystallinity and surface flatness. Since the substrate 3 for forming an oxide superconductor single crystal thin film and the oxide superconductor single crystal thin film 4 have excellent lattice matching and similar crystal structures, an ideal epitaxial growth relationship is established. It is possible to form a high quality oxide superconductor single crystal thin film 4 on the body single crystal thin film forming substrate 3.

【0030】(第3実施態様例)第2の実施態様例で示
したように、酸化物単結晶基板l上に形成されるバッフ
ァー層2は酸化物超伝導体単結晶薄膜4との格子定数の
不整合がl%以下であり、ペロウスカイト構造、あるい
は、GdFeO構造を持つ複酸化物である。この材料
系を用いて、結晶性、表面平坦性の優れたバッファー層
2を形成するためには、酸化物単結晶基板lはバッファ
ー層2と格子整合性に優れた材料で有ることが必要とな
る。第lの実施態様例で示したように、薄膜と基板の薄
膜形成温度における絡子不整合率が1%以下のとき、表
面の平坦性、結晶性に優れた酸化物超伝導体が形成され
ていることから、第3の実施態様例では、許容される酸
化物単結晶基板lとバッファー層2との格子定数の不整
合率は、薄膜形成温度においてl%以下とする。
(Third Embodiment) As shown in the second embodiment, the buffer layer 2 formed on the oxide single crystal substrate 1 has a lattice constant with the oxide superconductor single crystal thin film 4. Is less than 1% and is a complex oxide having a perovskite structure or a GdFeO 3 structure. In order to form the buffer layer 2 excellent in crystallinity and surface flatness using this material system, the oxide single crystal substrate 1 needs to be a material excellent in lattice matching with the buffer layer 2. Become. As shown in the 1st embodiment, when the entanglement mismatch ratio at the thin film formation temperature of the thin film and the substrate is 1% or less, an oxide superconductor excellent in surface flatness and crystallinity is formed. Therefore, in the third embodiment, the allowable mismatch rate of the lattice constants of the oxide single crystal substrate 1 and the buffer layer 2 is 1% or less at the thin film forming temperature.

【0031】(第4の実施態様例)第3の実施態様例で
示したように、基本的には酸化物単結晶基板lはバッフ
ァー層2との格子定数の不整合が薄膜形成温度において
l%以下の酸化物であれば良い。しかしながら、エピタ
キシャル成長の観点から考えると、優れた結晶性、表面
平坦性をもつバッファー層2を形成するためには、結晶
構造が類似した酸化物単結晶基板1を用いる方が好まし
い。そこで、第4の実施態様例では、酸化物単結晶基板
lは薄膜形成温度におけるバッファー層2との格子不整
合率がl%以下であり、ペロウスカイト構造、あるいは
GdFeO構造を持つ複酸化物とする。
(Fourth Embodiment) As shown in the third embodiment, basically, the oxide single crystal substrate 1 has a mismatch of the lattice constant with the buffer layer 2 at the thin film forming temperature. %, It is sufficient if the oxide content is not more than%. However, from the viewpoint of epitaxial growth, it is preferable to use the oxide single crystal substrate 1 having a similar crystal structure in order to form the buffer layer 2 having excellent crystallinity and surface flatness. Therefore, in the fourth embodiment, the oxide single crystal substrate 1 has a lattice mismatch with the buffer layer 2 at the thin film forming temperature of 1% or less, and is a composite oxide having a perovskite structure or a GdFeO 3 structure. To do.

【0032】(第5の実施態様例)第5の実施態様例で
はバッファー層2の材料系を限定する。高品質の酸化物
超伝導体単結晶薄膜4を実現するためには、バツフアー
層2と、酸化物超伝導体の構成元素の相互拡散を考慮す
る必要がある。この観点から考えると、ペロウスカイト
構造、あるいはGdFeO構造を持ち、酸化物超伝導
体薄膜形成温度における格子整合率がl%以下である複
酸化物の中で、酸化物超伝導体の構成元素である希土類
元素を含む材料の方がバッファー層2として好ましい事
になる。
(Fifth Embodiment) In the fifth embodiment, the material system of the buffer layer 2 is limited. In order to realize a high quality oxide superconductor single crystal thin film 4, it is necessary to consider the mutual diffusion of the buffer layer 2 and the constituent elements of the oxide superconductor. From this point of view, in a complex oxide having a perovskite structure or a GdFeO 3 structure and having a lattice matching rate of 1% or less at the oxide superconductor thin film forming temperature, it is a constituent element of the oxide superconductor. A material containing a certain rare earth element is more preferable for the buffer layer 2.

【0033】このことから、第4の実施態様例ではバッ
ファー層2を、薄膜形成温度において、酸化物超伝導体
との格子不整合率が0.02%であるPrGaO
0.27%であるNdGaOにする。この様に、酸化
物単結晶基板l上へ、バッファー層2としてPrGaO
、あるいは、NdGaOが形成されている酸化物超
伝導体単結晶薄膜形成用基板3が構成される。この酸化
物超伝導体単結晶薄膜形成用基板3によって、この上に
エピタキシャル成長した高品質の酸化物超伝導体単結晶
薄膜4を得ることができる。
From this, in the fourth embodiment, the buffer layer 2 is formed of PrGaO 3 having a lattice mismatch with the oxide superconductor of 0.02% at the thin film forming temperature.
NdGaO 3 is 0.27%. In this way, PrGaO as the buffer layer 2 is formed on the oxide single crystal substrate 1.
3 or the substrate 3 for forming an oxide superconductor single crystal thin film on which NdGaO 3 is formed. With this substrate 3 for forming an oxide superconductor single crystal thin film, a high-quality oxide superconductor single crystal thin film 4 epitaxially grown thereon can be obtained.

【0034】(第6実施態様例)第6の実施態様例では
酸化物単結晶基板lの材料系を限定する。第4の実施態
様例で示したように、酸化物単結晶基板lはバッファー
層2との格子定数の不整合率が1%以下であり、ペロウ
スカイト構造、あるいは、GdFeO構造を持つ複酸
化物である。また、第5の実施態様例ではバッファー層
2をPrGaO、NdGaOとした。
(Sixth Embodiment) In the sixth embodiment, the material system of the oxide single crystal substrate 1 is limited. As shown in the fourth embodiment, the oxide single crystal substrate 1 has a lattice constant mismatch rate with the buffer layer 2 of 1% or less, and has a perovskite structure or a complex oxide having a GdFeO 3 structure. Is. In addition, in the fifth embodiment, the buffer layer 2 is made of PrGaO 3 and NdGaO 3 .

【0035】これらのことから、第6の実施態様例では
酸化物単結晶基板lを、薄膜形成温度におけるPrGa
、NdGaOとの格子不整合率が、1%以下の、
ペロウスカイト構造、あるいは、GdFeO構造を持
つ複酸化物であり、かつ、その単結晶基板が存在する材
料とする。すなわち、SrTiO、PrGaO、N
dGaO単結晶基板が適当となる。この様に、SrT
iO、PrGaO、NdGaOからなる酸化物単
結晶基板1上ヘ、バッファー層2としてPrGaO
あるいは、NdGaOが形成されている酸化物超伝導
体単結晶薄膜形成用基板3が構成される。この酸化物超
伝導体単結晶薄膜形成用基板3によって、この上にエピ
タキシャル成長した高品質の酸化物超伝導体単結晶薄膜
4を得ることができる。
From these facts, in the sixth embodiment, the oxide single crystal substrate 1 is made of PrGa at the thin film forming temperature.
The lattice mismatch rate with O 3 and NdGaO 3 is 1% or less,
The material is a composite oxide having a perovskite structure or a GdFeO 3 structure and in which the single crystal substrate exists. That is, SrTiO 3 , PrGaO 3 , N
A dGaO 3 single crystal substrate is suitable. In this way, SrT
iO 3, PrGaO 3, oxides consisting of NdGaO 3 single crystal substrate 1 Uehe, PrGaO 3 as a buffer layer 2,
Alternatively, the substrate 3 for forming an oxide superconductor single crystal thin film on which NdGaO 3 is formed is formed. With this substrate 3 for forming an oxide superconductor single crystal thin film, a high-quality oxide superconductor single crystal thin film 4 epitaxially grown thereon can be obtained.

【0036】[0036]

【実施例】本実施例では、第6の実施態様例で限定した
NdGaO、PrGaO薄膜のSrTiO、Pr
GaO、NdGaO単結晶基板上への形成方法を具
体的に説明する。
EXAMPLE In this example, the NdGaO 3 and PrGaO 3 thin films SrTiO 3 and Pr defined in the sixth embodiment are limited.
A method for forming GaO 3 and NdGaO 3 on a single crystal substrate will be specifically described.

【0037】YBaCu7−y酸化物超伝導体の
単結晶薄膜形成を目的として、図1に示した酸化物単結
晶基板l上に、RFマグネトロンスパッタ法を用いてバ
ッファー層2を形成した。薄膜形成の方法は以下の通り
である。ここで酸化物単結晶基板lはNdGaO、バ
ッファー層2は薄膜形成温度においてYBaCu
7−y酸化物超伝導体との格子不整合率が0.02%で
あるPrGaOとした。ターゲットは厚み5mm、直
径4インチである化学量論組成のPrGaO焼結体と
し、チャンバー内の銅製パッキングプレートにメタルボ
ンデイングによって装着した。
For the purpose of forming a single crystal thin film of a YBa 2 Cu 3 O 7-y oxide superconductor, the buffer layer 2 was formed on the oxide single crystal substrate 1 shown in FIG. 1 by the RF magnetron sputtering method. Formed. The method for forming the thin film is as follows. Here, the oxide single crystal substrate 1 is NdGaO 3 , and the buffer layer 2 is YBa 2 Cu 3 O at the thin film forming temperature.
PrGaO 3 having a lattice mismatch with the 7-y oxide superconductor of 0.02% was used. The target was a stoichiometric PrGaO 3 sintered body having a thickness of 5 mm and a diameter of 4 inches, and was mounted on a copper packing plate in the chamber by metal bonding.

【0038】基板はNdGaO(110)基板を用い
ターゲットから5cmの位置に、シャッタを介してター
ゲットと平行に設置した。
The substrate used was an NdGaO 3 (110) substrate and was placed at a position 5 cm from the target in parallel with the target via a shutter.

【0039】チャンバー内をロータリーポンプとクライ
オポンプによって真空引きし、10 −5Torr以下の
真空度が達成された後、スパッタリングガスを導入し
た。スパッタリングガスは、アルゴン、あるいは、アル
ゴンと酸素の混合ガスとし、マスフローコントロラーで
流量を制御してチャンバー内に導入した。
A rotary pump and a cry
Evacuated by opamp and evacuated 10 -5Below Torr
After the degree of vacuum is achieved, the sputtering gas is introduced.
It was The sputtering gas is argon or Al.
As a mixed gas of gon and oxygen, with a mass flow controller
The flow rate was controlled and introduced into the chamber.

【0040】アルゴンガスの流量は40SCCM程度と
し、バルブの調整により圧力を0.1mTorrから1
Torrの間に設定した。また、酸素ガスの流量は0S
CCMから40SCCMの範囲とした。この時、酸素の
圧力は、0Torrから1Torrの間に設定した。こ
れらのスパッタリングガスに50Wから200Wの間の
RFパワーを印加し放電を開始した。この時のRFパワ
ー密度は、入力パワーとスパッタリングガスによってス
パッタされるターゲットの面積から算出すると1.9W
/cmから7.6W/cmとなった。
The flow rate of the argon gas is about 40 SCCM, and the pressure is adjusted from 0.1 mTorr to 1 by adjusting the valve.
It was set during Torr. The flow rate of oxygen gas is 0S
The range was from CCM to 40 SCCM. At this time, the pressure of oxygen was set between 0 Torr and 1 Torr. RF power between 50 W and 200 W was applied to these sputtering gases to start discharge. The RF power density at this time is 1.9 W when calculated from the input power and the area of the target sputtered by the sputtering gas.
/ Cm 2 to 7.6 W / cm 2 .

【0041】基板加熱は直接通電加熱方式によって加熱
されたSi上ヘNdGaO基板をはりつけることによ
って行った。基板温度は550℃から900℃の間とし
た。ターゲット表面の汚れ(空気中の水分とターゲット
が反応して生成した水酸化物など)を除去する目的で、
プレスパッタを10分間行い、その後、シャッターを開
けNdGaO基板上ヘPrGaO薄膜形成を開始し
た。
Substrate heating was performed by sticking a NdGaO 3 substrate on Si heated by a direct current heating method. The substrate temperature was between 550 ° C and 900 ° C. For the purpose of removing dirt on the target surface (such as hydroxide generated by the reaction of moisture in the air with the target),
Pre-sputtering was performed for 10 minutes, and then the shutter was opened to start the formation of PrGaO 3 thin film on the NdGaO 3 substrate.

【0042】蒸着終了後、基板温度を室温まで降ろし薄
膜をチヤンバーから取り出した。
After completion of vapor deposition, the substrate temperature was lowered to room temperature and the thin film was taken out from the chamber.

【0043】この方法で形成したPrGaO薄膜の結
晶性は、酸素分圧、及び基板温度の上昇と共に良好にな
る傾向を示した。前述した薄膜形成条件のなかで、基板
温度が650℃以上、酸素分圧が1×l0−3Torr
以上で形成されたPrGa0 薄膜は、Ruthefo
rd−Back Scattering(RBS法によ
り得られるχminの値が4%以下と、非常に優れた結
晶性を示した。
PrGaO formed by this methodThreeThin film
The crystallinity is improved with increasing oxygen partial pressure and substrate temperature.
Showed a tendency to Among the thin film forming conditions mentioned above, the substrate
Temperature is over 650 ℃, oxygen partial pressure is 1 × 10-3Torr
PrGa0 formed as described above ThreeThe thin film is Ruthefo
rd-Back Scattering (by the RBS method
The obtained χmin value is 4% or less, which is a very good result.
It showed crystallinity.

【0044】この薄膜のX−Ray Diffract
ometry(XRD)、Transmission
Electron Microscopy(TEM)、
Atomic Force Microscopy(A
FM)の結果について以下に述ベる。
X-Ray Diffract of this thin film
Ometry (XRD), Transmission
Electron Microscopy (TEM),
Atomic Force Microscopy (A
The results of FM) are described below.

【0045】図2に、2θ/θ法により得られたXRD
パターンを示す。このパターンには、PrGaO
(110)面に相当する回折ピークのみが観測されてお
り、<110>の結晶軸が基板と垂直方向に配向した薄
膜である事がわかる。この回折ピークの半値幅は0.0
7゜と狭い。これは結晶性が優れていることを示してい
る。また、TEM観察により得られた制限視野回折像は
PrGaOの(110)逆格子面に相当しており、N
dGaO基板表面と平行な面内においても結晶軸が配
向していることを示している。したがって、このPrG
a0薄膜は、結晶軸が一定方向に規則的に配向したエ
ピタキシャル成長膜であるといえる。
FIG. 2 shows the XRD obtained by the 2θ / θ method.
The pattern is shown. In this pattern, only the diffraction peak corresponding to the (110) plane of PrGaO 3 is observed, which shows that the <110> crystal axis is a thin film oriented perpendicular to the substrate. The full width at half maximum of this diffraction peak is 0.0
It is as narrow as 7 °. This indicates that the crystallinity is excellent. The selected area diffraction image obtained by TEM observation corresponds to the (110) reciprocal lattice plane of PrGaO 3 , and N
It is shown that the crystal axes are oriented even in the plane parallel to the dGaO 3 substrate surface. Therefore, this PrG
It can be said that the aO 3 thin film is an epitaxially grown film in which crystal axes are regularly oriented in a fixed direction.

【0046】また、AFMの結果から、この薄膜は表面
の凹凸が10Å程度である非常に平坦な薄膜であること
が認められた。
From the result of AFM, it was confirmed that this thin film was a very flat thin film having surface irregularities of about 10Å.

【0047】これらの結果から、(110)面NdGa
基板上に、表面平坦性に優れた(110)面配向の
エピタキシャル成長したPrGaO薄膜が形成されて
いると結論できる。したがって、酸化物単結晶基板l上
に結晶性、表面平坦性に優れたバッファー層2がエピタ
キシャル成長した酸化物薄膜形成用基板3が形成され
る。
From these results, the (110) plane NdGa
It can be concluded that the epitaxially grown PrGaO 3 thin film having a (110) plane orientation and excellent surface flatness is formed on the 0 3 substrate. Therefore, the oxide thin film forming substrate 3 in which the buffer layer 2 excellent in crystallinity and surface flatness is epitaxially grown on the oxide single crystal substrate 1 is formed.

【0048】この酸化物薄膜形成用基板3上に、酸化物
超伝導体単結晶薄膜4を形成した。
An oxide superconductor single crystal thin film 4 was formed on the oxide thin film forming substrate 3.

【0049】薄膜形成温度におけるYBaCu
7−y酸化物超伝導体とPrGaOとの格子不整合度
は0.02%と極めて小さく、結晶構造がともにぺロウ
スカイト構造であるため理想的なエピタキシャル成長の
関係になり、さらに、基板表面の結晶性、表面平坦性も
極めて優れているため、急峻な界面を持った高品質の酸
化物超伝導体単結晶薄膜4が形成された。
YBa 2 Cu 3 O at thin film forming temperature
The lattice mismatch between the 7-y oxide superconductor and PrGaO 3 is as small as 0.02%, and both crystal structures are perovskite structures, which results in an ideal epitaxial growth relationship. Since the crystallinity and the surface flatness are also extremely excellent, a high quality oxide superconductor single crystal thin film 4 having a steep interface was formed.

【0050】[0050]

【発明の効果】このように本発明によって、基板と薄膜
との格子不整合率、また、単結晶基板の結晶性、表面平
坦性に起因する酸化物超伝導体薄膜の結晶性、超伝導特
性の劣化を防ぐことが可能となり、高品質の酸化物超伝
導体単結晶薄膜を形成することができるようになった。
As described above, according to the present invention, the lattice mismatch ratio between the substrate and the thin film, and the crystallinity and superconducting property of the oxide superconductor thin film due to the crystallinity and surface flatness of the single crystal substrate. It has become possible to prevent deterioration of the above, and to form a high quality oxide superconductor single crystal thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によって形成された酸化物薄膜形成用基
板の基本構成を示す概念図である。
FIG. 1 is a conceptual diagram showing a basic structure of a substrate for forming an oxide thin film formed by the present invention.

【図2】2θ/θ法により得られたXRDパターンであ
る。
FIG. 2 is an XRD pattern obtained by a 2θ / θ method.

【符号の説明】 1 酸化物単結晶基板、 2 バッファー層、 3 酸化物高温超伝導体単結晶薄膜形成用基板、 4 酸化物高温超伝導体単結晶薄膜。[Description of Reference Signs] 1 oxide single crystal substrate, 2 buffer layer, 3 oxide high temperature superconductor single crystal thin film forming substrate, 4 oxide high temperature superconductor single crystal thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の温度に加熱された酸化物単結晶基
板上へ、酸化物超伝導体薄膜を形成する方法において、
前記加熱温度における前記酸化物超伝導体との格子不整
合率が1%以下であり、前記酸化物単結晶基板よりも結
晶性、表面平坦性に優れた酸化物単結晶薄膜がバッファ
ー層として形成されている基板を用いることを特徴とす
る酸化物高温超伝導体単結晶薄膜形成方法。
1. A method for forming an oxide superconductor thin film on an oxide single crystal substrate heated to a predetermined temperature,
An oxide single crystal thin film having a lattice mismatch with the oxide superconductor at the heating temperature of 1% or less and having better crystallinity and surface flatness than the oxide single crystal substrate is formed as a buffer layer. Method for forming an oxide high-temperature superconductor single-crystal thin film, characterized in that an existing substrate is used.
【請求項2】 酸化物単結晶基板と前記酸化物単結晶基
板上に形成された酸化物単結晶薄膜を有する酸化物高温
超伝導体単結晶薄膜形成用基板であって、前記酸化物単
結晶薄膜の格子と前記酸化物高温超伝導体の内のl種の
酸化物高温超伝導体の格子との不整合率が、前記l種の
酸化物高温超伝導体のエピタキシヤル成長温度以上の所
定の温度範囲においてl%以下であり、前記酸化物単結
晶薄膜の平坦性と結晶性が前記酸化物単結晶基板のそれ
より優れていることを特徴とする酸化物高温超伝導体単
結晶薄膜形成用基板。
2. A substrate for forming an oxide high temperature superconductor single crystal thin film having an oxide single crystal substrate and an oxide single crystal thin film formed on the oxide single crystal substrate, wherein the oxide single crystal The mismatch rate between the lattice of the thin film and the lattice of the high-temperature oxide superconductor of the type I oxide is equal to or higher than a predetermined epitaxial growth temperature of the high-temperature oxide superconductor of the type I. 1% or less in the temperature range of 1), and the flatness and crystallinity of the oxide single crystal thin film are superior to those of the oxide single crystal substrate. Substrate.
【請求項3】 RFマグネトロンスパッタ法において、
アルゴンと酸素を、それぞれ、0.1mTorrから1
Torr、0Torrから1Torrの範囲で混合した
ガスをスパッタリングガスとし、RFパワーが50〜2
00w(パワー密度1.9〜7.6w/cm)、基板
温度が550℃から950℃の範囲である薄膜形成条件
で上記酸化物単結晶薄膜を形成することを特徴とする請
求項2記載の酸化物高温超伝導体単結晶薄膜形成用基板
の形成方法。
3. In the RF magnetron sputtering method,
Argon and oxygen from 0.1 mTorr to 1
Torr, a gas mixed in the range of 0 Torr to 1 Torr was used as a sputtering gas, and the RF power was 50 to 2
The oxide single crystal thin film is formed under thin film forming conditions of 00w (power density 1.9 to 7.6 w / cm 2 ) and a substrate temperature in the range of 550 ° C to 950 ° C. Of forming a substrate for forming an oxide high temperature superconductor single crystal thin film of.
JP4211169A 1992-08-07 1992-08-07 Oxide high temperature superconductor single crystal thin film forming method Expired - Fee Related JP2747173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4211169A JP2747173B2 (en) 1992-08-07 1992-08-07 Oxide high temperature superconductor single crystal thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211169A JP2747173B2 (en) 1992-08-07 1992-08-07 Oxide high temperature superconductor single crystal thin film forming method

Publications (2)

Publication Number Publication Date
JPH0656581A true JPH0656581A (en) 1994-03-01
JP2747173B2 JP2747173B2 (en) 1998-05-06

Family

ID=16601558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211169A Expired - Fee Related JP2747173B2 (en) 1992-08-07 1992-08-07 Oxide high temperature superconductor single crystal thin film forming method

Country Status (1)

Country Link
JP (1) JP2747173B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017112A3 (en) * 2009-07-28 2011-04-28 University Of Houston System Superconducting article with prefabricated nanostructure for improved flux pinning
JP2012031468A (en) * 2010-07-30 2012-02-16 Nippon Telegr & Teleph Corp <Ntt> Method for producing thin film of superconductor
WO2012165563A1 (en) * 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film and superconducting fault current limiter
CN103184513A (en) * 2013-03-13 2013-07-03 清华大学 Preparation method of high-temperature superconducting thin film
JP2014077166A (en) * 2012-10-10 2014-05-01 Sumitomo Electric Ind Ltd Substrate with intermediate layer for thin film superconducting wire and manufacturing method of the same, and thin film superconducting wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317000A (en) * 1989-06-15 1991-01-24 Toshiba Corp Vapor-phase growth of oxide thin film
JPH0467692A (en) * 1990-07-09 1992-03-03 Komatsu Ltd Superconducting element
JPH04263480A (en) * 1991-02-18 1992-09-18 Nippon Telegr & Teleph Corp <Ntt> Oxide superconductor single crystal thin film forming board and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317000A (en) * 1989-06-15 1991-01-24 Toshiba Corp Vapor-phase growth of oxide thin film
JPH0467692A (en) * 1990-07-09 1992-03-03 Komatsu Ltd Superconducting element
JPH04263480A (en) * 1991-02-18 1992-09-18 Nippon Telegr & Teleph Corp <Ntt> Oxide superconductor single crystal thin film forming board and manufacture thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017112A3 (en) * 2009-07-28 2011-04-28 University Of Houston System Superconducting article with prefabricated nanostructure for improved flux pinning
US8926868B2 (en) 2009-07-28 2015-01-06 University Of Houston System Superconductive article with prefabricated nanostructure for improved flux pinning
KR101485060B1 (en) * 2009-07-28 2015-01-21 유니버시티 오브 휴스턴 시스템 Superconducting article with prefabricated nanostructure for improved flux pinning
JP2012031468A (en) * 2010-07-30 2012-02-16 Nippon Telegr & Teleph Corp <Ntt> Method for producing thin film of superconductor
WO2012165563A1 (en) * 2011-05-31 2012-12-06 古河電気工業株式会社 Oxide superconductor thin film and superconducting fault current limiter
JPWO2012165563A1 (en) * 2011-05-31 2015-02-23 古河電気工業株式会社 Oxide superconducting thin film and superconducting fault current limiter
US9159898B2 (en) 2011-05-31 2015-10-13 Furukawa Electric Co., Ltd. Oxide superconductor thin film and superconducting fault current limiter
JP2014077166A (en) * 2012-10-10 2014-05-01 Sumitomo Electric Ind Ltd Substrate with intermediate layer for thin film superconducting wire and manufacturing method of the same, and thin film superconducting wire
CN103184513A (en) * 2013-03-13 2013-07-03 清华大学 Preparation method of high-temperature superconducting thin film
CN103184513B (en) * 2013-03-13 2016-04-27 清华大学 The preparation method of high-temperature superconducting thin film

Also Published As

Publication number Publication date
JP2747173B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JPH03150218A (en) Production of superconductive thin film
EP0410868B1 (en) Superconducting thin film of compound oxide and process for preparing the same
JP2747173B2 (en) Oxide high temperature superconductor single crystal thin film forming method
JP2716595B2 (en) Substrate for forming oxide superconductor single crystal thin film and method for producing the same
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
US6194353B1 (en) Process for preparing superconducting thin film formed of oxide superconductor material
JP2653003B2 (en) Oxide superconducting thin film synthesis method
JPWO2003023094A1 (en) Oxide high-temperature superconductor and method for producing the same
EP0620602B1 (en) Method for depositing another thin film on an oxide thin film having perovskite crystal structure
US5314870A (en) Preparing thin film of oxide superconductor
JPS63225599A (en) Preparation of oxide superconductive thin film
JPH06116094A (en) Thin film superconductor and its production
US5260267A (en) Method for forming a Bi-containing superconducting oxide film on a substrate with a buffer layer of Bi2 O3
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JP2546730B2 (en) Substrate for oxide thin film formation
JPS63236794A (en) Production of superconductive thin film of oxide
Houlton et al. Development of materials for high temperature superconductor Josephson junctions
JP3068917B2 (en) Superconducting device
JP2785977B2 (en) Method and apparatus for forming oxide high-temperature superconducting film by plasma-induced evaporation
JP2835235B2 (en) Method of forming oxide superconductor thin film
JP2004207482A (en) Oxide superconductive thin film
JPH04193713A (en) Oxide superconducting thin film and its production
JPH09260733A (en) Oxide superconducting thin film laminated body and manufacture thereof
JPH09255336A (en) Re-ba-cu-o superconducting thin film forming body and its production
JPH02237082A (en) Semiconductor substrate provided with superconductor thin film and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees