JPH0655519A - Manufacture of fiber reinforced ceramics and manufacturing equipment - Google Patents

Manufacture of fiber reinforced ceramics and manufacturing equipment

Info

Publication number
JPH0655519A
JPH0655519A JP4206613A JP20661392A JPH0655519A JP H0655519 A JPH0655519 A JP H0655519A JP 4206613 A JP4206613 A JP 4206613A JP 20661392 A JP20661392 A JP 20661392A JP H0655519 A JPH0655519 A JP H0655519A
Authority
JP
Japan
Prior art keywords
nozzle
cylinder
fiber
diameter
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4206613A
Other languages
Japanese (ja)
Inventor
Tsukasa Shiomi
司 塩見
Tsuneo Tateno
常男 立野
Kazuhiko Asano
和彦 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4206613A priority Critical patent/JPH0655519A/en
Publication of JPH0655519A publication Critical patent/JPH0655519A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

PURPOSE:To provide a manufacturing method and device of fiber reinforced ceramics, with which dense and large-diametral compact can be molded and consequently the reliability to its quality can be improved without developing troubles such as the mixing in of foreign matter, exfoliation, crack and the like during production. CONSTITUTION:When ceramics compact 10 is produced by extruding mixture 9, which is prepared by mixing ceramics powder 7 and inorganic fibers 8 and, after that, filled in a cylinder 2, under pressure through the extrusion nozzle 4 of the cylinder 2, an intermediate nozzle 5, in which a large number of circular nozzle holes 6, is provided on the upstream of the extrusion nozzle 4 in the cylinder 2. By dividing the mixture 9 into small diametral bars 10a at its passing through the intermediate nozzle 5, the inorganic fibers are uniformly orientated. After that, the resultant bars are extruded through the extrusion nozzle 4 into the form of dense and large-diametral compact 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスマトリッ
ク中に無機質繊維を配合してなる繊維強化セラミックス
成形体の製造方法及び装置に関し、詳細には製造中にお
ける異物の混入や剥離,亀裂等の問題を生じることな
く、緻密で、かつ大径状の成形体を形成でき、ひいては
品質に対する信頼性を向上できるようにした製造方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a fiber-reinforced ceramic molded body in which an inorganic fiber is mixed in a ceramic matrix, and more specifically, there is a problem that foreign matter is mixed in, peeled off, or cracked during the production. The present invention relates to a manufacturing method and a device capable of forming a dense and large-diameter molded body without causing a crack, and further improving reliability of quality.

【0002】[0002]

【従来の技術】セラミックス中に無機質繊維を混入して
なる繊維強化セラミックスは、強度,靱性,耐摩耗性等
の機械的性質に優れた特性を有しており、各種の機械部
品,構造用材料として注目されている。この繊維強化セ
ラミックスの製造方法として、従来からセラミックス材
料中に無機質繊維を配合して混練物を形成し、この混練
物を金型,CIP,押出し等により成形する方法があ
る。しかし、これにより得られた成形体は、無機質繊維
がランダムに配列されていることから、焼結時にセラミ
ックスの収縮が阻害され、その結果焼結体の緻密化を困
難にしている。このようなセラミックスの収縮性を向上
するために、従来、HIPやホットプレス等により成形
体を高温,高圧下で焼結して緻密体を得る方法がある。
また、特開昭62-270470 号公報, 特開平2-263768 号公
報には、無機質繊維を一方向に配列することによって焼
結性を改善し、これにより緻密化を図るようにした方
法,装置が提案されている。
2. Description of the Related Art Fiber-reinforced ceramics prepared by mixing inorganic fibers into ceramics have excellent mechanical properties such as strength, toughness, and wear resistance, and are suitable for various mechanical parts and structural materials. Is being watched as. As a method for producing this fiber-reinforced ceramics, there has been conventionally a method in which an inorganic fiber is mixed into a ceramic material to form a kneaded product, and the kneaded product is molded by a die, CIP, extrusion or the like. However, since the inorganic fibers are randomly arranged in the molded body thus obtained, the shrinkage of the ceramics is hindered during sintering, and as a result, it is difficult to densify the sintered body. In order to improve the shrinkability of such ceramics, conventionally, there is a method of obtaining a dense body by sintering a molded body under high temperature and high pressure by HIP, hot pressing, or the like.
Further, in JP-A-62-270470 and JP-A-2-263768, a method and apparatus for improving sinterability by arranging inorganic fibers in one direction so as to achieve densification Is proposed.

【0003】これは、図5に示すように、セラミックス
材料11と無機質繊維12との混練物13をシリンダ1
4内に充填し、この混練物13を加圧パンチ15で加圧
しつつシリンダ14の押出しノズル16から押し出すよ
うに構成されている。
As shown in FIG. 5, a cylinder 1 is made by mixing a kneaded material 13 of a ceramic material 11 and an inorganic fiber 12.
4, and the kneaded material 13 is extruded from the extruding nozzle 16 of the cylinder 14 while pressurizing the kneaded material 13 with the pressure punch 15.

【0004】上記押し出しの際に、ランダムに配列して
いた各繊維12は徐々に押出し方向に配向し、これによ
り無機質繊維12が一方向に配列した細径状の中間成形
体17が得られる。この中間成形体17を積層したり,
束ねたりした後、金型,CIP等で加圧成形し、これに
より所定の大きさ,形状の一体成形体を形成し、この後
HIPやホットプレス等で高温,高圧焼結するようにし
ている。
During the extrusion, the randomly arranged fibers 12 are gradually oriented in the extruding direction, whereby a small-diameter intermediate molded body 17 in which the inorganic fibers 12 are arranged in one direction is obtained. Stacking this intermediate molded body 17,
After bundling, pressure molding is performed with a mold, CIP, etc., thereby forming an integrally molded body of a predetermined size and shape, and thereafter, high temperature and high pressure sintering is performed with HIP, hot pressing, etc. .

【0005】[0005]

【発明が解決しようとする課題】ところで、上記各公報
による製造方法,装置では、無機質繊維を強制的に押出
し方向に配向させるためにノズル径を細径に設定してい
る。従って、得られる中間成形体は細径状であり、大径
状の成形体を得るには上記中間成形体をシリンダの外に
おいて積層したり、あるいは束ねたりする必要がある。
このような従来方法では、ハンドリング回数が増えるこ
とから各工程中に異物が混入し易く、しかも積層したり
束ねたりすると成形体に剥離や亀裂等が生じ易くなるこ
とから、機械的性質に支障をきたす場合があり、品質に
対する信頼性が低いという問題点がある。
By the way, in the manufacturing method and apparatus according to the above publications, the nozzle diameter is set to a small diameter in order to forcibly orient the inorganic fibers in the extrusion direction. Therefore, the obtained intermediate compact has a small diameter, and in order to obtain a large-diameter compact, it is necessary to stack or bundle the intermediate compact outside the cylinder.
In such a conventional method, since the number of times of handling is increased, foreign substances are easily mixed in each step, and further, when laminated or bundled, peeling or cracking is likely to occur in the molded body, which causes an obstacle to mechanical properties. However, there is a problem in that the reliability of quality is low.

【0006】本発明の目的は、成形体の緻密化を図りな
がら、製造時における異物の混入や剥離等の問題を解消
でき、品質に対する信頼性を向上できる繊維強化セラミ
ックスの製造方法及び装置を提供することにある。
An object of the present invention is to provide a method and an apparatus for producing fiber reinforced ceramics, which can solve the problems such as mixing of foreign matter and peeling during manufacturing while improving the densification of the molded body and improving the reliability of quality. To do.

【0007】[0007]

【課題を解決するための手段】請求項1の発明は、セラ
ミックス粉末に無機質繊維を配合してなる混練物をシリ
ンダ内に充填し、該混練物を加圧しつつシリンダの押出
しノズルから押し出してセラミックス成形体を形成する
ようにした繊維強化セラミックスの製造方法において、
上記混練物を複数の細径棒体に分離することにより、該
棒体中の無機質繊維を該棒体の軸方向に配列させ、しか
る後、上記各棒体を1つの横断面円形の成形体に集合さ
せつつ上記押出しノズルから押し出すようにしたことを
特徴としている。
According to a first aspect of the present invention, a kneaded material prepared by mixing ceramic powder with inorganic fibers is filled in a cylinder, and the kneaded material is extruded from an extrusion nozzle of the cylinder while pressurizing the kneaded material. In the method for producing a fiber-reinforced ceramics to form a molded body,
By separating the kneaded product into a plurality of small-diameter rods, the inorganic fibers in the rods are arranged in the axial direction of the rods, and then the rods are formed into one molded body having a circular cross section. It is characterized in that it is adapted to be extruded from the extrusion nozzle while being assembled.

【0008】また、上記請求項2の発明は、上記製造方
法を実施する装置であって、上記シリンダ内の押出しノ
ズルの上流側に、複数の細径円形状のノズル孔が形成さ
れた中間ノズルを配設し、上記押出しノズルを上記シリ
ンダより小径の円形状としたことを特徴としている。
The invention according to claim 2 is an apparatus for carrying out the above manufacturing method, wherein the intermediate nozzle has a plurality of small-diameter circular nozzle holes formed upstream of the extrusion nozzle in the cylinder. And the extrusion nozzle has a circular shape with a diameter smaller than that of the cylinder.

【0009】ここで、上記中間ノズルの各ノズル孔は、
押出しノズルに向かって細径となるテーパ状に形成する
のが望ましい。このように構成することにより無機質繊
維の配列性指数(縦断面220/横断面220)を向上
できる。
Here, each nozzle hole of the intermediate nozzle is
It is desirable to form a taper shape with a smaller diameter toward the extrusion nozzle. With this structure, the alignment index of the inorganic fibers (longitudinal section 220 / lateral section 220) can be improved.

【0010】また、上記セラミックス粉末には、Al2
3 ,ZrO2 ,Si3 4 ,SiC等の酸化物,窒化
物,炭化物が採用できる。また、上記無機質繊維には、
短繊維状の酸化物,窒化物,炭化物が採用でき、これの
配合量は10〜20wt%の範囲が望ましい。
The above ceramic powder contains Al 2
O 3, ZrO 2, Si 3 N 4, oxides such as SiC, nitrides, carbides can be employed. Further, the inorganic fiber,
Short fiber oxides, nitrides, and carbides can be used, and the blending amount of these is preferably in the range of 10 to 20 wt%.

【0011】[0011]

【作用】本発明に係る繊維強化セラミックスの製造方
法,装置によれば、押出しノズルの上部に複数のノズル
孔を有する中間ノズルを設けたので、上記混練物が中間
ノズルを通過して複数の細径棒体に分離する際に、ラン
ダムに配列していた無機質繊維が押出し方向に配向し、
この繊維が一方向に、かつ均一に配列した細径棒体がシ
リンダ内で1本の太径成形体に集合されつつ押出しノズ
ルから押し出される。よって、緻密で、かつ太径状の成
形体を製造できる。その結果、従来公報のような中間成
形体を押し出した後、シリンダの外において積層したり
束ねたりする工程を不要にできることから、異物の混入
や剥離,亀裂の問題を解消でき、ひいては機械的性質の
劣化を回避して品質に対する信頼性を向上できる。
According to the method and apparatus for producing a fiber-reinforced ceramics of the present invention, since the intermediate nozzle having a plurality of nozzle holes is provided above the extrusion nozzle, the kneaded product passes through the intermediate nozzle and a plurality of fine particles are passed. When separating into the diameter rod body, the randomly arranged inorganic fibers are oriented in the extrusion direction,
The small-diameter rod bodies in which the fibers are uniformly arranged in one direction are extruded from the extrusion nozzle while being collected into one large-diameter formed body in the cylinder. Therefore, a dense and large-diameter molded body can be manufactured. As a result, it is possible to eliminate the step of stacking or bundling outside the cylinder after extruding the intermediate molded body as in the prior art publication, so that it is possible to solve the problem of foreign matter mixing, peeling and cracking, and eventually the mechanical properties. It is possible to improve the reliability of the quality by avoiding the deterioration.

【0012】[0012]

【実施例】以下、本発明の実施例を図について説明す
る。図1ないし図3は、請求項1,2の発明の一実施例
による繊維強化セラミックスの製造方法及び装置を説明
するための図である。図において、1は本実施例方法を
実施する押出し装置である。この装置1は、シリンダ2
内に加圧パンチ3を進退自在に挿入するとともに、シリ
ンダ2の先端部に押出しノズル4を接続形成して構成さ
れている。この押出しノズル4の内径は上記シリンダ2
の内径より小径に形成されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are views for explaining a method and an apparatus for producing fiber reinforced ceramics according to an embodiment of the inventions of claims 1 and 2. In the figure, reference numeral 1 is an extrusion apparatus for carrying out the method of this embodiment. This device 1 has a cylinder 2
A pressure punch 3 is inserted in the cylinder so as to be able to move forward and backward, and an extrusion nozzle 4 is connected and formed at the tip of the cylinder 2. The inner diameter of the extrusion nozzle 4 is the same as that of the cylinder 2
Is formed to have a smaller diameter than the inner diameter of.

【0013】上記シリンダ2内の押出しノズル4の上流
側には本実施例の特徴をなす中間ノズル5が配設されて
いる。この中間ノズル5は円板状のもので、多数の円形
状のノズル孔6が形成されている。この各ノズル孔6の
下面の押出しノズル側内径dは上面のシリンダ側内径D
より小さく設定されており、これにより各ノズル孔6は
押出しノズル4に向かってテーパ状に形成されている。
An intermediate nozzle 5, which characterizes the present embodiment, is arranged upstream of the extrusion nozzle 4 in the cylinder 2. The intermediate nozzle 5 has a disc shape, and a large number of circular nozzle holes 6 are formed. The inner diameter d on the push nozzle side of the lower surface of each nozzle hole 6 is the inner diameter D on the cylinder side of the upper surface.
It is set to be smaller, and thereby each nozzle hole 6 is formed in a taper shape toward the extrusion nozzle 4.

【0014】次に、上記押出し装置1による繊維強化セ
ラミックスの一製造方法を説明する。まず、アルミナ粉
末7に、短繊維状のSiCウィスカ8を10〜20wt%の範
囲で配合し、これに結合剤,可塑剤を添加して所定硬さ
の混練物9を形成する。この混練物9を真空,又は減圧
容器内で再混練して十分脱気処理する。これによりマト
リックスとなるアルミナ粉末7中にSiCウィスカ8が
ランダムに配列された混練物9を形成する。
Next, a method of manufacturing the fiber-reinforced ceramics by the above-mentioned extrusion device 1 will be described. First, a short fiber SiC whisker 8 is mixed with alumina powder 7 in the range of 10 to 20 wt%, and a binder and a plasticizer are added thereto to form a kneaded material 9 having a predetermined hardness. The kneaded material 9 is re-kneaded in a vacuum or reduced pressure vessel to be sufficiently deaerated. As a result, a kneaded material 9 in which SiC whiskers 8 are randomly arranged in the alumina powder 7 serving as a matrix is formed.

【0015】次に、上記混練物9をシリンダ2内に充填
し、この状態で加圧パンチ3を下降させて混練物9を加
圧する。すると中間ノズル5の各ノズル孔6を通過する
際に、混練物9に強い壁摩擦が付与されることとなり、
これによりSiCウィスカ8が一方向に,かつ均一に配
列された多数の細径棒体10aとなって押し出される。
続いてこの細径棒体10aは押出しノズル4で圧着され
ることにより、緻密で,かつ大径状の1本の成形体10
となって押し出される。
Next, the kneaded material 9 is filled in the cylinder 2, and in this state, the pressure punch 3 is lowered to pressurize the kneaded material 9. Then, when passing through each nozzle hole 6 of the intermediate nozzle 5, a strong wall friction is given to the kneaded material 9,
As a result, the SiC whiskers 8 are extruded into a large number of small-diameter rods 10a uniformly arranged in one direction.
Subsequently, the small-diameter rod body 10a is pressure-bonded by the extrusion nozzle 4 to form one compact and large-diameter molded body 10a.
Is pushed out.

【0016】このようにして得られた成形体10を、不
活性ガス雰囲気中にて500 ℃に加熱して結合剤等を除去
した後、続いて1800℃に1時間昇温加熱して常圧焼結す
る。この焼結時において、上記SiCウィスカ8は同一
方向に配列していることから、アルミナ粉末7の収縮性
を阻害することはない。これにより本実施例の繊維強化
セラミックスが製造される。
The molded body 10 thus obtained is heated to 500 ° C. in an inert gas atmosphere to remove the binder and the like, and subsequently heated to 1800 ° C. for 1 hour to be heated at normal pressure. Sinter. At the time of this sintering, since the SiC whiskers 8 are arranged in the same direction, they do not hinder the shrinkability of the alumina powder 7. As a result, the fiber-reinforced ceramics of this example is manufactured.

【0017】このように本実施例によれば、シリンダ2
と押出しノズル4との間に多数のノズル孔6が形成され
た中間ノズル5を配設したので、上述のメカニズムで説
明したように上記中間ノズル5でSiCウィスカ8を一
方向に配列でき、これにより緻密で、かつ大径の成形体
10を容易に得ることができ、従来公報の中間成形体を
積層する場合のような異物の混入や剥離等の問題を解消
できる。その結果、強度,靱性,耐摩耗性等の機械的性
質に優れた軸用部品,構造用材料を製造でき、品質に対
する信頼性を大幅に向上できる。
As described above, according to this embodiment, the cylinder 2
Since the intermediate nozzle 5 in which a large number of nozzle holes 6 are formed is disposed between the extrusion nozzle 4 and the extrusion nozzle 4, the SiC whiskers 8 can be arranged in one direction by the intermediate nozzle 5 as described in the above mechanism. As a result, a compact and large-diameter molded body 10 can be easily obtained, and problems such as foreign matter mixing and peeling, which occur when the intermediate molded bodies of the prior art publication are stacked, can be solved. As a result, shaft parts and structural materials having excellent mechanical properties such as strength, toughness, and wear resistance can be manufactured, and the reliability of quality can be greatly improved.

【0018】また、本実施例では、中間ノズル5を配設
するだけで緻密で、大径状の成形体10を得ることがで
きることから、常圧焼結を行ってもセラミックスの収縮
性を向上でき、従来のHIPやホットプレス等による高
温,高圧焼結を不要にできる。
Further, in this embodiment, since the compact compact 10 having a large diameter can be obtained only by disposing the intermediate nozzle 5, the shrinkage of the ceramic is improved even if the pressureless sintering is performed. It is possible to eliminate the need for high temperature and high pressure sintering by conventional HIP or hot pressing.

【0019】次に、本実施例による製造方法の効果を確
認するために行った試験について説明する。この試験
は、シリンダ径30φ, 押出しノズル径15φからなる押出
し装置を採用し、この装置に中間ノズルを配設した。こ
の中間ノズルには、26個のノズル孔を有し、各ノズル孔
のシリンダ側内径Dを5φとし、ノズル側内径dをそれ
ぞれ2φ,3φ,4φと変化させものを採用した。この
押出し装置によりSiCウィスカ量10wt%の混練物を、
上述の方法により押出し成形して成形体を製造した。そ
して、この各成形体を縦断面(押出し方向),横断面
(押出し直角方向)したサンプルを作成し、X線回析に
より成形体中のSiCウィスカの111 面と220 面との強
度を測定した。そして上記縦断面, 横断面におけるSi
Cウィスカの111 面の強度を100 とした場合の、各断面
での220 面強度を求めた。また、比較するために、図4
に示すように、中間ノズルを用いない押出し装置により
成形体を製造し、これについても同様の測定を行った。
Next, a test conducted to confirm the effect of the manufacturing method according to this embodiment will be described. In this test, an extrusion device having a cylinder diameter of 30φ and an extrusion nozzle diameter of 15φ was adopted, and an intermediate nozzle was arranged in this device. This intermediate nozzle has 26 nozzle holes, the cylinder side inner diameter D of each nozzle hole is 5φ, and the nozzle side inner diameter d is changed to 2φ, 3φ, 4φ, respectively. A kneaded material having a SiC whisker content of 10 wt% was
A molded body was manufactured by extrusion molding according to the method described above. Then, a sample having a vertical cross section (extrusion direction) and a horizontal cross section (direction perpendicular to extrusion) of each molded body was prepared, and the strengths of 111 and 220 faces of SiC whiskers in the molded body were measured by X-ray diffraction. . And Si in the above-mentioned longitudinal section and transverse section
When the strength of the 111 surface of the C whisker was 100, the 220 surface strength of each cross section was obtained. In addition, for comparison, FIG.
As shown in, a molded body was manufactured by an extrusion device without using an intermediate nozzle, and the same measurement was performed for this.

【0020】[0020]

【表1】 [Table 1]

【0021】表1は、上記測定結果を示す。同表からも
明らかなように、中間ノズルを用いないで成形した比較
試料の場合は、220 面における配列性指数(縦断面22
0/横断面220)は1.07と低い。これに対して中間ノ
ズルを用いて成形した各実施例試料の配列性指数は9.74
〜19.64 と高く、満足できる結果が得られている。
Table 1 shows the above measurement results. As is clear from the table, in the case of the comparative sample molded without using the intermediate nozzle, the arrayability index (longitudinal section 22
The 0 / cross section 220) is as low as 1.07. On the other hand, the array index of each Example sample molded using the intermediate nozzle is 9.74.
It is as high as ~ 19.64 with satisfactory results.

【0022】次に、上記実施例試料,及び比較試料の各
成形体を上述の方法により焼結し、各焼結体の相対密度
を測定した。その結果、上記比較試料の場合は相対密度
60%であり、セラミックスの収縮が阻害されて緻密化さ
れていない。これに対して、ノズル側内径を4φとした
実施例試料では相対密度が95%、内径を3φ,2φとし
た各実施例試料では100 %であった。ここで、内径2φ
の実施例試料の場合、一部に縦割れの発生したのもがあ
った。この原因は中間ノズルのノズル側内径の総面積と
押出しノズルの面積との差によるものであり、上記押出
しノズルの内径を11φに変更したところ割れのない焼結
体が得られた。
Next, the compacts of the above-mentioned example sample and comparative sample were sintered by the above-mentioned method, and the relative density of each sintered compact was measured. As a result, in the case of the above comparison sample, the relative density
It is 60%, which is not densified because the shrinkage of ceramics is obstructed. On the other hand, the relative density was 95% in the example samples having the nozzle-side inner diameter of 4φ, and 100% in the respective example samples having the inner diameters of 3φ and 2φ. Here, inner diameter 2φ
In the case of the sample of Example 1, there was some vertical cracking. This is due to the difference between the total area of the inner diameter of the nozzle of the intermediate nozzle and the area of the extrusion nozzle. When the inner diameter of the extrusion nozzle was changed to 11φ, a crack-free sintered body was obtained.

【0023】さらに、本実施例方法により、3×4×40
(mm) の3点曲げ試験片を作成し、この試験片の常温で
の曲げ試験を行った結果、マトリックスアルミナ材料の
1.5〜2.0 倍の曲げ強度が得られた。さらにまた、マイ
クロビッカース(荷重50Kg/mm2) による破壊靱性値を測
定したところ、異方性は認められるものの、5.5 〜7.0M
Pam1/2が得られた。
Further, according to the method of this embodiment, 3 × 4 × 40
(Mm) 3-point bending test piece was prepared, and the bending test of this test piece was performed at room temperature.
A bending strength of 1.5 to 2.0 times was obtained. Furthermore, the fracture toughness value measured by Micro Vickers (load 50 Kg / mm 2 ) was 5.5 to 7.0 M, although anisotropy was observed.
Pam 1/2 was obtained.

【0024】[0024]

【発明の効果】以上のように本発明に係る繊維強化セラ
ミックスの製造方法,装置によれば、押出しノズルの上
流側に複数の円形状のノズル孔を有する中間ノズルを設
け、混練物が中間ノズルを通過する際に無機質繊維を一
方向に均一に配列させ、しかる後、1本の成形体に集合
させて押し出すようにしたので、緻密で、かつ大径状の
セラミックス成形体を得ることができ、製造中における
異物の混入や剥離,亀裂の問題を解消でき、品質に対す
る信頼性を向上できる効果がある。
As described above, according to the method and apparatus for producing fiber-reinforced ceramics of the present invention, an intermediate nozzle having a plurality of circular nozzle holes is provided on the upstream side of the extrusion nozzle, and the kneaded material is an intermediate nozzle. Since the inorganic fibers are uniformly arrayed in one direction when passing through and then extruded by gathering into one compact, it is possible to obtain a dense and large-diameter ceramic compact. In addition, it is possible to solve the problem of foreign matter mixing, peeling and cracking during manufacturing, and to improve the reliability of quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による繊維強化セラミックス
の製造方法,装置を説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a method and an apparatus for manufacturing fiber reinforced ceramics according to an embodiment of the present invention.

【図2】上記実施例の中間ノズルを示す平面図である。FIG. 2 is a plan view showing an intermediate nozzle of the above embodiment.

【図3】上記実施例の中間ノズルを示す断面図である。FIG. 3 is a cross-sectional view showing an intermediate nozzle of the above embodiment.

【図4】上記実施例の効果を確認するために作成した比
較試料を示す図である。
FIG. 4 is a diagram showing a comparative sample prepared for confirming the effects of the above-described example.

【図5】従来の押出し成形による製造方法を示す図であ
る。
FIG. 5 is a diagram showing a conventional manufacturing method by extrusion molding.

【符号の説明】[Explanation of symbols]

2 シリンダ 4 押出しノズル 5 中間ノズル 6 ノズル孔 7 アルミナ粉末(セラミックス粉末) 8 SiCウィスカ(無機質繊維) 9 混練物 10 太径成形体 10a 細径棒体 2 Cylinder 4 Extrusion Nozzle 5 Intermediate Nozzle 6 Nozzle Hole 7 Alumina Powder (Ceramics Powder) 8 SiC Whiskers (Inorganic Fiber) 9 Kneaded Material 10 Large Diameter Molded Body 10a Small Diameter Rod

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス粉末に無機質繊維を配合し
てなる混練物をシリンダ内に充填し、該混練物を加圧し
つつシリンダの押出しノズルから押し出してセラミック
ス成形体を形成するようにした繊維強化セラミックスの
製造方法において、上記混練物を複数の細径棒体に分離
することにより、該棒体中の無機質繊維を該棒体の軸方
向に配列させ、しかる後、上記各棒体を1つの横断面円
形の成形体に集合させつつ上記押出しノズルから押し出
すようにしたことを特徴とする繊維強化セラミックスの
製造方法。
1. A fiber-reinforced ceramics which is prepared by filling a cylinder with a kneaded material obtained by mixing ceramic powder with inorganic fibers, and extruding the kneaded material from an extrusion nozzle of the cylinder while pressurizing the kneaded material to form a ceramic molded body. In the method for manufacturing the same, by separating the kneaded product into a plurality of small diameter rods, the inorganic fibers in the rods are arranged in the axial direction of the rods, and then the rods are crossed one by one. A method for producing a fiber-reinforced ceramics, characterized in that the fiber-reinforced ceramics is extruded from the extrusion nozzle while being aggregated into a round-shaped molded body.
【請求項2】 セラミックス粉末に無機質繊維を配合し
てなる混練物をシリンダ内に充填し、該混練物を加圧し
つつシリンダの押出しノズルから押し出してセラミック
ス成形体を形成するようにした繊維強化セラミックスの
製造装置において、上記シリンダ内の押出しノズルの上
流側に、複数の細径円形状のノズル孔が形成された中間
ノズルを配設し、上記押出しノズルを上記シリンダ径よ
り小径の円形状としたことを特徴とする繊維強化セラミ
ックスの製造装置。
2. A fiber-reinforced ceramics which is prepared by filling a kneaded material obtained by blending ceramic powder with inorganic fibers into a cylinder and extruding the kneaded material from an extrusion nozzle of the cylinder while pressurizing the kneaded material to form a ceramic molded body. In the manufacturing apparatus of, the intermediate nozzle in which a plurality of small-diameter circular nozzle holes are formed is disposed on the upstream side of the extrusion nozzle in the cylinder, and the extrusion nozzle has a circular shape having a diameter smaller than the cylinder diameter. An apparatus for producing fiber-reinforced ceramics, which is characterized in that
JP4206613A 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment Withdrawn JPH0655519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206613A JPH0655519A (en) 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206613A JPH0655519A (en) 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH0655519A true JPH0655519A (en) 1994-03-01

Family

ID=16526280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206613A Withdrawn JPH0655519A (en) 1992-08-03 1992-08-03 Manufacture of fiber reinforced ceramics and manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0655519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269590A (en) * 2009-04-20 2010-12-02 Sumitomo Chemical Co Ltd Method of manufacturing extrusion molding, and extrusion molding device
US8960080B2 (en) 2008-11-06 2015-02-24 Ss&W Japan Foaming nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8960080B2 (en) 2008-11-06 2015-02-24 Ss&W Japan Foaming nozzle
JP2010269590A (en) * 2009-04-20 2010-12-02 Sumitomo Chemical Co Ltd Method of manufacturing extrusion molding, and extrusion molding device

Similar Documents

Publication Publication Date Title
US5645781A (en) Process for preparing textured ceramic composites
US6797220B2 (en) Methods for preparation of three-dimensional bodies
US6803003B2 (en) Compositions and methods for preparing multiple-component composite materials
US6899777B2 (en) Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
EP2639211A1 (en) Sic ceramic material and sic ceramic structure, and production method for same
US20020140139A1 (en) Consolidation and densification methods for fibrous monolith processing
US7452837B2 (en) Fibrous ceramic monoliths made from multi-phase ceramic filaments
US6355338B1 (en) Continuous composite coextrusion methods, apparatuses, and compositions
JPH0655519A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
EP3476820A1 (en) Ceramic composite and production method for ceramic composite
JP2726673B2 (en) Method for manufacturing molded articles of ceramic material
JPH0655517A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JPH0655514A (en) Manufacture of fiber reinforced ceramics
Lee et al. Toughened Oxide Composites Based on Porous Alumina‐Platelet Interphases
JPH0655518A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JPH06340475A (en) Fiber reinforced ceramic composite material and its production
JPH0655515A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
KR100631157B1 (en) Ceramic body having 2-dimensional or 3-dimensional fibrous array
Vaidyanathan et al. Extrusion freeform fabrication of functional ceramic prototypes
JPH0655516A (en) Manufacture of fiber reinforced ceramics and manufacturing equipment
JPH0613432B2 (en) Fiber reinforced Si ▼ Lower 3 ▲ N ▼ Lower 4 ▲ Sintered body and its manufacturing method
JP2757011B2 (en) Method for producing extruded aluminum nitride article
JPH06305821A (en) Production of ceramic powder injection molded member
Besshi et al. The extrusion of fiber dispersion ceramic green bodies and their dewax behavior
Polzin Fabrication and characterization of a porous-matrix oxide fibrous monoliths.

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005