JPH0655067A - Methane adsorbent - Google Patents

Methane adsorbent

Info

Publication number
JPH0655067A
JPH0655067A JP4227946A JP22794692A JPH0655067A JP H0655067 A JPH0655067 A JP H0655067A JP 4227946 A JP4227946 A JP 4227946A JP 22794692 A JP22794692 A JP 22794692A JP H0655067 A JPH0655067 A JP H0655067A
Authority
JP
Japan
Prior art keywords
activated carbon
metal
methane
group
acf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4227946A
Other languages
Japanese (ja)
Other versions
JP3215173B2 (en
Inventor
Takanori Kakazu
隆敬 嘉数
Katsumi Kaneko
克美 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP22794692A priority Critical patent/JP3215173B2/en
Publication of JPH0655067A publication Critical patent/JPH0655067A/en
Application granted granted Critical
Publication of JP3215173B2 publication Critical patent/JP3215173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To enhance adsorbing and storing ability to natural gas even under low pressure by an adsorbent. CONSTITUTION:A simple substance or a compd. of a metal capable of chemically adsorbing methane is deposited on activated carbon having about 750m<2>/g BET specific surface area by about 0.1-30wt.% of the amt. of the activated carbon. The metal is a group IIA metal of the periodic table such as Mg, Ca or Ba, a group VIA metal such as Cr, a group VIIA metal such as Mn, a group VIII metal such as Fe, Co or Ni, a group IB metal such as Cu, a group IIB metal such as Zn or Cd or a group IIIB metal such as Al and oxide or hydroxide thereof may be used as the compd. When the resulting adsorbent, is used, a large amt. of natural gas is efficiently adsorbed even under low pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタンやメタンを主成
分とする天然ガスを吸蔵する吸着剤、より詳細には、例
えば天然ガス自動車や天然ガスタンク等において、貯蔵
容器内に充填し、天然ガスを加圧下で貯蔵するのに有用
なメタン吸着剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent for storing methane or natural gas containing methane as a main component, more specifically, for example, in a natural gas vehicle or a natural gas tank, the storage container is filled with It relates to a methane adsorbent useful for storing gas under pressure.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】天然
ガスは、石油の約2倍の埋蔵量が見込まれており、発熱
量に対する二酸化炭素の発生量も少ないうえ、含有され
る少量の硫黄分も簡単に除去できるため、クリーンなエ
ネルギー源として注目されている。そこで、近年、加熱
や発電用のエネルギー源などの従来の用途以外に、自動
車用の燃料として使用することが検討されている。
2. Description of the Related Art Natural gas is expected to have a reserve of about twice as much as petroleum, and the amount of carbon dioxide generated relative to the calorific value is small. Since it can be easily removed, it is attracting attention as a clean energy source. Therefore, in recent years, use as fuel for automobiles has been studied in addition to conventional applications such as heating and energy sources for power generation.

【0003】天然ガスを高密度で貯蔵する方法として、
一般に、天然ガスの主成分メタンの臨界温度である−8
3℃以下に冷却、圧縮して液化天然ガスとして貯蔵する
方法、及び、常温、高圧下で圧縮天然ガスとして貯蔵す
る方法が知られている。
As a method for storing natural gas at a high density,
Generally, the critical temperature of methane, the main component of natural gas, is -8
A method of cooling to 3 ° C. or lower and compressing and storing as liquefied natural gas, and a method of storing as compressed natural gas at room temperature and high pressure are known.

【0004】しかし、液化天然ガスとして貯蔵する方法
は、大規模な冷却、圧縮の設備が必要なため、設備費が
高価なものとなる。また、自動車のような移動型の貯蔵
が必要な分野では、使用が困難である。一方、圧縮天然
ガスとして貯蔵する方法は、液化天然ガスに比べると、
エネルギー密度が低く、200kgf/cm2 程度の圧
力のボンベ詰めの圧縮天然ガスであっても、そのエネル
ギーは、同体積のガソリンの約1/3にしか相当しな
い。しかも、高圧ボンベを用いるので、大型で重量の大
きな耐圧容器や調圧弁が必要となる。
However, the method of storing as liquefied natural gas requires a large-scale cooling and compression facility, which makes the facility cost expensive. In addition, it is difficult to use in a field requiring mobile storage such as an automobile. On the other hand, the method of storing as compressed natural gas, compared to liquefied natural gas,
Even with compressed natural gas having a low energy density and a pressure of about 200 kgf / cm 2 , the energy of the compressed natural gas is only about 1/3 of that of gasoline of the same volume. Moreover, since a high-pressure cylinder is used, a large-sized and heavy pressure container and pressure regulating valve are required.

【0005】上記のような大型の設備を必要とせず、し
かも比較的低圧で天然ガスを貯蔵する方法として、ボン
ベ等の耐圧容器に天然ガス吸着剤を充填し、天然ガスを
加圧下に吸着させることにより貯蔵する方法が提案され
ている。例えば、特開昭49−104213号公報に
は、不純物を取り除いた純粋化されたガスを、吸着剤を
配設した圧力タンクに貯蔵する方法が開示されている。
この方法によれば、吸着剤のポア内では、気相バルクに
比べて分子間距離が小さくなるため、比較的低圧でも高
圧圧縮ガスと同量のガスを貯蔵することが可能となる。
その結果、耐圧容器や調圧弁を軽量化できる。
As a method of storing natural gas at a relatively low pressure without requiring the large equipment as described above, a pressure-resistant container such as a cylinder is filled with a natural gas adsorbent to adsorb the natural gas under pressure. Therefore, a method of storing is proposed. For example, JP-A-49-104213 discloses a method of storing purified gas from which impurities have been removed in a pressure tank provided with an adsorbent.
According to this method, the intermolecular distance in the pores of the adsorbent is smaller than that in the gas phase bulk, so that it is possible to store the same amount of gas as the high pressure compressed gas even at a relatively low pressure.
As a result, it is possible to reduce the weight of the pressure resistant container and the pressure regulating valve.

【0006】ボンベ等に充填する吸着剤については、活
性アルミナ、シリカ、ゼオライト及び活性炭について評
価がなされ、活性炭が最も優れた吸蔵能力を有すること
が報告されている[A. Golovoy, Compress. Nat. Gas,
36(1983)]。また、天然ガスやメタンを吸着する吸着剤
については、カーボンモレキュラシーブを用いた吸着剤
[特開昭59−157036号公報]、カーボンモレキ
ュラーシーブや特殊ゼオライトを用いた吸着剤[特開昭
62−109890号公報]が知られている。さらに、
特開昭63−501009号公報には、炭素質原料を不
活性雰囲気下、特定のアルカリ熱液体混合物により賦活
して得られる高表面積活性炭を、メタン等の炭化水素の
吸着剤として使用することが開示されている。さらにま
た、各種活性炭のメタン吸着量の測定結果から、高比表
面積活性炭(アモコ社製GX−32)が高い吸着量を示
すことが報告されている[Barton, “Fundamentals ofA
dsorption”, 65 (1984) ]。
[0006] Regarding the adsorbent to be filled in a cylinder or the like, activated alumina, silica, zeolite and activated carbon have been evaluated, and it has been reported that activated carbon has the best storage capacity [A. Golovoy, Compress. Nat. Gas,
36 (1983)]. As for the adsorbent for adsorbing natural gas and methane, an adsorbent using carbon molecular sieve [JP-A-59-157036] and an adsorbent using carbon molecular sieve or special zeolite [JP-A-62-109890]. Issue gazette] is known. further,
In Japanese Patent Laid-Open No. 63-501009, high surface area activated carbon obtained by activating a carbonaceous raw material with a specific alkali hot liquid mixture in an inert atmosphere is used as an adsorbent for hydrocarbons such as methane. It is disclosed. Furthermore, from the measurement results of the methane adsorption amount of various activated carbons, it has been reported that the high specific surface area activated carbon (GX-32 manufactured by Amoco) exhibits a high adsorption amount [Barton, "Fundamentals of A.
dsorption ", 65 (1984)].

【0007】一方、活性炭によるメタンの理論的な物理
的吸着量の限界を、分子シミュレーションによって求め
る研究成果が知られている。例えば、マイヤー(Mye
rs)らは、活性炭のスリットポアの幅がメタン2分子
程度(約11.6オングストローム)で、ポア壁が炭素
面1枚で構成されるような仮想した活性炭の吸着量を計
算した結果、その吸着量は、実在する高比表面積活性炭
(アモコ社製AX−21)の吸着量の120%程度であ
ることを報告している(Chem. Eng. Sci., 47,1569 (199
2) )。
[0007] On the other hand, research results are known for obtaining the theoretical limit of the physical adsorption amount of methane by activated carbon by molecular simulation. For example, Mye
rs) et al. calculated the adsorption amount of a hypothetical activated carbon such that the width of the slit pore of activated carbon is about 2 molecules of methane (about 11.6 angstrom) and the pore wall is composed of one carbon surface. It is reported that the amount is about 120% of the adsorption amount of the existing high specific surface area activated carbon (AX-21 manufactured by Amoco) (Chem. Eng. Sci., 47 , 1569 (199).
2)).

【0008】しかし、上記に示された吸着量であって
も、そのエネルギー密度は、液化天然ガスやガソリンの
エネルギー密度と比較すると大きく下回っている。従っ
て、これらの活性炭を充填したボンベを搭載した天然ガ
ス自動車の一回のガス充填で走行できる航続距離は短
く、上記のような活性炭を充填した天然ガス貯蔵装置は
実用化できるものではなかった。
However, even with the adsorption amount shown above, the energy density is much lower than the energy density of liquefied natural gas or gasoline. Therefore, the cruising distance that can be traveled by a single gas filling of a natural gas vehicle equipped with a cylinder filled with these activated carbons is short, and the above-mentioned natural gas storage device filled with activated carbons cannot be put to practical use.

【0009】従って、本発明の目的は、低圧下であって
も多量の天然ガスを効率よく吸着貯蔵でき、装置をコン
パクト化できるメタン吸着剤を提供することにある。
Therefore, it is an object of the present invention to provide a methane adsorbent which can efficiently adsorb and store a large amount of natural gas even under a low pressure and can make the apparatus compact.

【0010】[0010]

【発明の構成】前記目的を達成するため、本発明者らは
鋭意研究を重ねた結果、メタンを化学吸着し得る金属単
体又は金属化合物を、活性炭に担持すると、低圧下であ
ってもメタンの平衡吸着量が高い値を示し、意外にも理
論的な物理的吸着量を越える量のガスが吸着されること
を見い出し、本発明を完成させた。
In order to achieve the above object, the inventors of the present invention have conducted extensive studies and as a result, when a metal simple substance or a metal compound capable of chemisorbing methane was supported on activated carbon, the methane content was reduced even under a low pressure. The present invention has been completed by finding that the equilibrium adsorption amount shows a high value and surprisingly an amount of gas exceeding the theoretical physical adsorption amount is adsorbed.

【0011】すなわち、本発明は、活性炭に、メタンを
化学吸着し得る金属単体又は金属化合物が担持されてい
るメタン吸着剤を提供する。
That is, the present invention provides a methane adsorbent in which activated carbon is loaded with a simple metal or a metal compound capable of chemically adsorbing methane.

【0012】活性炭は、木炭、ヤシ殻炭、石炭、のこ屑
のほか、石油や石炭系ピッチ;セルロース、ポリアクリ
ロニトリル、フェノール、レーヨンなどの合成樹脂等の
いずれを原料としたものであってもよい。
The activated carbon may be charcoal, coconut shell charcoal, coal or sawdust, as well as petroleum or coal-based pitch; synthetic resins such as cellulose, polyacrylonitrile, phenol and rayon. Good.

【0013】活性炭の形状は、特に限定されず、粉末活
性炭、粒状活性炭、繊維状活性炭のいずれであってもよ
い。
The shape of the activated carbon is not particularly limited and may be any of powdered activated carbon, granular activated carbon and fibrous activated carbon.

【0014】また、前記粉末活性炭などを、例えば樹脂
バインダーなどを用いて、粒状、ペーパー状、その他適
宜の形状に成形して使用することもできる。成形に際し
ては、前記バインダーの他、パルプなどの繊維なども使
用できる。成形法としては、例えば、前記活性炭を含む
スラリーを吸引成形型を用いて吸引し成形する吸引成形
法、活性炭を含む組成物を押出して成形する押出し成形
法などが採用できる。
Further, the powdered activated carbon or the like can be used after being formed into a granular shape, a paper shape, or any other suitable shape using, for example, a resin binder. In molding, fibers such as pulp can be used in addition to the binder. As the molding method, for example, a suction molding method in which a slurry containing the activated carbon is sucked and molded using a suction molding die, an extrusion molding method in which a composition containing the activated carbon is extruded and molded, and the like can be adopted.

【0015】活性炭は、大きな比表面積及び細孔容積を
有している。そのため、メタンの吸着量が著しく多い。
活性炭のメタン吸着量は、活性炭表面近傍のメタン濃度
(分圧)と活性炭の吸着活性点数の関数として表すこと
ができ、高表面積活性炭では吸着活性点数が多いため、
高いメタン吸着量を示す。
Activated carbon has a large specific surface area and pore volume. Therefore, the amount of methane adsorbed is extremely large.
The methane adsorption amount of activated carbon can be expressed as a function of the methane concentration (partial pressure) near the surface of activated carbon and the adsorption activity point of activated carbon. Since high surface area activated carbon has many adsorption activity points,
Shows high methane adsorption.

【0016】活性炭のBET比表面積としては、例えば
500m2 /g以上、好ましくは750m2 /g以上、
さらに好ましくは900〜4600m2 /g、特に15
00〜4600m2 /g程度である。
The BET specific surface area of the activated carbon is, for example, 500 m 2 / g or more, preferably 750 m 2 / g or more,
More preferably 900 to 4600 m 2 / g, especially 15
It is about 00 to 4600 m 2 / g.

【0017】好ましい活性炭として、例えば光学的異方
性の多孔質炭素微小粒状活性炭(以下、微小粒状活性炭
と略す)が挙げられる。
As a preferred activated carbon, for example, optically anisotropic porous carbon fine granular activated carbon (hereinafter abbreviated as fine granular activated carbon) can be mentioned.

【0018】この微小粒状活性炭は、直径2〜80μm
程度の球晶メソカーボンマイクロビーズを、例えばKO
Hなどの賦活剤で賦活処理することによって得られる活
性炭であり、通常、全体の90%以上が粒径80μm以
下の粒子からなる。
The fine granular activated carbon has a diameter of 2 to 80 μm.
To some extent spherulite mesocarbon microbeads, for example
Activated carbon obtained by activation treatment with an activator such as H, and usually 90% or more of the whole is composed of particles having a particle size of 80 μm or less.

【0019】前記微小粒状活性炭は、従来の粉末状活性
炭と比較して、著しく大きな比表面積及び細孔容積を有
している。そのため、金属単体や金属化合物の担持量を
著しく増大させることができ、吸着剤の単位重量当りの
天然ガス吸着量を著しく高めることができる。
The fine granular activated carbon has a remarkably large specific surface area and pore volume as compared with the conventional powdered activated carbon. Therefore, it is possible to remarkably increase the loading amount of the metal simple substance or the metal compound, and to remarkably increase the natural gas adsorption amount per unit weight of the adsorbent.

【0020】前記微小粒状活性炭の比表面積は、例え
ば、500〜4600m2 /g、好ましくは1000〜
4600m2 /g、さらに好ましくは2000〜460
0m2/g程度であり、全細孔容積は、例えば、0.5
〜3.0ml/g、好ましくは0.6〜3ml/g、さ
らに好ましくは0.8〜3.0ml/g程度である。
The specific surface area of the fine granular activated carbon is, for example, 500 to 4600 m 2 / g, preferably 1000 to 4.
4600 m 2 / g, more preferably 2000 to 460
The total pore volume is, for example, 0.5 m 2 / g.
˜3.0 ml / g, preferably 0.6 to 3 ml / g, and more preferably 0.8 to 3.0 ml / g.

【0021】前記微小粒状活性炭は、従来の活性炭に比
べて著しく小さな細孔径を有しており、JIS K 1
474に準拠したベンゼン吸着能は0.2〜1.0g/
g程度、JIS K 1470に準拠したメチレンブル
ー吸着能は100〜650ml/g程度であり、従来の
活性炭に比べて、著しく大きな吸着能を有している。さ
らに、形状が略真球状で、しかも粒径分布がシャープで
あるため、天然ガス貯蔵装置等への充填性に優れてい
る。
The fine granular activated carbon has a pore size remarkably smaller than that of conventional activated carbon, and JIS K 1
The benzene adsorption capacity according to 474 is 0.2 to 1.0 g /
g, the methylene blue adsorption capacity according to JIS K 1470 is about 100 to 650 ml / g, which is a remarkably large adsorption capacity as compared with conventional activated carbon. Further, since it has a substantially spherical shape and a sharp particle size distribution, it is excellent in filling into a natural gas storage device or the like.

【0022】好ましい活性炭の他の例として、活性炭素
繊維も挙げられる。前記活性炭素繊維は、ポリアクリロ
ニトリル、フェノール樹脂、レーヨン、セルロース、ピ
ッチなどの炭素繊維を賦活処理することにより得られ
る。活性炭素繊維の比表面積は、例えば、500〜25
00m2 /g程度であり、マクロポアが存在せず、その
特異なミクロポアの構造に起因して、吸着速度及び吸着
能が大きいという特徴を有する。
Another example of the preferred activated carbon is activated carbon fiber. The activated carbon fibers can be obtained by activating carbon fibers such as polyacrylonitrile, phenol resin, rayon, cellulose and pitch. The specific surface area of the activated carbon fiber is, for example, 500 to 25.
00m is about 2 / g, there is no macropores, due to the structure of its unique micropores, having a characteristic that a large adsorption rate and adsorption capacity.

【0023】活性炭素繊維としては、例えば、繊維径2
〜50μm程度、細孔径5〜25オングストローム程度
のものが使用できる。
As the activated carbon fiber, for example, the fiber diameter is 2
˜50 μm, and pore size of 5˜25 Å can be used.

【0024】本発明の主たる特徴は、メタンを吸着し得
る金属単体又は金属化合物が活性炭に担持されている点
にある。このような構成により、意外にも、活性炭によ
るメタンの理論的な物理的吸着量を越える量のガスが吸
着される。特に、低圧下では、無担持活性炭に比べて著
しく高いガス吸着量を示す。
The main feature of the present invention is that a metal element or a metal compound capable of adsorbing methane is supported on activated carbon. With such a structure, surprisingly, an amount of gas that exceeds the theoretical physical adsorption amount of methane by activated carbon is adsorbed. In particular, at low pressure, it exhibits a significantly higher gas adsorption amount than unsupported activated carbon.

【0025】従来、メタンを化学吸着する物質としてマ
グネシアやアルミナなどの金属酸化物が知られており
[Chem. Lett., 37(1976) ]、アルケンの水素化反応や
メタン分子間での水素交換反応の触媒として使用されて
いる。しかし、金属単体や金属化合物を活性炭に担持す
ることにより、多量のメタンを吸着する吸着剤は知られ
ていない。
Heretofore, metal oxides such as magnesia and alumina have been known as substances that chemically adsorb methane [Chem. Lett., 37 (1976)], and hydrogenation reaction of alkenes and hydrogen exchange between methane molecules. It is used as a catalyst for the reaction. However, there is no known adsorbent that adsorbs a large amount of methane by supporting a simple metal or a metal compound on activated carbon.

【0026】前記金属単体又は金属化合物は、メタンを
化学吸着し得るものであれば特に限定されない。このよ
うな金属には、マグネシウム、カルシウム、ストロンチ
ウム、バリウムなどの周期表2A族の金属;クロム、モ
リブデンなどの6A族の金属;マンガン、レニウムなど
の7A族の金属;鉄、コバルト、ニッケル、ルテニウ
ム、ロジウム、パラジウムなどの8族の金属;銅、銀な
どの1B族の金属;亜鉛、カドミウムなどの2B族の金
属;アルミニウム、ガリウムなどの3B族の金属等が含
まれる。これらの金属のうち、好ましい金属として、マ
グネシウム、カルシウム、バリウム、クロム、マンガ
ン、鉄、コバルト、ニッケル、銅、亜鉛、カドミウム、
アルミニウム等が挙げられる。
The metal element or metal compound is not particularly limited as long as it can chemically adsorb methane. Such metals include magnesium, calcium, strontium, barium and other metals of Group 2A of the periodic table; metals of Group 6A such as chromium and molybdenum; metals of Group 7A such as manganese and rhenium; iron, cobalt, nickel and ruthenium. , Group 8 metals such as rhodium and palladium; Group 1B metals such as copper and silver; Group 2B metals such as zinc and cadmium; Group 3B metals such as aluminum and gallium. Among these metals, preferred metals include magnesium, calcium, barium, chromium, manganese, iron, cobalt, nickel, copper, zinc, cadmium,
Aluminum etc. are mentioned.

【0027】前記金属化合物には、上記金属の酸化物;
水酸化物;塩化物などのハロゲン化物;硫酸塩、硝酸
塩、炭酸塩、リン酸塩、ホウ酸塩などの無機酸の塩;酢
酸塩などの有機酸の塩等が含まれる。これらの金属化合
物のうち、特に金属酸化物、水酸化物等が繁用される。
The metal compound includes oxides of the above metals;
Hydroxides; halides such as chlorides; salts of inorganic acids such as sulfates, nitrates, carbonates, phosphates and borates; salts of organic acids such as acetates and the like. Of these metal compounds, metal oxides, hydroxides and the like are often used.

【0028】前記金属化合物として、例えば、酸化マグ
ネシウム、酸化カルシウム、酸化バリウム、酸化第二ク
ロム、二酸化マンガン、酸化第一鉄、酸化第二鉄、酸化
コバルト、酸化ニッケル、酸化第一銅、酸化第二銅、酸
化亜鉛、酸化カドミウム、酸化アルミニウム、水酸化マ
グネシウム、水酸化カルシウム、水酸化バリウム、水酸
化第二クロム、水酸化マンガン、水酸化第一鉄、水酸化
第二鉄、水酸化コバルト、水酸化ニッケル、水酸化第一
銅、水酸化第二銅、水酸化亜鉛、水酸化カドミウム、水
酸化アルミニウム、硫酸マグネシウム、硫酸銅、硫酸第
二鉄、硝酸マグネシウム、硝酸ニッケル、塩化マグネシ
ウム、塩化コバルト、炭酸マグネシウム等が挙げられ
る。
Examples of the metal compound include magnesium oxide, calcium oxide, barium oxide, ferric oxide, manganese dioxide, ferrous oxide, ferric oxide, cobalt oxide, nickel oxide, cuprous oxide, and ferric oxide. Dicopper, zinc oxide, cadmium oxide, aluminum oxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, ferric hydroxide, manganese hydroxide, ferrous hydroxide, ferric hydroxide, cobalt hydroxide, Nickel hydroxide, cuprous hydroxide, cupric hydroxide, zinc hydroxide, cadmium hydroxide, aluminum hydroxide, magnesium sulfate, copper sulfate, ferric sulfate, magnesium nitrate, nickel nitrate, magnesium chloride, cobalt chloride , Magnesium carbonate and the like.

【0029】これらの金属化合物のうち、特に、前記好
ましい金属の酸化物、水酸化物等が好適に用いられる。
Of these metal compounds, oxides and hydroxides of the above-mentioned preferred metals are particularly preferably used.

【0030】前記金属単体又は金属化合物は、一種また
は二種以上混合して使用できる。
The metal element or the metal compound may be used alone or in combination of two or more kinds.

【0031】上記金属単体又は金属化合物が活性炭表面
上に担持されると、メタンがこの添着物上に化学吸着さ
れ、見かけ上、気体バルク相の濃度よりも遥かに高濃度
のメタン層が活性炭表面上に出現し、その高濃度メタン
層と活性炭内の細孔にある吸着活性点との間で平衡が成
立する。そのため、無担持の活性炭に比べ、活性炭内に
吸着貯蔵されるメタンや天然ガス量が飛躍的に増大する
ものと思われる。
When the above metal simple substance or metal compound is supported on the surface of activated carbon, methane is chemisorbed on this impregnated substance, and a methane layer having a concentration much higher than that of the bulk gas phase is apparently formed on the activated carbon surface. An equilibrium is established between the high-concentration methane layer that appears above and the adsorption active sites in the pores of the activated carbon. Therefore, it is considered that the amount of methane or natural gas adsorbed and stored in the activated carbon will be dramatically increased as compared with the unsupported activated carbon.

【0032】前記金属単体又は金属化合物の担持量は、
金属の種類や活性炭の性状によって異なるが、活性炭に
対して、例えば0.1〜30重量%、好ましくは1〜5
重量%程度である。担持量が0.1重量%未満である
と、メタンの吸着量が少なく、実用的な天然ガス吸着剤
とはなりにくい。また、30重量%を越えると、活性炭
の細孔の入り口が閉塞され易く、ガスを活性炭の細孔内
に導入、貯蔵することが困難になりやすい。
The amount of the metal element or metal compound supported is
Depending on the type of metal and the properties of activated carbon, it is, for example, 0.1 to 30% by weight, preferably 1 to 5% with respect to the activated carbon.
It is about% by weight. When the supported amount is less than 0.1% by weight, the adsorbed amount of methane is small and it is difficult to be a practical natural gas adsorbent. On the other hand, if it exceeds 30% by weight, the entrance of the pores of the activated carbon is likely to be blocked, and it becomes difficult to introduce and store the gas in the pores of the activated carbon.

【0033】前記金属単体又は金属化合物の担持は、慣
用の方法、例えば前記活性炭に金属化合物の溶液を噴霧
し乾燥させる方法や、活性炭を金属化合物の溶液に浸漬
し乾燥させて添着した後、還元あるいは酸化する方法に
よって行うことができる。
The metal simple substance or the metal compound is supported by a conventional method, for example, a method in which the solution of the metal compound is sprayed on the activated carbon and dried, or the activated carbon is immersed in the solution of the metal compound, dried and attached, and then reduced. Alternatively, it can be carried out by an oxidizing method.

【0034】特に、金属酸化物などの難溶性の化合物を
担持する場合には、対応する金属の水酸化物、塩化物、
硫酸塩、硝酸塩等の水溶性の金属化合物の水溶液に活性
炭を浸漬し、必要に応じて、アルカリを添加して水酸化
物とした後、加熱酸化処理することにより目的の金属化
合物が担持された吸着剤を得ることができる。
In particular, when a sparingly soluble compound such as a metal oxide is carried, the corresponding metal hydroxide, chloride,
The target metal compound was supported by immersing activated carbon in an aqueous solution of a water-soluble metal compound such as sulfate or nitrate, and adding an alkali to form a hydroxide, if necessary, and then subjecting it to heat oxidation treatment. An adsorbent can be obtained.

【0035】こうして得られた金属単体又は金属化合物
が担持された活性炭は、無担持の活性炭の天然ガスやメ
タンの気相バルク濃度(圧力)に対応する吸着量よりも
格段に高い吸着量を示す。例えば、吸着剤の単位重量当
りのガス吸着量は30〜50%程度、単位体積当りのガ
ス吸着量は50〜80%程度増加する。
The activated carbon carrying the elemental metal or the metal compound thus obtained exhibits a much higher adsorption amount than the adsorption amount corresponding to the gas phase bulk concentration (pressure) of natural gas or methane of unsupported activated carbon. . For example, the amount of adsorbed gas per unit weight of the adsorbent increases by about 30 to 50%, and the amount of gas adsorbed per unit volume increases by about 50 to 80%.

【0036】そのため、本発明の吸着剤を天然ガス自動
車に使用すると、天然ガスの吸蔵能力が著しく高いた
め、航続距離が大幅に伸びる。また、特に低圧力下にお
いて、無担持活性炭に比べ吸蔵量が多いため、貯蔵容器
を軽量化、小形化できると共に、ガス洩れが生じにく
い。従って、例えばコージェネレーション用クッション
タンクでは、容器をコンパクト化できる。
Therefore, when the adsorbent of the present invention is used in a natural gas vehicle, the natural gas occlusion capacity is remarkably high, and the cruising range is greatly extended. Further, especially under a low pressure, since the storage amount is larger than that of the unsupported activated carbon, the storage container can be lightened and downsized, and gas leakage hardly occurs. Therefore, for example, in a cogeneration cushion tank, the container can be made compact.

【0037】[0037]

【発明の効果】本発明のメタン吸着剤は、メタンを化学
吸着し得る金属単体等が活性炭に担持されているため、
低圧下であっても多量の天然ガスを効率よく吸着貯蔵す
ることができ、吸着、貯蔵装置をコンパクト化できる。
The methane adsorbent of the present invention has a simple substance of metal capable of chemically adsorbing methane supported on activated carbon.
A large amount of natural gas can be efficiently adsorbed and stored even under a low pressure, and the adsorption and storage device can be made compact.

【0038】[0038]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明する。
EXAMPLES The present invention will be described in more detail based on the following examples.

【0039】実施例1 BET比表面積が1000m2 /gの活性炭素繊維
((株)アドール製、以下ACF−10という)45g
を前処理用のセルに仕込み、10-5torr以下の真空
度の下、110℃で2時間脱気処理を行った。脱気処理
したACF−10を前処理用セル内に保ったまま室温ま
で放冷し、セル内に空気が混入しないようにしながら、
飽和Mg(NO3 2 水溶液を滴下してACF−10を
埋没させ、完全に浸漬した状態で30℃で24時間保持
した。
Example 1 45 g of activated carbon fiber having a BET specific surface area of 1000 m 2 / g (manufactured by Adol Co., Ltd., hereinafter referred to as ACF-10)
Was charged into a cell for pretreatment, and deaeration treatment was performed at 110 ° C. for 2 hours under a vacuum degree of 10 −5 torr or less. While keeping the degassed ACF-10 in the pretreatment cell while allowing it to cool to room temperature, while preventing air from entering the cell,
A saturated Mg (NO 3 ) 2 aqueous solution was added dropwise to bury the ACF-10, and the state of complete immersion was maintained at 30 ° C. for 24 hours.

【0040】次いで、0.2NNaOH水溶液を滴下し
て溶液中のMg2+イオンをMg(OH)2 として沈澱さ
せるとともに、pHを9に調整した。更に30℃で24
時間保持した後、得られた固形物を500mlの蒸留水
で2回洗浄し、真空乾燥器で一晩乾燥させた。
Next, a 0.2N NaOH aqueous solution was added dropwise to precipitate Mg 2+ ions in the solution as Mg (OH) 2 and the pH was adjusted to 9. 24 at 30 ℃
After holding for a period of time, the obtained solid was washed twice with 500 ml of distilled water and dried in a vacuum dryer overnight.

【0041】こうして得られたMg(OH)2 が担持さ
れたACF−10を、電気炉で空気中、400℃で1時
間焼成して、MgOが担持されたACF−10(以下、
Mg−ACFという)50gを得た。MgOの担持量
は、活性炭に対して11重量%であった。
The Mg (OH) 2 -supported ACF-10 thus obtained was calcined in an electric furnace in air at 400 ° C. for 1 hour to obtain MgO-supported ACF-10 (hereinafter referred to as “ACF-10”).
50 g of Mg-ACF) was obtained. The supported amount of MgO was 11% by weight based on the activated carbon.

【0042】上記Mg−ACFのメタンガス吸着能を、
図1に示すメタン吸蔵試験装置を用いて、以下の方法に
より評価した。
The methane gas adsorption capacity of the above Mg-ACF is
The methane occlusion test apparatus shown in FIG. 1 was used for evaluation by the following methods.

【0043】バケット型充填容器の試料室1にMg−A
CFを22g充填し、温度調節器4により温度を300
℃に保ち、真空ポンプ5を用いて、3時間、数torr
の条件で減圧脱気した。次に、試料室を恒温槽6の水に
より20℃に保持し、マスフローメータ2で流量を測定
しながらヘリウムガスを試料室に導入し、圧力計3で圧
力を測定した。ACF−10にはヘリウムは吸着されな
いので、圧力とヘリウムガス導入量から、Mg−ACF
の体積以外の死容積を算出した。
Mg-A was placed in the sample chamber 1 of the bucket type filling container.
22 g of CF is charged and the temperature is adjusted to 300 by the temperature controller 4.
Kept at ℃ for 3 hours using vacuum pump 5 for several torr
Degassing was performed under reduced pressure. Next, the sample chamber was kept at 20 ° C. with water in the constant temperature bath 6, helium gas was introduced into the sample chamber while measuring the flow rate with the mass flow meter 2, and the pressure was measured with the pressure gauge 3. Since helium is not adsorbed on ACF-10, Mg-ACF is determined from the pressure and the amount of introduced helium gas.
The dead volume other than the volume was calculated.

【0044】再度上記条件で脱気した後、メタンガスを
同様に流量を測定しながら試料室に導入し、圧力が安定
した後その圧力を測定した。この圧力と、先に求めた死
容積から死容積部に存在する気体メタン量を算出し、測
定した導入メタンガス量から前記気体メタン量を減じて
ガス吸着量とした。
After degassing again under the above conditions, methane gas was introduced into the sample chamber while measuring the flow rate in the same manner, and after the pressure became stable, the pressure was measured. The amount of gas methane existing in the dead volume was calculated from this pressure and the dead volume obtained previously, and the amount of gas methane was subtracted from the measured amount of introduced methane to obtain the gas adsorption amount.

【0045】圧力を変えて、同様な操作を行い、各圧力
における吸着剤の単位重量当りのガス吸着量を求めた。
その結果を図2に示す。
The same operation was performed while changing the pressure, and the gas adsorption amount per unit weight of the adsorbent at each pressure was obtained.
The result is shown in FIG.

【0046】比較例1 無担持のACF−10をそのまま前記充填容器に充填
し、実施例1と同様にして、各圧力におけるガス吸着量
を測定した。その結果を図2に併せて示す。
Comparative Example 1 Unloaded ACF-10 was directly charged into the filling container, and the gas adsorption amount at each pressure was measured in the same manner as in Example 1. The results are also shown in FIG.

【0047】図2に見られるように、MgOが担持され
たACF−10は、無担持のACF−10に比べ、高い
ガス吸着量を示した。
As shown in FIG. 2, the ACF-10 supporting MgO exhibited a higher gas adsorption amount than the unsupported ACF-10.

【0048】実施例2 ACF−10に代えて、BET比表面積が3000m2
/gの粉末活性炭(大阪瓦斯(株)製、以下M−30と
いう)を用いる以外、実施例1と同様の方法にしたがっ
て、MgOが担持されたM−30を調製した。MgOの
担持量は、活性炭に対して18重量%であった。実施例
1と同様にして、ガス吸着量を測定した。その結果を図
3に示す。
Example 2 Instead of ACF-10, the BET specific surface area was 3000 m 2.
A MgO-supported M-30 was prepared in the same manner as in Example 1 except that powder activated carbon (manufactured by Osaka Gas Co., Ltd., hereinafter referred to as M-30) was used. The supported amount of MgO was 18% by weight based on the activated carbon. The gas adsorption amount was measured in the same manner as in Example 1. The result is shown in FIG.

【0049】比較例2 無担持のM−30をそのまま前記充填容器に充填し、実
施例1と同様にして、各圧力におけるガス吸着量を測定
した。その結果を図3に併せて示す。
Comparative Example 2 Unloaded M-30 was directly charged into the filling container and the amount of gas adsorbed at each pressure was measured in the same manner as in Example 1. The results are also shown in FIG.

【0050】図3に見られるように、MgOを担持した
M−30は、無担持のM−30に比べ、高いガス吸着量
を示した。
As shown in FIG. 3, the M-30 loaded with MgO showed a higher gas adsorption amount than the unloaded M-30.

【0051】実施例3 BET比表面積が1500m2 /gの活性炭素繊維
((株)アドール製、以下ACF−15という)45g
を前処理用のセルに仕込み、実施例1と同様の方法によ
り脱気処理を行った。脱気処理したACF−15を前処
理用セル内に保ったまま室温まで放冷し、0.6MFe
2 (SO4 3 水溶液に30分間浸漬した。
Example 3 45 g of activated carbon fiber having a BET specific surface area of 1500 m 2 / g (manufactured by Adol Co., Ltd., hereinafter referred to as ACF-15)
Was charged into a cell for pretreatment, and degassing treatment was performed by the same method as in Example 1. The degassed ACF-15 was allowed to cool to room temperature while keeping it in the pretreatment cell, and 0.6 MFe
It was immersed in an aqueous solution of 2 (SO 4 ) 3 for 30 minutes.

【0052】次いで、1NNaOH水溶液を徐々に加
え、溶液が弱アルカリ性になったところで、30℃で6
時間保持した。得られた固形物を、1gのACF−15
当り、2Lの蒸留水で洗浄し、真空乾燥器で24時間乾
燥させて、FeO(OH)が担持されたACF−15
(以下、Fe−ACFという)48gを得た。FeO
(OH)の担持量は、活性炭に対して6.7重量%であ
った。
Then, a 1N NaOH aqueous solution was gradually added, and when the solution became weakly alkaline, it was added to a solution of 6 ° C at 30 ° C.
Held for hours. The solid obtained is treated with 1 g of ACF-15.
Per well, washed with 2 L of distilled water, dried in a vacuum dryer for 24 hours, and FeO (OH) -supported ACF-15
48 g (hereinafter referred to as Fe-ACF) was obtained. FeO
The carried amount of (OH) was 6.7% by weight based on the activated carbon.

【0053】このFe−ACFを用い、実施例1と同様
にしてメタンガス吸着量を測定した結果、圧力3500
kPaにおいて、1gのFe−ACF当り95mgのメ
タンが吸着された。
Using this Fe-ACF, the amount of adsorbed methane gas was measured in the same manner as in Example 1. As a result, the pressure was 3500.
At kPa, 95 mg of methane was adsorbed per gram of Fe-ACF.

【0054】比較例3 無担持のACF−15をそのまま前記充填容器に充填
し、実施例1と同様にして、メタン吸着量の測定を行っ
た。その結果、圧力3500kPaにおいて、1gのA
CF当り、89mgのメタンが吸着された。
Comparative Example 3 Unloaded ACF-15 was directly charged into the filling container, and the amount of adsorbed methane was measured in the same manner as in Example 1. As a result, at a pressure of 3500 kPa, 1 g of A
89 mg of methane was adsorbed per CF.

【0055】実施例4 実施例3と同様にして真空脱気したACF−15に、
0.1M硫酸銅−3%アンモニア水溶液を埋没するまで
滴下した後、1NNaOH水溶液で中和し、室温で6時
間保持した。
Example 4 ACF-15 vacuum degassed in the same manner as in Example 3 was added,
A 0.1 M copper sulfate-3% aqueous ammonia solution was dropped until the mixture was buried, neutralized with a 1 N NaOH aqueous solution, and kept at room temperature for 6 hours.

【0056】次いで、実施例3と同様に洗浄、乾燥し、
Cu(OH)2 が担持されたACF−15を得た。これ
を、10-5torrの真空下、300℃で2時間加熱処
理し、CuOが担持されたACF−15(以下、Cu−
ACFという)を得た。CuOの担持量は、活性炭に対
して12重量%であった。
Then, washing and drying are carried out in the same manner as in Example 3,
ACF-15 carrying Cu (OH) 2 was obtained. This was heat-treated at 300 ° C. for 2 hours under a vacuum of 10 −5 torr, and CuO-supported ACF-15 (hereinafter, Cu-
ACF). The supported amount of CuO was 12% by weight with respect to the activated carbon.

【0057】このCu−ACFを用い、実施例1と同様
にしてメタン吸着量を測定した結果、圧力3500kP
aにおいて、1gのCu−ACF当り93mgのメタン
が吸着された。
Using this Cu-ACF, the amount of adsorbed methane was measured in the same manner as in Example 1, and as a result, the pressure was 3500 kP.
In a, 93 mg of methane was adsorbed per 1 g of Cu-ACF.

【0058】実施例5 実施例3と同様にして真空脱気したACF−15に0.
2MNi(NO3 2水溶液を埋没するまで滴下した
後、10%KOH水溶液で中和し、室温で6時間保持し
た。
Example 5 ACF-15 that had been degassed in vacuum in the same manner as in Example 3 was used.
A 2M Ni (NO 3 ) 2 aqueous solution was dropped until it was buried, then neutralized with a 10% KOH aqueous solution, and kept at room temperature for 6 hours.

【0059】次いで、実施例3と同様にして、洗浄、乾
燥し、Ni(OH)2 が担持されたACF−15を得
た。これを、10-5torrの真空下、300℃で2時
間加熱処理し、NiOが担持されたACF−15(以
下、Ni−ACFという)を得た。NiOの担持量は、
活性炭に対して7重量%であった。
Then, in the same manner as in Example 3, it was washed and dried to obtain ACF-15 carrying Ni (OH) 2 . This was heat-treated at 300 ° C. for 2 hours under a vacuum of 10 −5 torr to obtain NiO-supported ACF-15 (hereinafter referred to as Ni-ACF). The supported amount of NiO is
It was 7% by weight based on the activated carbon.

【0060】このNi−ACFを用いて、実施例1と同
様にしてメタン吸着量を測定した結果、圧力3500k
Paにおいて、1gのNi−ACF当り95mgのメタ
ンが吸着された。
Using this Ni-ACF, the amount of adsorbed methane was measured in the same manner as in Example 1. As a result, the pressure was 3500 k.
In Pa, 95 mg of methane was adsorbed per 1 g of Ni-ACF.

【0061】実施例6 Ni(NO3 2 水溶液に代えて、CoCl2 水溶液を
用いた以外は、実施例5と同様な操作を行い、CoO
(OH)が担持されたACF−15(以下、Co−AC
Fという)を得た。CoO(OH)の担持量は、活性炭
に対して9重量%であった。
Example 6 The same operation as in Example 5 was carried out except that a CoCl 2 aqueous solution was used instead of the Ni (NO 3 ) 2 aqueous solution, and CoO 2 was used.
(OH) -supported ACF-15 (hereinafter Co-AC
(Named F). The supported amount of CoO (OH) was 9% by weight based on the activated carbon.

【0062】このCo−ACFを用いて、実施例1と同
様にしてメタン吸着量を測定した結果、圧力3500k
Paにおいて、1gのCo−ACF当り98mgのメタ
ンが吸着された。
Using this Co-ACF, the amount of adsorbed methane was measured in the same manner as in Example 1. As a result, the pressure was 3500 k.
In Pa, 98 mg of methane was adsorbed per 1 g of Co-ACF.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はメタン吸蔵試験装置を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a methane storage test apparatus.

【図2】図2は実施例1及び比較例1における結果を示
すグラフである。
FIG. 2 is a graph showing the results in Example 1 and Comparative Example 1.

【図3】図3は実施例2及び比較例2における結果を示
すグラフである。
FIG. 3 is a graph showing the results in Example 2 and Comparative Example 2.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 活性炭に、メタンを化学吸着し得る金属
単体又は金属化合物が担持されているメタン吸着剤。
1. A methane adsorbent in which activated carbon carries a simple metal or a metal compound capable of chemically adsorbing methane.
【請求項2】 金属が、周期表2A族、6A族、7A
族、8族、1B族、2B族又は3B族の金属である請求
項1記載のメタン吸着剤。
2. The metal is a group 2A, 6A or 7A of the periodic table.
The methane adsorbent according to claim 1, which is a metal of Group 8, Group 1B, Group 2B or Group 3B.
【請求項3】 活性炭のBET比表面積が750m2
g以上である請求項1記載のメタン吸着剤。
3. The BET specific surface area of activated carbon is 750 m 2 /
The methane adsorbent according to claim 1, which is g or more.
【請求項4】 金属単体又は金属化合物の担持量が、活
性炭に対して0.1〜30重量%である請求項1記載の
メタン吸着剤。
4. The methane adsorbent according to claim 1, wherein the loading amount of the metal simple substance or the metal compound is 0.1 to 30% by weight with respect to the activated carbon.
JP22794692A 1992-08-03 1992-08-03 Methane adsorbent Expired - Fee Related JP3215173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22794692A JP3215173B2 (en) 1992-08-03 1992-08-03 Methane adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22794692A JP3215173B2 (en) 1992-08-03 1992-08-03 Methane adsorbent

Publications (2)

Publication Number Publication Date
JPH0655067A true JPH0655067A (en) 1994-03-01
JP3215173B2 JP3215173B2 (en) 2001-10-02

Family

ID=16868757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22794692A Expired - Fee Related JP3215173B2 (en) 1992-08-03 1992-08-03 Methane adsorbent

Country Status (1)

Country Link
JP (1) JP3215173B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787941A2 (en) 1996-01-31 1997-08-06 Tokyo Gas Co., Ltd. Method of storing and transporting gases
EP0874189A1 (en) * 1997-04-25 1998-10-28 Tokyo Gas Co., Ltd. Method for utilization of material comprising a hydrate-like product of gases and tank therefor
EP0875714A1 (en) * 1997-04-28 1998-11-04 Tokyo Gas Co., Ltd. Method and apparatus for treating bog in a low temperature liquid storage tank
KR20000040605A (en) * 1998-12-18 2000-07-05 이구택 Method for removing methane gas using activated carbon
WO2000053971A1 (en) * 1999-03-05 2000-09-14 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
US6613126B2 (en) 1998-09-30 2003-09-02 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
JP2007186403A (en) * 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
CN117504824A (en) * 2024-01-08 2024-02-06 成都达奇科技股份有限公司 Preparation method of activated carbon for methane adsorption and methane purification method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939077A (en) * 2007-10-16 2011-01-05 黑炭公司 A method and an apparatus for absorbing methane and a method of determining an emission credit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787605A (en) * 1996-01-31 1998-08-04 Tokyo Gas Co., Ltd. Method of storing and transporting gases
EP0787941A3 (en) * 1996-01-31 1998-09-09 Tokyo Gas Co., Ltd. Method of storing and transporting gases
EP0787941A2 (en) 1996-01-31 1997-08-06 Tokyo Gas Co., Ltd. Method of storing and transporting gases
EP0874189A1 (en) * 1997-04-25 1998-10-28 Tokyo Gas Co., Ltd. Method for utilization of material comprising a hydrate-like product of gases and tank therefor
EP0875714A1 (en) * 1997-04-28 1998-11-04 Tokyo Gas Co., Ltd. Method and apparatus for treating bog in a low temperature liquid storage tank
US6613126B2 (en) 1998-09-30 2003-09-02 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
KR20000040605A (en) * 1998-12-18 2000-07-05 이구택 Method for removing methane gas using activated carbon
WO2000053971A1 (en) * 1999-03-05 2000-09-14 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
EP1759760A2 (en) * 1999-03-05 2007-03-07 Toyota Jidosha Kabushiki Kaisha Adsorbent for the adsorption and storage of natural gas and use thereof
EP1759760A3 (en) * 1999-03-05 2010-09-15 Toyota Jidosha Kabushiki Kaisha Adsorbent for the adsorption and storage of natural gas and use thereof
JP2007186403A (en) * 2005-10-27 2007-07-26 Showa Denko Kk Activated carbon, process of making the same and use of the same
JP4576371B2 (en) * 2005-10-27 2010-11-04 昭和電工株式会社 Activated carbon, its production method and use
CN117504824A (en) * 2024-01-08 2024-02-06 成都达奇科技股份有限公司 Preparation method of activated carbon for methane adsorption and methane purification method
CN117504824B (en) * 2024-01-08 2024-04-30 成都达奇科技股份有限公司 Preparation method of activated carbon for methane adsorption and methane purification method

Also Published As

Publication number Publication date
JP3215173B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
Petit et al. MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia
Petit et al. Enhanced adsorption of ammonia on metal‐organic framework/graphite oxide composites: analysis of surface interactions
Wickramaratne et al. Importance of small micropores in CO 2 capture by phenolic resin-based activated carbon spheres
US5912424A (en) Electrical swing adsorption gas storage and delivery system
Zhou et al. Enhancement of the methane storage on activated carbon by preadsorbed water
US7964530B2 (en) Activated carbon and process of making the same
JP4576371B2 (en) Activated carbon, its production method and use
EP0727608A2 (en) Gas storage apparatus, gaseous fuel automobile using the gas storage apparatus, gas storage method and methane adsorbing-retaining agent
Montazerolghaem et al. A metal–organic framework MIL-101 doped with metal nanoparticles (Ni & Cu) and its effect on CO 2 adsorption properties
JP2007100962A (en) Method and vessel for storing gas
EP0821621A1 (en) Storage of hydrogen in layered nanostructures
JP3215173B2 (en) Methane adsorbent
JP2001185184A (en) Fuel cell and its fuel tank
Takeuchi et al. Removal of ozone from air by activated carbon treatment
Tiwari et al. Urea-formaldehyde derived porous carbons for adsorption of CO 2
JP2000233913A (en) Gas storage material using deposited-metal-containing active carbon and its production
EP0154165A2 (en) Method for adsorbing and storing hydrogen at cryogenic temperatures
Lee et al. Potassium oxalate as an alternative activating reagent of corn starch-derived porous carbons for methane storage
WO2016140266A1 (en) Carbon porous body, method for manufacturing same, ammonia adsorbent, and canister and method for manufacturing same
Zhang et al. Modification of a Copper‐Based Metal–Organic Framework with Graphene Oxide for the Removal of Sulfur Compounds
WO2005120715A2 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
KR100635961B1 (en) Process for removing water from ammonia
JP2004148280A (en) Adsorbent material having supported metal compound, gas-adsorbent material, and its production method
JPH09173842A (en) High dispersion-type catalyst for vapor modification and manufacture of hydrogen
KR20210077391A (en) Flexible nanoporous carbon fabric and Method of Manufacturing the Same and absorbent with it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees