JPH065477A - Multilayered solid electrolytic capacitor and its manufacture - Google Patents

Multilayered solid electrolytic capacitor and its manufacture

Info

Publication number
JPH065477A
JPH065477A JP4165755A JP16575592A JPH065477A JP H065477 A JPH065477 A JP H065477A JP 4165755 A JP4165755 A JP 4165755A JP 16575592 A JP16575592 A JP 16575592A JP H065477 A JPH065477 A JP H065477A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
metal
wire
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4165755A
Other languages
Japanese (ja)
Other versions
JP3079780B2 (en
Inventor
Takashi Fukami
隆 深海
Yoshihiko Saiki
義彦 斎木
Toshihiko Nishiyama
利彦 西山
Tomoji Arai
智次 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04165755A priority Critical patent/JP3079780B2/en
Publication of JPH065477A publication Critical patent/JPH065477A/en
Application granted granted Critical
Publication of JP3079780B2 publication Critical patent/JP3079780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To prevent a dielectric oxide film from being damaged by mechanical stress, and improve volume efficiency, by constituting electric continuity on the side surface part of anode parts which are mutually connected by a conductor bonded to each electrode part of a plurality of solid electrolytic capacitors. CONSTITUTION:An aluminum wire 1 is connected with an anode part 13 on one side of a plurality of single plate solid electrolytic capaciotors 3, by using resistance welding. A laminate 5 is obtained by bending zigzag the aluminum wire 1 part. Cathode parts of the laminate 5 are unified in a body by forming a conductive bonded layer 4. A CP wire is used as an anode lead wire, and connected with the aluminum wire 1 by using resistance welding which wire 1 is used for anode connection. As a cathode lead wire, the same wire as the anode lead wire is used and connected with a conductive adhesive agent layer 4 being a cathode part end surface of the laminate 5. Thereby mechanical stress applied to the single plate solid electrolytic capacitor can be reduced, and a laminated solid electrolytic capacitor excellent in volume efficiency can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は積層型固体電解コンデン
サおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated solid electrolytic capacitor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、固体電解コンデンサは、アルミニ
ウム、タンタル等の弁作用を有する皮膜形成性金属の表
面に誘電体酸化皮膜を形成し、該誘電体皮膜上に二酸化
マンガン、二酸化鉛、テトラシアノキノジメタン錯体、
あるいは、ポリピロール、ポリチオフェン、ポリアニリ
ン等の導電性高分子を固体電解質として介在させたもの
が開発されている。
2. Description of the Related Art Conventionally, solid electrolytic capacitors have a dielectric oxide film formed on the surface of a film-forming metal such as aluminum or tantalum having a valve action, and manganese dioxide, lead dioxide or tetracyano is formed on the dielectric film. Quinodimethane complex,
Alternatively, a material in which a conductive polymer such as polypyrrole, polythiophene, or polyaniline is interposed as a solid electrolyte has been developed.

【0003】一方で、近年電気電子機器の軽薄短小化が
進行するに伴い電子部品の小型化も要求され、その中で
電解コンデンサは小型化、大容量化が進行しており、さ
らに回路基板上への表面実装化の流れからチップ型コン
デンサの需要が増大している。電解コンデンサの大容量
化、チップ化のために特開平3−21006や特開平3
−116813等に報告されているような、アルミニウ
ムなどからなるエッチング箔を化成し、その上に導電性
高分子を形成したコンデンサを巻回したり、また、前記
コンデンサを金属ケースに封入するものや、図8の特開
平3−145115に報告されているよう複数枚のコン
デンサ素子の陽極部を冷間圧接した後、圧接部をレーザ
溶接し、積層するものが開発されている。
On the other hand, along with the progress of lighter, thinner, shorter and smaller electric and electronic equipments in recent years, miniaturization of electronic parts is also required, and in this, the electrolytic capacitors are becoming smaller and larger in capacity, and further on the circuit board. The demand for chip type capacitors is increasing due to the trend of surface mounting. To increase the capacity of the electrolytic capacitor and to make it into a chip, JP-A-3-21006 and JP-A-3-3006
No. 116813, etc., an etching foil made of aluminum or the like is formed, and a capacitor having a conductive polymer formed thereon is wound, or the capacitor is enclosed in a metal case, As reported in Japanese Unexamined Patent Publication No. 3-145115 of FIG. 8, a method has been developed in which the anode portions of a plurality of capacitor elements are cold-welded and then the pressure-welded portions are laser-welded and laminated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
巻回構造の電解コンデンサの場合、金属箔の湾曲部に機
械的ストレスがかかりコンデンサの電気特性が損なわれ
る可能性があり、さらに、金属箔間に隙間が生じること
により、また、形が円柱形であるためにケースに封入し
た時に体積効率が悪化するという欠点がある。また、陽
極部を冷間圧接後、圧接部をレーザ溶接することにより
板状コンデンサを積層する方法では、陽極部の面積を比
較的広く形成することが必要であるために体積効率が悪
化し、また、図8(b)に示すように圧接時に陽極部と
陰極部との境界部が湾曲することによりエッチング箔に
機械的ストレスがかかり、コンデンサの電気特性が損な
われる可能性がある。その上、圧接部をレーザ溶接する
ときに、複数枚の金属箔にレーザを貫通させ同時に溶接
することが困難であるという欠点がある。
However, in the case of the conventional winding type electrolytic capacitor, the curved portion of the metal foil may be mechanically stressed and the electrical characteristics of the capacitor may be impaired. There is a drawback that the volume efficiency is deteriorated when it is enclosed in the case because of the gap formed in the case and because of the cylindrical shape. Further, after cold-pressing the anode part, in the method of laminating the plate-shaped capacitor by laser-welding the press-contact part, the volume efficiency deteriorates because it is necessary to form the area of the anode part relatively large, Further, as shown in FIG. 8B, the boundary portion between the anode portion and the cathode portion is curved at the time of pressure contact, so that the etching foil may be mechanically stressed, and the electrical characteristics of the capacitor may be impaired. In addition, when laser welding the pressure-welded portion, it is difficult to penetrate a plurality of metal foils with a laser and simultaneously weld them.

【0005】本発明の目的は、単板固体電解コンデンサ
の複数枚を電気的並列に接続するに際し、外部応力によ
る機械的ストレスにより誘電体酸化皮膜が破壊されるの
を防ぐとともに体積効率の上昇した小型大容量の積層型
固体電解コンデンサを提供することにある。
An object of the present invention is to prevent destruction of a dielectric oxide film by mechanical stress due to external stress when electrically connecting a plurality of single-plate solid electrolytic capacitors in parallel, and increase volumetric efficiency. It is to provide a small-sized and large-capacity laminated solid electrolytic capacitor.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成させる
ために、本発明は、弁作用を有する皮膜形成性金属箔の
表面に誘電体酸化皮膜を形成し、誘電体酸化皮膜上に二
酸化マンガン、二酸化鉛等の無機半導体、あるいは、ポ
リピロール、ポリチオフェン、ポリアニリン等の導電性
高分子膜を形成させることにより得られる固体電解コン
デンサ複数枚の各々の陽極部に接着された導体によって
相互接続された陽極部の側面において電気的導通のとれ
ていることを特徴とする。
In order to achieve the above object, the present invention provides a dielectric oxide film on the surface of a film-forming metal foil having a valve action, and manganese dioxide on the dielectric oxide film. , An inorganic semiconductor such as lead dioxide, or a solid electrolytic capacitor obtained by forming a conductive polymer film such as polypyrrole, polythiophene, or polyaniline. Anodes interconnected by conductors bonded to the respective anode parts of a plurality of sheets. It is characterized in that it has electrical continuity on the side surface of the part.

【0007】また、本発明に於て導体としては金属線、
または金属箔を用い、積層方法としては連続した導体を
つづら折りすることを特徴とする。導体である金属線、
または金属箔の材質がコンデンサ金属と同種の金属、ま
たは同種の金属を成分に持つ合金、あるいはコンデンサ
金属と同種の金属、または合金の主成分であることが望
ましい。
In the present invention, the conductor is a metal wire,
Alternatively, a metal foil is used, and as a stacking method, continuous conductors are folded and folded. A metal wire that is a conductor,
Alternatively, it is desirable that the material of the metal foil is the same metal as the capacitor metal, or an alloy containing the same metal as a component, or the same metal as the capacitor metal, or the main component of the alloy.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0009】図3は本発明の第1の実施例における積層
型固体電解コンデンサの単体構造をしめしたもので、
(a)は平面図(b)はA−A線における断面図であ
る。弁作用を有する皮膜形成性金属としてはアルミニウ
ム、タンタル、チタン等の箔あるいは板材を使用してい
る。
FIG. 3 shows a monolithic structure of the laminated solid electrolytic capacitor according to the first embodiment of the present invention.
(A) is a plan view and (b) is a sectional view taken along the line AA. As the film-forming metal having a valve action, a foil or plate material such as aluminum, tantalum, or titanium is used.

【0010】第1の実施例では、幅3mmの短冊状に切
断された金属箔8の所定の部分をアジピン酸系化成液中
で陽極酸化を行い、誘電体となる陽極酸化皮膜9を形成
した。その所定の部分に電解重合または化学重合により
固体電解質となるポリピロール層10を形成した。さら
に陰極引き出し用にグラファイト層11、銀ペースト層
12を順次形成し図3の単板固体電解コンデンサ3を得
た。
In the first embodiment, a predetermined portion of the metal foil 8 cut into a strip having a width of 3 mm was anodized in an adipic acid-based chemical conversion solution to form an anodized film 9 as a dielectric. . A polypyrrole layer 10 serving as a solid electrolyte was formed on the predetermined portion by electrolytic polymerization or chemical polymerization. Further, a graphite layer 11 and a silver paste layer 12 were sequentially formed for drawing out the cathode to obtain a single plate solid electrolytic capacitor 3 shown in FIG.

【0011】図1は本発明の一実施例の積層型固体電解
コンデンサ及びその製造方法を説明するために工程順に
示した積層型固体電解コンデンサの主要工程の平面図、
斜視図、断面図である。
FIG. 1 is a plan view of a main process of a laminated solid electrolytic capacitor, which is shown in order of process for explaining a laminated solid electrolytic capacitor of one embodiment of the present invention and a manufacturing method thereof.
It is a perspective view and a sectional view.

【0012】まず、図3に示すように形成した複数枚の
単板固体電解コンデンサ3の一方の陽極部13に直径1
00μmのアルミニウム線1を抵抗溶接により接続(図
1(a))し、アルミニウム線部分をつづらに折り(図
1(b))、積層体5(図では5枚)を得る(図1
(c),(d))。積層体5の陰極部は導電性接着剤層
4を形成させることにより一体化する。
First, one of the plurality of single-plate solid electrolytic capacitors 3 formed as shown in FIG.
The aluminum wire 1 of 00 μm is connected by resistance welding (FIG. 1 (a)), and the aluminum wire portion is folded in a zigzag shape (FIG. 1 (b)) to obtain a laminate 5 (5 sheets in the drawing) (FIG. 1).
(C), (d)). The cathode portion of the laminated body 5 is integrated by forming the conductive adhesive layer 4.

【0013】以上のようにして形成した積層体5に図4
のような電極端子を接続した。すなわち、陽極リード線
14としてはCP線を用い陽極接続で用いたアルミニウ
ム線1に抵抗溶接により接続し、陰極リード線15とし
ては陽極リード線14と同様のものを、積層体5の陰極
部端面である導電性接着剤層4上に銀系の導電性接着剤
により接続した。その後図6に示すようにエポキシ樹脂
などで素子部を外装してリードタイプとし、第1の実施
例のディップ型積層型固体電解コンデンサを完成させ
た。
The laminated body 5 thus formed is shown in FIG.
The electrode terminals such as That is, as the anode lead wire 14, a CP wire is used and connected to the aluminum wire 1 used for anode connection by resistance welding, and as the cathode lead wire 15, the same one as the anode lead wire 14 is used. Was connected to the conductive adhesive layer 4 using a silver-based conductive adhesive. Thereafter, as shown in FIG. 6, the element portion was packaged with epoxy resin or the like to form a lead type, and the dip-type laminated solid electrolytic capacitor of the first embodiment was completed.

【0014】また、第2の実施例としての図5ではチッ
プ形端子に設計されたリードフレーム15に陽極側を溶
接により、陰極側を銀系の導電性接着剤により接続し
た。次いで図7に示すようにコンデンサ素子をエポキシ
樹脂などで素子部を外装し、外装後リードフレームから
電極部を引き出し外装部に沿って折り曲げチップタイプ
のものとした。図2は本発明の第3の実施例の積層前帯
状金属箔溶接後の斜視図である。第3の実施例として、
前記実施例と同様な方法で単板固体電解コンデンサを形
成し、アルミニウム線1を幅1mmの帯状金属箔6に変
えた以外は同様な方法で積層型固体電解コンデンサを作
成した。
Further, in FIG. 5 as the second embodiment, the anode side is connected to the lead frame 15 designed as a chip type terminal by welding and the cathode side is connected by a silver-based conductive adhesive. Next, as shown in FIG. 7, the capacitor element was packaged with an epoxy resin or the like to package the element part, and after packaging, the electrode part was extracted from the lead frame and bent along the package part to obtain a chip type. FIG. 2 is a perspective view of the third embodiment of the present invention after the belt-shaped metal foil before lamination is welded. As a third embodiment,
A single-plate solid electrolytic capacitor was formed by the same method as in the above-mentioned example, and a laminated solid electrolytic capacitor was prepared by the same method except that the aluminum wire 1 was changed to a strip-shaped metal foil 6 having a width of 1 mm.

【0015】さらに、第4の実施例は第一の実施例と同
様な方法で単板固体電解コンデンサ3を形成しアルミニ
ウム線1を幅1mmの帯状金属箔6に変え、図2のよう
に複数枚の単板固体電解コンデンサ3の陽極端面と幅1
mmの帯状金属箔6端面をレーザ溶接し、帯状金属箔6
部分をつづらに折り積層体5(図では5枚)を得る方法
も実施した。積層体5の陰極部は導電性接着剤に浸漬さ
せることにより一体化する。
Further, in the fourth embodiment, a single plate solid electrolytic capacitor 3 is formed in the same manner as in the first embodiment, and the aluminum wire 1 is replaced with a strip-shaped metal foil 6 having a width of 1 mm. Anode end face and width of a single plate solid electrolytic capacitor 3
mm of the strip-shaped metal foil 6 is laser-welded on the end face to form the strip-shaped metal foil 6
A method of forming a folded laminated body 5 (five sheets in the figure) by spelling the portions was also carried out. The cathode part of the laminate 5 is integrated by immersing it in a conductive adhesive.

【0016】以上のように作成した積層型固体電解コン
デンサの積層後の漏れ電流、オープン不良を表1に示し
た。従来例は陽極部を冷間圧接後、圧接部18をレーザ
により溶接したものである。
Table 1 shows the leakage current and open failure after lamination of the laminated solid electrolytic capacitor prepared as described above. In the conventional example, after the cold pressure welding of the anode portion, the pressure welding portion 18 is welded by laser.

【0017】[0017]

【表1】 [Table 1]

【0018】(10V−4.7μFのコンデンサを用い
た。サンプル数は100個である。LCは10V−1分
値で測定し、3μA以上のものを不良とした。オープン
不良は温度サイクル試験(−55℃〜85℃)50サイ
クル後の値である) 表1からも明らかなように実施例に於いては従来例と比
較してLC不良率、オープン不良率とも減少している。
LC不良は酸化皮膜が破壊することから生じると思わ
れ、また、実施例では複数枚の単板固体電解コンデンサ
の陽極部がアルミニウム線あるいは帯状金属箔を介して
確実に電気的導通がとれているためオープン不良が減少
している。
(A capacitor of 10 V-4.7 μF was used. The number of samples was 100. LC was measured at a value of 10 V-1 minute, and defects of 3 μA or more were determined to be defective. (−55 ° C. to 85 ° C.) It is a value after 50 cycles) As is clear from Table 1, both the LC defective rate and the open defective rate are reduced in the example as compared with the conventional example.
It is considered that the LC failure is caused by the destruction of the oxide film, and in the embodiment, the anode part of the plurality of single plate solid electrolytic capacitors is surely electrically connected through the aluminum wire or the strip-shaped metal foil. Therefore, open defects are decreasing.

【0019】尚、本実施例に於いては陽極接続にアルミ
ニウム線(あるいは箔)を用いたが、これはアルミニウ
ムに限られたものではなくCP半田めっき線(あるいは
箔)、Ni半田めっき線(あるいは箔)、42アロイ線
(あるいは箔)、リン青銅線(あるいは箔)等でもよ
い。
In this embodiment, an aluminum wire (or foil) was used for the anode connection, but this is not limited to aluminum, but CP solder plated wire (or foil), Ni solder plated wire ( Alternatively, foil, 42 alloy wire (or foil), phosphor bronze wire (or foil), or the like may be used.

【0020】[0020]

【発明の効果】この発明によれば、複数枚の箔形固体電
解コンデンサを電気的並列に積層する際、あらかじめ単
板固体電解コンデンサの陽極部を導体である金属線ある
いは帯状金属箔により共通にした後に積層体を形成する
ので、積層後の陽極接続が不要となり、単板固体電解コ
ンデンサにかかる機械的ストレスを低減することがで
き、各々の陽極間が導体である金属線(または箔)によ
り確実に電気的導通がとれているのでオープン不良の減
少した、体積効率に優れた積層型固体電解コンデンサが
得られるという結果を有する。
According to the present invention, when a plurality of foil-type solid electrolytic capacitors are electrically stacked in parallel, the anode part of the single-plate solid electrolytic capacitor is preliminarily shared by a metal wire or a strip-shaped metal foil as a conductor. Since the laminated body is formed after that, it is not necessary to connect the anode after the lamination, the mechanical stress applied to the single plate solid electrolytic capacitor can be reduced, and the metal wire (or foil) between each anode is a conductor. Since the electrical continuity is surely established, the open defect is reduced, and the laminated solid electrolytic capacitor excellent in volume efficiency is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の積層型固体電解コンデ
ンサの製造工程を示す平面図,斜視図,断面図で、
(a)積層前で導体を接着後、(b)つづら折りの過程
図、(c),(d)は完成図である。
FIG. 1 is a plan view, a perspective view, and a sectional view showing a manufacturing process of a laminated solid electrolytic capacitor according to a first embodiment of the present invention,
(A) After the conductor is adhered before lamination, (b) is a process diagram of the zigzag folding, and (c) and (d) are completed diagrams.

【図2】本発明の第3の実施例の積層型固体電解コンデ
ンサの積層前、帯状金属箔溶接後の斜視図である。
FIG. 2 is a perspective view of a laminated solid electrolytic capacitor of a third embodiment of the present invention before lamination and after welding of a strip-shaped metal foil.

【図3】本発明に使用する単板固体電解コンデンサの
(a)平面図、(b)A−Aに於ける断面図である。
3A is a plan view of a single plate solid electrolytic capacitor used in the present invention, and FIG. 3B is a sectional view taken along line AA.

【図4】本発明の第1の実施例のディップ型積層型固体
電解コンデンサのリード付け後の斜視図である。
FIG. 4 is a perspective view of the dip-type laminated solid electrolytic capacitor of the first embodiment of the present invention after leads are attached.

【図5】本発明の第2の実施例のチップ型積層型固体電
解コンデンサのリード付け後の斜視図である。
FIG. 5 is a perspective view of a chip type multilayer solid electrolytic capacitor of a second embodiment of the present invention after leads are attached.

【図6】本発明の第1の実施例のディップ型積層型固体
電解コンデンサの外装後の斜視図である。
FIG. 6 is a perspective view of the dip-type laminated solid electrolytic capacitor of the first embodiment of the present invention after being packaged.

【図7】本発明の第2の実施例のチップ型固体電解コン
デンサの外装後の斜視図である。
FIG. 7 is a perspective view of the chip type solid electrolytic capacitor of the second embodiment of the present invention after being packaged.

【図8】従来の積層型固体電解コンデンサの(a)平面
図、(b)B−Bに於ける断面図である。
8A is a plan view of a conventional laminated solid electrolytic capacitor, and FIG. 8B is a sectional view taken along line BB.

【符号の説明】[Explanation of symbols]

1 金属線 2 抵抗溶接部 3 単板固体電解コンデンサ 4 導電性接着剤 5 積層体 6 帯状金属箔 7 レーザ溶接部 8 金属箔 9 陽極酸化皮膜 10 ポリピロール層 11 グラファイト層 12 銀ペースト層 13 陽極部 14 陽極リード線 15 陰極リード線 16 リードフレーム 17 冷間圧接部およびレーザ貫通部 DESCRIPTION OF SYMBOLS 1 Metal wire 2 Resistance welding part 3 Single plate solid electrolytic capacitor 4 Conductive adhesive 5 Laminated body 6 Strip metal foil 7 Laser welding part 8 Metal foil 9 Anodized film 10 Polypyrrole layer 11 Graphite layer 12 Silver paste layer 13 Anode part 14 Anode lead wire 15 Cathode lead wire 16 Lead frame 17 Cold pressure welding part and laser penetration part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒井 智次 東京都港区芝五丁目7番1号日本電気株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoji Arai 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 弁作用を有する皮膜形成性金属箔の表面
に誘電体酸化皮膜を形成し、該誘電体酸化皮膜上に、二
酸化マンガン、二酸化鉛等の無機半導体、あるいは、ポ
リピロール、ポリチオフェン、ポリアニリン等の導電性
高分子膜を形成させる固体電解コンデンサ素子を複数枚
積層した積層型固体電解コンデンサにおいて、各々の単
板固体電解コンデンサの陽極部が一連の金属線または帯
状金属箔により電気的、機械的に接続されていることを
特徴とする積層型固体電解コンデンサ。
1. A dielectric oxide film is formed on the surface of a film-forming metal foil having a valve action, and an inorganic semiconductor such as manganese dioxide or lead dioxide, or polypyrrole, polythiophene or polyaniline is formed on the dielectric oxide film. In a laminated solid electrolytic capacitor in which a plurality of solid electrolytic capacitor elements for forming a conductive polymer film such as is laminated, the anode part of each single plate solid electrolytic capacitor is electrically and mechanically formed by a series of metal wires or strip metal foils. Multilayer electrolytic capacitor characterized in that they are electrically connected.
【請求項2】 複数枚の単板固体電解コンデンサの各々
の陽極部に接着された一連の金属線、または帯状金属箔
の材質がコンデンサ金属と同種の金属、または同種の金
属を成分に持つ合金、あるいはコンデンサ金属と合金を
形成する金属、またはその合金の主成分であることを特
徴とする請求項1記載の積層型固体電解コンデンサ。
2. A series of metal wires bonded to the respective anodes of a plurality of single-plate solid electrolytic capacitors, or a strip-shaped metal foil made of the same metal as the capacitor metal, or an alloy containing the same metal as a component. Or a metal forming an alloy with the capacitor metal, or a main component of the alloy, the multilayer solid electrolytic capacitor according to claim 1.
【請求項3】 複数枚の単板固体電解コンデンサの各々
の陽極部に接着された一連の金属線、または帯状金属箔
が、単板固体電解コンデンサの表、裏に交互に接着され
ていることを特徴とする請求項1記載の積層型固体電解
コンデンサ。
3. A series of metal wires or strip-shaped metal foils bonded to the respective anode parts of a plurality of single plate solid electrolytic capacitors are alternately bonded to the front and back of the single plate solid electrolytic capacitors. The laminated solid electrolytic capacitor according to claim 1.
【請求項4】 弁作用を有する皮膜形成性金属箔の表面
に誘電体酸化皮膜を形成し、前記誘電体酸化皮膜上に、
二酸化マンガン,二酸化鉛等の無機半導体,あるいは、
ポリピロール、ポリチオフェン,ポリアニリン等の導電
性高分子膜を形成させた単板固体電解コンデンサ素子を
複数枚積層し、各々の単板固体電解コンデンサの陽極部
に一連の金属線または帯状金属箔を抵抗溶接、またはレ
ーザ溶接により接着し電気的,機械的に接続する工程を
有することを特徴とする積層型固体電解コンデンサの製
造方法。
4. A dielectric oxide film is formed on the surface of a film-forming metal foil having a valve action, and the dielectric oxide film is formed on the dielectric oxide film.
Inorganic semiconductors such as manganese dioxide and lead dioxide, or
A plurality of single-plate solid electrolytic capacitor elements with conductive polymer films such as polypyrrole, polythiophene, and polyaniline are laminated, and a series of metal wires or strip-shaped metal foils are resistance-welded to the anode part of each single-plate solid electrolytic capacitor. Or a method of manufacturing a laminated solid electrolytic capacitor, which comprises a step of adhering by laser welding and connecting electrically and mechanically.
【請求項5】 前記単板固体電解コンデンサの積層方法
が、単板固体電解コンデンサの陽極間の導体を、山折
り,谷折りを交互に繰り返し、つづら折りすることを特
徴とする請求項4記載の積層型固体電解コンデンサの製
造方法。
5. The method for laminating the single-plate solid electrolytic capacitor according to claim 4, wherein the conductor between the anodes of the single-plate solid electrolytic capacitor is alternately folded and folded alternately in a mountain fold and a valley fold. Manufacturing method of laminated solid electrolytic capacitor.
JP04165755A 1992-06-24 1992-06-24 Multilayer solid electrolytic capacitor and method of manufacturing the same Expired - Fee Related JP3079780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04165755A JP3079780B2 (en) 1992-06-24 1992-06-24 Multilayer solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04165755A JP3079780B2 (en) 1992-06-24 1992-06-24 Multilayer solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH065477A true JPH065477A (en) 1994-01-14
JP3079780B2 JP3079780B2 (en) 2000-08-21

Family

ID=15818447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04165755A Expired - Fee Related JP3079780B2 (en) 1992-06-24 1992-06-24 Multilayer solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3079780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331999B2 (en) 2004-12-21 2008-02-19 Tdk Corporation Method of producing solid electrolytic capacitor
JP2010050217A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Solid electrolytic capacitor and method of manufacturing the same
US7872857B2 (en) * 2005-04-22 2011-01-18 Cardiac Pacemakers, Inc. Spacer for an electrode layer gap in a power source
US7916457B2 (en) * 2005-05-13 2011-03-29 Sanyo Electric Co., Ltd. Multi-layered solid electrolytic capacitor and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7331999B2 (en) 2004-12-21 2008-02-19 Tdk Corporation Method of producing solid electrolytic capacitor
US7872857B2 (en) * 2005-04-22 2011-01-18 Cardiac Pacemakers, Inc. Spacer for an electrode layer gap in a power source
US7916457B2 (en) * 2005-05-13 2011-03-29 Sanyo Electric Co., Ltd. Multi-layered solid electrolytic capacitor and method of manufacturing same
JP2010050217A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Solid electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JP3079780B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US5377073A (en) Stacked type solid electrolytic capacitor
US7355835B2 (en) Stacked capacitor and method of fabricating the same
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP5445673B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3525450B2 (en) Multilayer electrolytic capacitors
JPH10163072A (en) Layered solid capacitor
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JP2007043197A (en) Stacked capacitor
JPH08273983A (en) Aluminum solid capacitor
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
JP4215250B2 (en) Chip-type solid electrolytic capacitor and manufacturing method thereof
JP2645562B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2645559B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP3149523B2 (en) Solid electrolytic capacitors
JP2003077764A (en) Multilayer solid electrolytic capacitor and its manufacturing method
JP2902681B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2003158045A (en) Stacked capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JP4780726B2 (en) Multilayer solid electrolytic capacitor
JP2003045754A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4994277B2 (en) Manufacturing method of multilayer solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees