JPH0654662B2 - Cadmium negative electrode manufacturing method - Google Patents

Cadmium negative electrode manufacturing method

Info

Publication number
JPH0654662B2
JPH0654662B2 JP60107407A JP10740785A JPH0654662B2 JP H0654662 B2 JPH0654662 B2 JP H0654662B2 JP 60107407 A JP60107407 A JP 60107407A JP 10740785 A JP10740785 A JP 10740785A JP H0654662 B2 JPH0654662 B2 JP H0654662B2
Authority
JP
Japan
Prior art keywords
negative electrode
nickel
electrode
discharge
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60107407A
Other languages
Japanese (ja)
Other versions
JPS61264672A (en
Inventor
▲吉▼尚 稲葉
英男 海谷
収 高橋
実 山賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60107407A priority Critical patent/JPH0654662B2/en
Publication of JPS61264672A publication Critical patent/JPS61264672A/en
Publication of JPH0654662B2 publication Critical patent/JPH0654662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池に用いられるカドミウム負極
の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a cadmium negative electrode used in an alkaline storage battery.

従来の技術 アルカリ蓄電池用カドミウム負極には、ニッケル焼結基
板に活物質を充填した焼結式カドミウム負極,活物質と
導電材との混合成型体をニッケル多孔性容器内に入れ被
覆したポケット式負極,活物質を結着材とともに練合
し、導電性支持体の両側に塗布したペースト式負極など
がある。いずれもアルカリ蓄電池用負極としては優れた
充放電特性を示すが、高温領域(40℃以上)では溶濃
度アルカリ溶液中での水酸化カドミウムの溶解度が高く
なり、充放電サイクルのくり返しによりカドミウムの溶
解析出がくり返され、負極の変形,利用率の低下、デン
ドライトの成長等により、比較的短寿命になりやすいと
いう欠点を有していた。中でもペースト式カドミウム負
極については、焼結式カドミウム負極のように活物質を
保持する導電性骨格がないために、この傾向は著しく、
高温での寿命が特に短かいという欠点を有していた。
2. Description of the Related Art A cadmium negative electrode for an alkaline storage battery includes a sintered type cadmium negative electrode in which a nickel sintered substrate is filled with an active material, and a pocket type negative electrode in which a mixed molded body of an active material and a conductive material is put in a nickel porous container and covered. , A paste type negative electrode in which an active material is kneaded together with a binder and applied on both sides of a conductive support. Both show excellent charge and discharge characteristics as negative electrodes for alkaline storage batteries, but the solubility of cadmium hydroxide in the alkaline solution with a high concentration becomes high in the high temperature range (40 ° C or higher), and the dissolution of cadmium due to repeated charge and discharge cycles. It has a drawback that the deposition is repeated, the negative electrode is deformed, the utilization factor is lowered, and the dendrite grows, so that the life tends to be relatively short. Among them, for the paste type cadmium negative electrode, since there is no conductive skeleton for holding the active material like the sintered type cadmium negative electrode, this tendency is remarkable,
It had the drawback of a particularly short life at high temperatures.

このような問題を解決するために、特開昭58−32363
号特開昭55−109371 号にみられるように、負極活物
質中に変形防止の機能を有する添加剤を混入したり、表
面に樹脂膜を形成することが提案されていた。
In order to solve such a problem, JP-A-58-32363
As disclosed in Japanese Patent Laid-Open No. 55-109371, it has been proposed to mix an additive having a function of preventing deformation into the negative electrode active material or form a resin film on the surface.

発明が解決しようとする問題点 このような構成の電極では、結晶の粗大化や利用率の低
下についてはある程度防止することはできるが、カドミ
ウムの溶解および電解液中への拡散を防止することは出
来ず、特に高温領域では効果はほとんど得られなかっ
た。
Problems to be Solved by the Invention With the electrode having such a structure, it is possible to prevent coarsening of crystals and reduction of utilization to some extent, but it is possible to prevent dissolution of cadmium and diffusion into the electrolytic solution. It was not possible, and the effect was hardly obtained especially in the high temperature region.

また、特公昭48−25149号に見られるように、無電解
メッキまたは電解メッキにより電極の表面に金属のニッ
ケル層を設けることが提案されているが、水溶液中でニ
ッケルを析出させる場合に、不純物やニッケル塩および
ニッケル以外の電解主成物が、多孔性電極の内部に入り
込み、自己放電が増大するなどの悪影響が認められ、実
用的ではなかった。
Further, as disclosed in Japanese Patent Publication No. 48-25149, it has been proposed to provide a metallic nickel layer on the surface of the electrode by electroless plating or electrolytic plating. Electrolytic main compounds other than nickel salt and nickel enter the inside of the porous electrode, and adverse effects such as an increase in self-discharge are observed, which is not practical.

本発明は、以上のような問題を解決し、充放電特性の低
下なしに、高温領域でも長寿命を有するアルカリ蓄電池
用カドミウム負極を得ることを目的とする。
An object of the present invention is to solve the above problems and to obtain a cadmium negative electrode for an alkaline storage battery which has a long life even in a high temperature region without deterioration of charge / discharge characteristics.

問題点を解決するための手段 本発明は、0.05〜0.2mol/lのニッケル塩を含
む水溶液中で、20〜500mA/cm2の電流密度によ
り、電極の活物質表面層に電気メッキをすることによ
り、膜厚が0.5〜5μである金属ニッケルの薄膜層を
形成することを特徴とするアルカリ蓄電池用カドミウム
負極の製造法を提供するものである。
MEANS FOR SOLVING THE PROBLEMS The present invention is to electroplate an active material surface layer of an electrode with an electric current density of 20 to 500 mA / cm 2 in an aqueous solution containing 0.05 to 0.2 mol / l of nickel salt. The method for producing a cadmium negative electrode for an alkaline storage battery is characterized by forming a thin film layer of metallic nickel having a film thickness of 0.5 to 5 μm.

作 用 アルカリ蓄電池用カドミウム負極は、先にも述べたよう
に、優れた充放電特性を示すが、高温領域(40℃以
上)では高濃度アルカリ溶液中での水酸化カドミウムの
溶解度が高くなり、比較的短寿命になりやすいという欠
点を有する。高温領域において負極を放電した場合、放
電生成物がカドミ酸イオンとして溶出し、アルカリ電解
液中を拡散し、次に充電したときに元に戻らずに析出す
る。これは充放電サイクルのくり返しにより促進され、
負極は著しく変形し利用率が低下したり、デンドライト
等の成長によりセパレータ中を活物質が浸透し短絡を引
き起こしたりし、寿命を短かくする原因となる。
As mentioned above, the cadmium negative electrode for working alkaline storage battery shows excellent charge-discharge characteristics, but the solubility of cadmium hydroxide in a high-concentration alkaline solution becomes high in the high temperature region (40 ° C or higher), It has a drawback that it tends to have a relatively short life. When the negative electrode is discharged in a high temperature region, the discharge product elutes as cadmate ions, diffuses in the alkaline electrolyte, and is deposited without returning to the original state when charged next time. This is promoted by repeated charge and discharge cycles,
The negative electrode is significantly deformed and its utilization rate is lowered, or the growth of dendrite or the like causes the active material to penetrate into the separator to cause a short circuit, which causes a shortened life.

本発明では、電極表面層に、0.05〜0.2mol/l
のニッケル塩を含む水溶液中で、20〜500mA/cm
2の電流密度で電気メッキすることにより、膜厚が0.
5〜5μである金属ニッケルの薄膜層を形成せしめるこ
とにより、以上のような問題点を解決しようとするもの
である。前記方法により、極めて微細な金属ニッケル粒
子を電極表面層に緻密に形成させることができるので、
高温領域での放電主成物の溶解、拡散を防止することが
可能となり、充放電サイクル寿命が大幅に向上する。一
方、電極表面に薄膜層を形成させた場合、水酸イオンの
拡散が阻害されたり、ガス透過性が低下したりして、充
放電特性を低下させる場合があるが、本発明における方
法により得た負極では、薄膜が導電性を有するととも
に、触媒機能を果たすために、放電反応、ガス吸収反応
を共に促進することになるので、充放電特性に対して
は、悪影響をあたえない。またニッケル塩水溶液中で陰
電解することによっても、ニッケルの薄膜層を形成させ
ることができるが、この方法の場合、原因は明確ではな
いが、ニッケル塩水溶液中の不純物または金属ニッケル
以外の電解生成物が電極活物質中に残留し、自己放電が
著しく増大するという欠点があった。
In the present invention, the electrode surface layer contains 0.05 to 0.2 mol / l.
20-500mA / cm in aqueous solution containing nickel salt
By electroplating at a current density of 2 , the film thickness becomes 0.
By forming a thin film layer of metallic nickel having a thickness of 5 to 5 μm, it is intended to solve the above problems. By the above method, extremely fine metal nickel particles can be densely formed on the electrode surface layer,
It is possible to prevent the discharge main component from melting and diffusing in the high temperature region, and the charge / discharge cycle life is greatly improved. On the other hand, when a thin film layer is formed on the electrode surface, the diffusion of hydroxide ions may be hindered or the gas permeability may be decreased, which may deteriorate charge / discharge characteristics. Further, in the negative electrode, the thin film has conductivity, and since the thin film has a catalytic function, the discharge reaction and the gas absorption reaction are both promoted. Therefore, the charge / discharge characteristics are not adversely affected. A thin film layer of nickel can also be formed by performing negative electrolysis in an aqueous solution of nickel salt, but in this method, the cause is not clear, but impurities in the aqueous solution of nickel salt or electrolytic formation other than metallic nickel are generated. However, there is a drawback that the substance remains in the electrode active material and the self-discharge remarkably increases.

特に特開昭55−109371 号にあるように、電流密度1
0A/dm2以下、1mol/の硫酸ニッケル溶液中で陰電
解する場合には、メッキ条件としては最適であるが、被
メッキ物が多孔体であるために、ニッケルイオンが細孔
内に拡散し易く、前記の金属ニッケル以外の電解生成物
が入り込みやすく、自己放電を大きくしていた。これに
対して本発明における負極では、電解液濃度を通常のメ
ッキ液濃度の1/10、すなわち0.05〜0.2mol
/lに低くし、電流密度を通常の条件より大きい20〜
500mA/cm2とし、膜厚が0.5〜5μである金属
ニッケルの薄膜層を形成することにより、電解中のニッ
ケルイオンの拡散を遅らせ、電極の細孔内部に金属ニッ
ケルの電解生成物等が生成しないようにしているので、
自己放電などの特性を低下させることなく長寿命化を図
ることができる。
In particular, as disclosed in JP-A-55-109371, current density 1
When performing negative electrolysis in a nickel sulfate solution of 0 A / dm 2 or less and 1 mol / day, the plating conditions are optimal, but since the object to be plated is a porous body, nickel ions diffuse into the pores. It was easy to enter the electrolytic products other than the above-mentioned metallic nickel, and the self-discharge was increased. On the other hand, in the negative electrode of the present invention, the electrolytic solution concentration is 1/10 of the normal plating solution concentration, that is, 0.05 to 0.2 mol.
/ L, and the current density is higher than normal conditions 20 ~
By forming a thin film layer of metallic nickel having a film thickness of 0.5 to 5 μ at 500 mA / cm 2 , diffusion of nickel ions during electrolysis is delayed, and electrolytic products of metallic nickel inside the pores of the electrode, etc. Is not generated, so
It is possible to extend the life without deteriorating the characteristics such as self-discharge.

実施例 平均粒径約1μの酸化カドミウム粉末にポリビニルアル
コールのエチレングリコール溶液を加え、混練してペー
スト状にする。このペーストを導電性支持体である厚さ
0.1mmのニッケルメッキした開孔鋼板に塗着し、約1
40℃で30分間乾燥し、厚さ約0.5mmの電極を得
た。次にこの電極を、PH3、液温約25℃に調整した
硫酸ニッケルと塩化ニッケルの0.1mol/の混合液
中で、ニッケルを対極として、電流密度150mA/cm2
1分間電気メッキを行なった後、水洗,乾燥した。続い
て、この電極をアルカリ溶液中で理論容量の約40%充
電し、水洗,乾燥後、所定の寸法に切断してアルカリ蓄
電池用カドミウム負極を得た。この負極をaとする。
Example An ethylene glycol solution of polyvinyl alcohol was added to cadmium oxide powder having an average particle size of about 1 μm and kneaded to form a paste. Apply this paste to a nickel-plated perforated steel plate with a thickness of 0.1 mm, which is a conductive support, and apply about 1
After drying at 40 ° C. for 30 minutes, an electrode having a thickness of about 0.5 mm was obtained. Next, this electrode is electroplated for 1 minute at a current density of 150 mA / cm 2 in a mixed solution of nickel sulfate and nickel chloride of 0.1 mol / pH 3 adjusted to pH 3 and a solution temperature of about 25 ° C. with nickel as a counter electrode. After that, it was washed with water and dried. Subsequently, this electrode was charged in an alkaline solution at about 40% of the theoretical capacity, washed with water, dried, and cut into a predetermined size to obtain a cadmium negative electrode for an alkaline storage battery. Let this negative electrode be a.

一方、上記の電気メッキにより電極表面に金属ニッケル
薄膜を形成させない他は同様の構成による比較例のカド
ミウム負極を用意した。これをbとする。
On the other hand, a cadmium negative electrode of a comparative example having the same configuration was prepared except that the metal nickel thin film was not formed on the electrode surface by the above electroplating. Let this be b.

さらに、一般的な電解メッキの条件である濃度1mol/
、液温25℃、PH3の硫酸ニッケルと塩化ニッケル
の混合水溶液中で、30mA/cm2の電流密度で20分間こ
の電極を陰電解して比較例の負極Cを得た。
Furthermore, the concentration of 1 mol /
Then, this electrode was subjected to negative electrolysis for 20 minutes at a current density of 30 mA / cm 2 in a mixed aqueous solution of nickel sulfate and nickel chloride at a liquid temperature of 25 ° C. and PH 3 to obtain a negative electrode C of a comparative example.

上記、3種類のカドミウム負極を焼結式ニッケル正極と
組み合わせて、密閉形蓄電池を試作し、サイクル寿命試
験と、放電率特性試験および過充電時の電池内圧試験、
自己放電試験を行なった。サイクル寿命特性は、50℃
で、1/3C相当の電流で4.5時間充電し、1C相当の
抵抗負荷で完全放電をする充放電をくり返し、サイクル
による容量低下で評価した。放電率特性は、電池を20
℃で0.1C相当の電流で15時間充電し、1〜5C相
当の電流で放電したときの放電容量と、0.2C相当の
電流で放電したときの放電容量との比率で評価した。ま
た過充電時の電池内圧特性は、20℃で1/3C〜3C相
当の電流で過充電したときの電池内圧のピーク値で評価
した。
By combining the above three types of cadmium negative electrodes with a sintered nickel positive electrode, a sealed storage battery was prototyped, and a cycle life test, a discharge rate characteristic test, and a battery internal pressure test during overcharge,
A self-discharge test was conducted. Cycle life characteristics are 50 ℃
Then, the battery was charged with a current equivalent to 1 / 3C for 4.5 hours, and a complete discharge was repeated with a resistance load equivalent to 1C. The discharge rate characteristic is 20
It was evaluated by the ratio of the discharge capacity when the battery was charged at 0.1C for 15 hours at a current equivalent to 0.1C and discharged at a current equivalent to 1 to 5C and the discharge capacity when discharged at a current equivalent to 0.2C. In addition, the battery internal pressure characteristics during overcharge were evaluated by the peak value of the battery internal pressure when overcharged at a current equivalent to 1 / 3C to 3C at 20 ° C.

自己放電特性は、20℃で0.1C相当の電流で15時間
充電した後、45℃の温度で放置したときの自己放電量
で評価した。
The self-discharge characteristics were evaluated by the amount of self-discharge when the battery was charged at 20 ° C. with a current equivalent to 0.1 C for 15 hours and then left at a temperature of 45 ° C.

第1図は、1サイクル目の容量を100とした場合の容
量維持率と充放電サイクル数の関係を示す。aは本発明
による負極を用いた電池、bは比較の負極bを用いた従
来例の電池、cは比較の負極cを用いた従来例の電池を
示す。この結果から明らかなように、比較例の従来から
の負極b,cを用いた電池に比べて大幅にサイクル寿命
特性が向上している。各々の電池について、500サイ
クル経過後分解し、負極の外観の変化を調べたところ、
比較例の負極bでは著しく変形が進み、活物質がセパレ
ータ中に浸透している状態にあった。比較例の負極cで
は、bほどではないが、やや変形が進んでいる状態にあ
った。ところが、本発明による負極aではほぼ初期の状
態が保たれていた。このことから本発明による負極で
は、高温での充放電サイクルによっても、表面層に金属
ニッケルの微細な結晶粒子が緻密に密着することで、活
物質の溶解、析出による著しい変形を防止できるものと
考えられる。従来例の負極cも、金属ニッケルを電極に
形成させることには変わりはないが、電解ニッケルメッ
キ条件に近い条件で、実施例におけるような多孔性電極
に適用した場合、電極の細孔内にまでニッケルイオンが
円滑に拡散してしまい、電極表面よりも細孔内に金属ニ
ッケルが形成され易くなるので、表面層には緻密なメッ
キ層は形成されにくいと考えられる。これに対し、本発
明による負極aでは、ニッケルイオンの拡散が良好には
行なわれない条件なので、多孔性電極の表面のみに金属
ニッケルが緻密に形成されるものと思われる。したがっ
て寿命特性が大幅に向上するものと考えられる。
FIG. 1 shows the relationship between the capacity retention rate and the number of charge / discharge cycles when the capacity of the first cycle is 100. a is a battery using the negative electrode according to the present invention, b is a conventional battery using the comparative negative electrode b, and c is a conventional battery using the comparative negative electrode c. As is clear from this result, the cycle life characteristics are significantly improved as compared with the battery using the conventional negative electrodes b and c of the comparative example. Each battery was disassembled after 500 cycles and examined for changes in the appearance of the negative electrode.
The negative electrode b of the comparative example was significantly deformed, and the active material was in a state of permeating into the separator. The negative electrode c of the comparative example was in a state of being slightly deformed, though not as much as b. However, the negative electrode a according to the present invention maintained the almost initial state. From this, in the negative electrode according to the present invention, it is possible to prevent the significant deformation due to the dissolution and precipitation of the active material by finely adhering the fine crystal particles of metallic nickel to the surface layer even by the charge / discharge cycle at high temperature. Conceivable. The negative electrode c of the conventional example is the same as that of forming metallic nickel on the electrode, but when applied to the porous electrode as in the example under the conditions close to the electrolytic nickel plating conditions, the nickel is not formed in the pores of the electrode. It is considered that since nickel ions smoothly diffuse and metal nickel is more easily formed in the pores than the electrode surface, a dense plating layer is not easily formed on the surface layer. On the other hand, in the negative electrode a according to the present invention, it is considered that nickel metal is densely formed only on the surface of the porous electrode because the diffusion of nickel ions is not performed well. Therefore, it is considered that the life characteristics are significantly improved.

第2図は、放電容量比率と放電レートとの関係を示す。
aとb,cではほとんど差がないことがわかる。電極表
面層に薄膜が存在する場合、水酸イオンの供給が妨げら
れ、放電特性を著しく低下させることが考えられるが、
本発明による負極では、電極表面に導電ネットワークが
形成されているために、速やかに放電反応が起きると考
えられる。
FIG. 2 shows the relationship between the discharge capacity ratio and the discharge rate.
It can be seen that there is almost no difference between a, b and c. When a thin film is present on the electrode surface layer, it is considered that the supply of hydroxyl ions is hindered and the discharge characteristics are significantly reduced.
In the negative electrode according to the present invention, it is considered that the discharge reaction occurs promptly because the conductive network is formed on the electrode surface.

第3図は充電レートと電池内圧のピーク値との関係を示
す。これについても、aとb,cではほとんど差がな
く、むしろ本発明による負極の方が良好である。これも
放電特性と同様に、電極表面層に薄膜が存在する場合、
酸素ガスの透過が妨げられ、電池内圧を著しく上昇させ
ることが考えられるが、本発明による負極では表面に導
電ネットワークが形成されているために、充電時に正極
から発生する酸素ガスを効率的に吸収するためと考えら
れる。
FIG. 3 shows the relationship between the charging rate and the peak value of the battery internal pressure. Also in this case, there is almost no difference between a, b and c, and rather the negative electrode according to the present invention is better. This is also similar to the discharge characteristics, when a thin film is present on the electrode surface layer,
Although it is considered that the permeation of oxygen gas is hindered and the internal pressure of the battery is remarkably increased, the negative electrode according to the present invention has a conductive network formed on the surface, and therefore efficiently absorbs oxygen gas generated from the positive electrode during charging. It is thought to be to do.

第4図は、自己放電量を示す容量残存率と保存期間との
関係の図である。比較例の負極cは著しく自己放電が大
きい。従来のこの現象は明らかにされていないし、原因
も不明であるが、ニッケル塩水溶液中で陰電解をしてニ
ッケル薄膜を形成させる場合、電極中に不純物または金
属ニッケル以外の電解生成物が入り込み自己放電を大き
くしているものと考えられる。この負極cに対して本発
明による負極aでは、このようなことはなく比較例の負
極bと同等の自己放電量であり問題はない。これは本発
明による負極の場合、負極cに比べてニッケルイオン濃
度が低く、電流密度が大きいためにニッケルイオンの拡
散が遅れ電極の細孔内までニッケルが浸透せず、電極中
に不純物または金属ニッケル以外の電解生成物が入り込
むことがないからと考えられる。
FIG. 4 is a diagram of the relationship between the remaining capacity rate showing the amount of self-discharge and the storage period. The negative electrode c of the comparative example has remarkably large self-discharge. Conventionally, this phenomenon has not been clarified, and the cause is unknown, but when negative electrolysis is performed in a nickel salt aqueous solution to form a nickel thin film, impurities or electrolytic products other than metallic nickel enter the electrodes, and It is considered that the discharge is increased. In contrast to this negative electrode c, the negative electrode a according to the present invention does not have such a problem, and has the same amount of self-discharge as the negative electrode b of the comparative example, which is no problem. This is because, in the case of the negative electrode according to the present invention, the nickel ion concentration is lower than that of the negative electrode c and the current density is large, so that the diffusion of nickel ions is delayed and nickel does not penetrate into the pores of the electrode. It is thought that this is because electrolytic products other than nickel do not enter.

本発明による金属ニッケルの薄膜の厚みは0.5〜5μ
の範囲であり、0.5μ以下の場合、膜に存在する多数
の孔の孔径が大きくなり、放電時に溶出するカドミ酸イ
オンを電極の外へ拡散しやすくしてしまうために、0.
5μ以上の膜に比べてサイクル寿命の効果は顕著ではな
かった。また5μ以上になると、極めて微細な金属ニッ
ケルの粒子が、電極の表面を緻密に厚く覆ってしまうの
で、孔が塞がってしまい、放電特性および電池内圧に対
して影響が認められた。また、実施例ではペースト式カ
ドミウム負極を用いているが、他の焼結式カドミウム負
極においても同様であった。ただペースト式カドミウム
負極自体、他の方式に比べて、高温領域での充放電サイ
クルによる負極の変形,利用率の低下、デンドライトの
発生が著しいので、効果としては最も大きかった。
The thickness of the metallic nickel thin film according to the present invention is 0.5 to 5 μm.
In the range of 0.5 μm or less, the pore size of a large number of pores existing in the film becomes large, and the cadmate ion eluted during discharge is easily diffused out of the electrode.
The effect of cycle life was not remarkable as compared with the film of 5 μm or more. On the other hand, when the thickness is 5 μm or more, the extremely fine particles of metallic nickel densely cover the surface of the electrode thickly, so that the holes are closed and the discharge characteristics and the internal pressure of the battery are affected. Further, although the paste type cadmium negative electrode is used in the examples, the same applies to other sintered type cadmium negative electrodes. However, the paste-type cadmium negative electrode itself had the greatest effect as compared with the other methods, because the negative electrode was deformed due to charge / discharge cycles in a high temperature region, the utilization rate was lowered, and dendrites were significantly generated.

ニッケル塩水溶液は、通常ニッケルメッキを行なう場合
には1mol/程度であるが、本発明においては、0.
05〜0.2mol/の範囲で行なう必要がある。多孔
質電極の表面にニッケルメッキをする場合、ニッケル塩
水溶液の濃度が高いと、ニッケルの拡散,供給が円滑に
行なわれ電極の表面よりも細孔内にメッキされてしま
い、表面層にはメッキが十分ではなくなる。本発明のよ
うに0.05〜0.2mol/の範囲にすると、ニッケ
ルイオンの拡散の遅れが生じて、表面層のみにメッキが
行なわれる。メッキ電流密度についても同様であり、表
面のみメッキをするには、20〜500mA/cm2の範囲で行
なう必要がある。
The nickel salt aqueous solution is usually about 1 mol / liter when nickel plating is performed, but in the present invention, it is 0.
It is necessary to carry out in the range of 05 to 0.2 mol /. When nickel plating is applied to the surface of the porous electrode, if the concentration of the nickel salt aqueous solution is high, nickel is smoothly diffused and supplied, and the nickel is plated in the pores rather than the surface of the electrode. Is not enough. When it is in the range of 0.05 to 0.2 mol / as in the present invention, the diffusion of nickel ions is delayed and only the surface layer is plated. The same applies to the plating current density, and in order to plate only the surface, it is necessary to perform the plating in the range of 20 to 500 mA / cm 2 .

発明の効果 以上のように、本発明によれば、充放電特性,保存特性
を低下させることなくアルカリ蓄電池の高温における充
放電サイクル寿命を大幅に向上させることが可能とな
り、その工業的価値は大なるものがある。
Effects of the Invention As described above, according to the present invention, it is possible to significantly improve the charge / discharge cycle life at high temperature of an alkaline storage battery without deteriorating the charge / discharge characteristics and storage characteristics, and its industrial value is great. There is something.

【図面の簡単な説明】[Brief description of drawings]

第1図は、ニッケル−カドミウム蓄電池の容量維持率と
充放電サイクル数との関係を示す図、第2図は放電容量
比率と放電レートとの関係を示す図、第3図は電池内圧
のピーク値と充電レートとの関係を示す図、第4図は容
量残存率と保存期間との関係を示す図である。 aは、本発明における負極を用いた電池、bは比較例に
おける負極bを用いた電池、cは比較例における負極c
を用いた電池。
FIG. 1 is a diagram showing the relationship between the capacity maintenance rate and the number of charge / discharge cycles of a nickel-cadmium storage battery, FIG. 2 is a diagram showing the relationship between the discharge capacity ratio and the discharge rate, and FIG. 3 is the peak of the battery internal pressure. FIG. 4 is a diagram showing the relationship between the value and the charging rate, and FIG. 4 is a diagram showing the relationship between the remaining capacity rate and the storage period. a is a battery using the negative electrode of the present invention, b is a battery using the negative electrode b of the comparative example, and c is negative electrode c of the comparative example.
Battery using.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】0.05〜0.2mol/lのニッケル塩を
含む水溶液中で、20〜500mA/cm2の電流密度に
より、電極の活物質表面層に電気メッキをすることによ
り、膜厚が0.5〜5μである金属ニッケルの薄膜層を
形成することを特徴とするアルカリ蓄電池用カドミウム
負極の製造法。
1. A film thickness is obtained by electroplating an active material surface layer of an electrode with an electric current density of 20 to 500 mA / cm 2 in an aqueous solution containing a nickel salt of 0.05 to 0.2 mol / l. A method for producing a cadmium negative electrode for an alkaline storage battery, characterized in that a thin film layer of metallic nickel having a thickness of 0.5 to 5 μ is formed.
【請求項2】電極が、酸化カドミウムまたは水酸化カド
ミウムを主体とする活物質粉末をペースト状もしくはシ
ート状として導電性支持体の両側に塗布するペースト式
電極である特許請求の範囲第1項記載のアルカリ蓄電池
用カドミウム負極の製造法。
2. The paste type electrode according to claim 1, wherein the electrode is a paste type electrode in which an active material powder mainly containing cadmium oxide or cadmium hydroxide is applied to both sides of a conductive support in the form of paste or sheet. Manufacturing method of cadmium negative electrode for alkaline storage battery.
JP60107407A 1985-05-20 1985-05-20 Cadmium negative electrode manufacturing method Expired - Lifetime JPH0654662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107407A JPH0654662B2 (en) 1985-05-20 1985-05-20 Cadmium negative electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107407A JPH0654662B2 (en) 1985-05-20 1985-05-20 Cadmium negative electrode manufacturing method

Publications (2)

Publication Number Publication Date
JPS61264672A JPS61264672A (en) 1986-11-22
JPH0654662B2 true JPH0654662B2 (en) 1994-07-20

Family

ID=14458363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107407A Expired - Lifetime JPH0654662B2 (en) 1985-05-20 1985-05-20 Cadmium negative electrode manufacturing method

Country Status (1)

Country Link
JP (1) JPH0654662B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146270A (en) * 1987-12-01 1989-06-08 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109371A (en) * 1979-02-15 1980-08-22 Matsushita Electric Ind Co Ltd Method of producing cadmium negative electrode for alkaline battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109371A (en) * 1979-02-15 1980-08-22 Matsushita Electric Ind Co Ltd Method of producing cadmium negative electrode for alkaline battery

Also Published As

Publication number Publication date
JPS61264672A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
US7655273B2 (en) Method of manufacturing an electrode active material particle for a rechargeable battery
US3785868A (en) Zinc electrode
JPH0654662B2 (en) Cadmium negative electrode manufacturing method
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2589150B2 (en) Alkaline zinc storage battery
JPS6161227B2 (en)
JP2589750B2 (en) Nickel cadmium storage battery
EP0331599B1 (en) Process for obtaining electrodes with a non-woven support of nickel or nickel alloy fibres
JPH0628156B2 (en) Cadmium negative electrode manufacturing method
JPS6081777A (en) Nickel-zinc battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS61101955A (en) Alkali zinc storage cell
GB2044801A (en) Electrodepositing nickel over alkaline cell electrodes
JP2762730B2 (en) Nickel-cadmium storage battery
JP3540558B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery and nickel hydroxide electrode obtained by this method
JPS5814465A (en) Manufacture of cadmium negative electrode
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS60250556A (en) Production of nickel-cadmium storage battery
JPH071695B2 (en) Alkaline zinc storage battery
JPS6251157A (en) Manufacture of cathode plate for nickel-cadmium alkaline storage battery
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term