JPH0654134U - Tensile cable - Google Patents

Tensile cable

Info

Publication number
JPH0654134U
JPH0654134U JP261793U JP261793U JPH0654134U JP H0654134 U JPH0654134 U JP H0654134U JP 261793 U JP261793 U JP 261793U JP 261793 U JP261793 U JP 261793U JP H0654134 U JPH0654134 U JP H0654134U
Authority
JP
Japan
Prior art keywords
cable
tensile strength
coating layer
protective coating
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP261793U
Other languages
Japanese (ja)
Inventor
孝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP261793U priority Critical patent/JPH0654134U/en
Publication of JPH0654134U publication Critical patent/JPH0654134U/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Abstract

(57)【要約】 【目的】 高張力繊維のばらけ片寄による蛇行発生を防
止すると共に、端末処理を容易に、かつ端末部の小型化
を可能にした耐張力ケーブルを提供する。 【構成】 絶縁体2の外側に内外二層の保護被覆層3,
5を設け、上記保護被覆層3,5の間に高張力繊維41を
束ねその外側に被覆層42を施した抗張力体4を縦添えし
た耐張力ケーブル。
(57) [Summary] [PROBLEMS] To provide a tension-resistant cable which prevents the meandering due to the uneven displacement of high-tensile fibers, facilitates the terminal treatment, and enables the terminal section to be downsized. [Structure] Two outer and inner protective coating layers 3 are provided on the outside of the insulator 2.
5, a tensile strength cable in which a high-strength fiber 41 is bundled between the protective coating layers 3 and 5 and a tensile strength member 4 having a coating layer 42 on the outside thereof is vertically attached.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は例えば架空配電線の無停電バイパス工法に使用する耐張力ケーブルに 関するものである。 The present invention relates to a tensile strength cable used for an uninterruptible bypass construction method of an overhead distribution line, for example.

【0002】[0002]

【従来の技術】[Prior art]

架空配電線の無停電バイパス工法において、メッセンジャーワイヤーに吊架す ることなく直接架設しうる耐張力ケーブルとして、絶縁体の外側に内外二層の保 護被覆層を設け、上記保護被覆層の間に樹脂含浸のアラミド繊維の多数本を縦添 えしたケーブルが提案されている(平成1年実用新案登録願第72696 号参照)。 In the uninterruptible bypass construction method for overhead distribution lines, a tension-resistant cable that can be installed directly without hanging on a messenger wire is provided with two inner and outer protective coating layers on the outside of the insulator and between the above protective coating layers. A cable in which a large number of resin-impregnated aramid fibers are vertically added has been proposed (see 1991 Utility Model Registration Application No. 72696).

【0003】 図3はこのような耐張力ケーブルの構造例の横断面図である。図面において、 1は導体、2はポリエチレン、架橋ポリエチレンなどの絶縁体で、上記絶縁耐2 の外側には、ポリエチレン、塩化ビニル等の内部保護被覆層3及び外部保護被覆 層5が施されている。そして、上記内外保護被覆層3,5の間には、例えばポリ エステルなどの樹脂を含浸加工したアラミド繊維などの高張力繊維41の多数本が 縦添えにより設けられている。FIG. 3 is a cross-sectional view of a structural example of such a tensile strength cable. In the drawings, 1 is a conductor, 2 is an insulator such as polyethylene or cross-linked polyethylene, and an inner protective coating layer 3 and an outer protective coating layer 5 such as polyethylene or vinyl chloride are provided on the outer side of the insulation resistance 2. . A large number of high-strength fibers 41 such as aramid fibers impregnated with a resin such as polyester are vertically provided between the inner and outer protective coating layers 3 and 5.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

上述した従来の耐張力ケーブルは、アラミド繊維の単繊維の多数本を揃えた状 態で縦添えされているため、ケーブルを曲げたり、伸ばしたりする際に、内外二 層の保護被覆層内で揃え状態がばらけて片寄り状態となり、曲げ伸ばし後ケーブ ルに蛇行を生じさせることがある。この蛇行の原因となるばらけ片寄り状態は、 アラミド繊維に含浸した樹脂がアラミド繊維の一部とともに外部保護被覆層の内 面に接着することにより、不均一接着部分が障害となって助長される。その結果 、その部分に屈曲疲労が集中して導体断線に至ったり、ケーブルを使用後、再び ドラムに巻いて収納する際に、蛇行部分が障害になってドラムにケーブルが巻き 取りきれなくなるという問題点があった。 Since the conventional tensile strength cable described above is vertically attached with a large number of aramid fiber monofilaments aligned, when the cable is bent or stretched, it is protected by two protective layers inside and outside. The alignment may be loose and offset, causing the cable to meander after bending and stretching. The uneven biased state that causes the meandering is promoted by the resin impregnated in the aramid fiber adhering to the inner surface of the outer protective coating layer together with a part of the aramid fiber, which is an obstacle to the uneven adhesion part. It As a result, bending fatigue concentrates on that part and leads to conductor breakage, or when the cable is used after being wound on the drum again and stored, the meandering part becomes an obstacle and the cable cannot be wound up on the drum. There was a point.

【0005】 又、ケーブル端末処理の際には、アラミド繊維そのものを端末部に引留める必 要があるが、アラミド繊維は摩擦係数が小さく、かつ非常にしなやかなため、機 械的な把持により引留めようとしても、把持部で滑りが生じ堅固な引留めが困難 である。 このため、エポキシ樹脂などの硬化性樹脂を用いた固着による引留めを行って いるが、この方法はアラミド繊維を縦添えしない一般のケーブルの端末処理に比 べて非常に手数がかかるだけでなく、アラミド繊維を堅固に引留めるために必要 な固着寸法を確保せねばならず、端末部の寸法が大きくなるという問題点がある 。Further, when treating the cable end, it is necessary to hold the aramid fiber itself to the end portion, but since the aramid fiber has a small friction coefficient and is very flexible, it is pulled by mechanical gripping. Even if you try to fix it, slippage occurs at the grip and it is difficult to hold it firmly. For this reason, a curable resin such as an epoxy resin is used for fastening, but this method is much more labor-intensive than the end treatment of a general cable without aramide fiber vertically. However, there is a problem that the size of the end portion becomes large because it is necessary to secure the fixing dimension necessary for firmly holding the aramid fiber.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は上述の問題点を解消し、アラミド繊維のばらけ片寄による蛇行発生を 防止すると共に、端末処理を容易、かつ端末部の小型化が可能な耐張力ケーブル を提供するもので、その特徴は、絶縁体の外側に内外二層の保護被覆層を設け、 上記保護被覆層の間に、高張力繊維を束ねその外側に被覆層を施した抗張力体を 、少なくとも1本以上縦沿えしたことにある。 The present invention solves the above-mentioned problems, prevents the occurrence of meandering due to the uneven distribution of aramid fiber, and provides a tensile strength cable that can be easily processed at the end and the size of the end can be reduced. Is a structure in which two layers of inner and outer protective coating layers are provided on the outside of the insulator, and at least one or more tensile strength members having a bundle of high-strength fibers and a coating layer provided on the outside thereof are longitudinally arranged between the protective coating layers. It is in.

【0007】[0007]

【作用】[Action]

本考案の耐張力ケーブルにおいては、アラミド繊維などの高張力繊維を束ねそ の外側に被覆層を施した抗張力体を、内外二層の保護被覆層の間に縦添えするこ とにより、ケーブルの曲げ伸ばしに伴って抗張力体が周方向にずれ動いても、高 張力繊維はばらけず、外部保護被覆層との不均一接着も生じなくなるので、周方 向のずれ動きは可逆的なものになり、片寄は生じなくなり、ケーブルの蛇行発生 が防止できる。 In the tensile strength cable of the present invention, a high strength fiber such as aramid fiber is bundled and a tensile strength member having a coating layer on the outside of the bundle is vertically attached between two inner and outer protective coating layers. Even if the tensile strength body shifts in the circumferential direction due to bending and stretching, the high-tensile fibers do not disperse and uneven adhesion with the outer protective coating layer does not occur, so the circumferential shift movement becomes reversible. However, there is no deviation, and it is possible to prevent the cable from meandering.

【0008】 又、ケーブル端部において、抗張力体を引留める際は、外側の被覆層を介して 引留めることになるので、例えば図2のように、抗張力体4を内部引留金具6aの 外周に沿って折り曲げ、その上から押え金具6bで押え込んで把持する等、機械的 に把持して引留めることが可能である。尚、図面において、3は内部保護被覆層 、5は外部保護被覆層である。At the end of the cable, when the tension member is to be retained, the tension member 4 is retained via the outer coating layer. Therefore, for example, as shown in FIG. 2, the tension member 4 is attached to the outer circumference of the inner retention fitting 6a. It can be mechanically gripped and held, for example, by bending along and pressing it by the pressing metal fitting 6b to grip it. In the drawings, 3 is an internal protective coating layer and 5 is an external protective coating layer.

【0009】 上記抗張力体の被覆層の材質は特に問わないが抗張力体の外径増を抑えるため 可能な限り薄く被覆ができ、かつ十分な強度が得られるものが望ましい。一方、 このケーブルを外部保護被覆層上から把持金物で把持したとき、外部保護被覆層 の内面と抗張力体表面との摩擦力により、抗張力体を拘束し、抗張力体の伸びで ケーブル自身の伸びが制約されるようにする必要があるが、抗張力体の被覆層は ケーブルの曲げ伸ばしに伴って周方向に自由にずれ動かねばならないので、被覆 層の表面摩擦係数はμ=0.1〜0.8の範囲にあるのが望ましい。これらの条 件を満たす材料としては、例えばナイロン、ポリウレタン、塩化ビニル等が挙げ られる、又、厚みは強度面を考慮して0.01mm以上は必要である。The material of the coating layer of the tensile strength body is not particularly limited, but it is desirable that the coating layer can be coated as thinly as possible and sufficient strength can be obtained in order to suppress an increase in the outer diameter of the tensile strength body. On the other hand, when this cable is gripped by the gripping hardware from the outer protective coating layer, the tensile force is restrained by the frictional force between the inner surface of the outer protective coating layer and the surface of the strength member, and the elongation of the strength member causes the elongation of the cable itself. Although it must be restricted, the coating layer of the tensile strength member must move freely in the circumferential direction as the cable is bent and stretched, so the surface friction coefficient of the coating layer is μ = 0.1 to 0. It is preferably in the range of 8. Materials satisfying these conditions include, for example, nylon, polyurethane, vinyl chloride, etc. Further, considering the strength, the thickness must be 0.01 mm or more.

【0010】 抗張力体に用いる高張力繊維は、特に問わないが、アラミド繊維や超高分子量 ポリエチレンなど、破壊強度15g/d(デニール)以上、破断伸び10%以上 、比重2以下程度の高強度、低伸度、軽量な材料が望ましい。The high-strength fiber used for the tensile strength body is not particularly limited, but high strength such as aramid fiber and ultra high molecular weight polyethylene having a breaking strength of 15 g / d (denier) or more, a breaking elongation of 10% or more, and a specific gravity of 2 or less, A low elongation, lightweight material is desirable.

【0011】 尚、抗張力体の高張力繊維に硬化性の樹脂を含浸しておくと、抗張力体を端末 部で引留め後、樹脂が硬化されることにより引留め力の大幅な増大が可能となる 。このような硬化性の樹脂としては熱硬化性樹脂、紫外線硬化型樹脂、2液混合 型硬化性樹脂などが挙げられる。When the high-tensile fibers of the strength member are impregnated with a curable resin, the strength of the tightening force can be significantly increased by hardening the resin after the strength member is held at the terminal portion. Become . Examples of such a curable resin include a thermosetting resin, an ultraviolet curable resin, a two-component mixed curable resin, and the like.

【0012】 熱硬化性樹脂の場合は、端末処理後に引留め部分を加熱するだけで硬化が完了 するので、処理が簡便で、所要時間も短い。しかし、ケーブル使用温度のいかん によっては、端末部以外の部分でも徐々に硬化が進み、ケーブル全体が硬くなっ てしまう可能性が懸念される。In the case of a thermosetting resin, the curing is completed simply by heating the retaining portion after the terminal treatment, so that the treatment is simple and the time required is short. However, depending on the cable usage temperature, there is a concern that parts other than the terminal part will gradually harden and the entire cable will become hard.

【0013】 このようなケースでは紫外線硬化型樹脂を採用するとよい。この場合、被覆層 は紫外線が十分に透過するよう、例えば透明被覆にするとか配慮が必要である。 硬化処理は上記同様に簡便であるが、処理時間は上記の倍程度必要である。In such a case, an ultraviolet curable resin may be adopted. In this case, it is necessary to consider, for example, a transparent coating so that the ultraviolet ray is sufficiently transmitted. The curing treatment is as simple as the above, but the treatment time is about twice as long as the above.

【0014】 2液混合型硬化性樹脂を用いる場合は、硬化のために特別な設備を必要としな いので、処理を行う場所を選ばないというメリットがある。When the two-component mixed curable resin is used, no special equipment is required for curing, so that there is an advantage that the treatment is not performed at any place.

【0015】 以上高張力繊維への樹脂含浸は、必ずしもケーブル全長にわたって施す必要が なく、端末処理を行うケーブル端部のみで十分目的を達成できる。従って、例え ば樹脂を含浸しない抗張力体を使用し、端末処理時に抗張力体の端部から樹脂を 注射器などで注入するなどの方法をとれば、全長にわたって樹脂を含浸させる必 要はなくなる。As described above, it is not always necessary to impregnate the high-tensile fiber with the resin over the entire length of the cable, and the purpose can be sufficiently achieved only by the end portion of the cable that is subjected to the terminal treatment. Therefore, for example, if a tensile strength member not impregnated with a resin is used and the resin is injected from the end of the tensile strength member with a syringe or the like at the time of terminal treatment, it is not necessary to impregnate the resin over the entire length.

【0016】[0016]

【実施例】【Example】

図1は(イ)は本考案の耐張力ケーブルの実施例の横断面図、図1(ロ)は( イ)図のケーブルにおける抗張力体の具体例の横断面図である。 図面において、1は導体、2はポリエチレン、架橋ポリエチレンなどの絶縁体 で、絶縁体2の外側にはポリエチレン、塩化ビニルなどの内部保護被覆層3及び 外部保護被覆層5が施されており、上記内外二層の保護被覆層3,5の間には、 アラミド繊維、超高分子量ポリエチレン等の高張力繊維41を束ね、その外側にナ イロン、ポリウレタン、塩化ビニルなどの薄膜の被覆層42を施した抗張力体4の 1本乃至多数本を縦添えにより設けて構成されている。 FIG. 1 (a) is a cross-sectional view of an embodiment of a tensile strength cable of the present invention, and FIG. 1 (b) is a cross-sectional view of a concrete example of a strength member in the cable of FIG. 1 (a). In the drawing, 1 is a conductor, 2 is an insulator such as polyethylene or cross-linked polyethylene, and an outer protective coating layer 3 and an inner protective coating layer 5 such as polyethylene or vinyl chloride are provided on the outside of the insulator 2. A high-strength fiber 41 such as aramid fiber or ultra-high molecular weight polyethylene is bundled between the inner and outer protective coating layers 3 and 5, and a thin film coating layer 42 of nylon, polyurethane, vinyl chloride or the like is provided on the outside thereof. One or a large number of the tensile strength members 4 are vertically provided.

【0017】[0017]

【考案の効果】[Effect of device]

以上説明したように、本考案の耐張力ケーブルによれば、高張力繊維を束ねそ の外側に被覆層を設けた抗張力体を、内外二層の保護被覆層の間に縦添えするこ とにより、抗張力繊維のばらけによる片寄は生じなくなり、ケーブルの蛇行発生 を防止することができる。 又、ケーブルの端末処理においても、抗張力体を機械的に把持できるので、簡 便に、かつ小さな寸法で引留めることが可能となる。 As described above, according to the tension-resistant cable of the present invention, the high-strength fiber is bundled and the tensile strength member provided with the coating layer on the outer side is vertically attached between the protective coating layers of the inner and outer layers. As a result, uneven tension due to the looseness of the tensile strength fiber does not occur, and the meandering of the cable can be prevented. Moreover, since the tensile strength member can be mechanically gripped even at the end treatment of the cable, it is possible to easily hold the tensile member with a small size.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(イ)は本考案の耐張力ケーブルの実施例
の横断面図、図1(ロ)は(イ)図における抗張力体の
具体例の横断面図である。
1 (a) is a cross-sectional view of an embodiment of a tensile strength cable of the present invention, and FIG. 1 (b) is a cross-sectional view of a concrete example of a strength member in FIG. 1 (a).

【図2】本考案の耐張力ケーブルの端末処理の一例の説
明図である。
FIG. 2 is an explanatory view of an example of the terminal treatment of the tensile strength cable of the present invention.

【図3】従来の耐張力ケーブルの構造例の横断面図であ
る。
FIG. 3 is a cross-sectional view of a structure example of a conventional tensile strength cable.

【符号の説明】[Explanation of symbols]

1 導体 2 絶縁体 3 内部保護被覆層 4 抗張力体 41 高張力繊維 42 被覆層 5 外部保護被覆層 1 conductor 2 insulator 3 internal protective coating layer 4 tensile strength body 41 high-strength fiber 42 coating layer 5 external protective coating layer

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 絶縁体の外側に内外二層の保護被覆層を
設け、上記保護被覆層の間に、高張力繊維を束ねその外
側に被覆層を施した抗張力体を、少なくとも1本以上縦
添えしたことを特徴とする耐張力ケーブル。
1. At least one or more longitudinal tensile strength members each having a protective coating layer of two layers inside and outside are provided on the outside of an insulator, and high tension fibers are bundled and a coating layer is provided on the outside between the protective coating layers. A tensile strength cable characterized by being attached.
JP261793U 1993-01-06 1993-01-06 Tensile cable Pending JPH0654134U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP261793U JPH0654134U (en) 1993-01-06 1993-01-06 Tensile cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP261793U JPH0654134U (en) 1993-01-06 1993-01-06 Tensile cable

Publications (1)

Publication Number Publication Date
JPH0654134U true JPH0654134U (en) 1994-07-22

Family

ID=11534373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP261793U Pending JPH0654134U (en) 1993-01-06 1993-01-06 Tensile cable

Country Status (1)

Country Link
JP (1) JPH0654134U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228404A (en) * 2001-02-05 2002-08-14 Erumekku Denshi Kogyo Kk Landslide detection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228404A (en) * 2001-02-05 2002-08-14 Erumekku Denshi Kogyo Kk Landslide detection system
JP4636217B2 (en) * 2001-02-05 2011-02-23 エルメック電子工業株式会社 Landslide detection system

Similar Documents

Publication Publication Date Title
RU2548568C2 (en) Stranded thermoplastic polymer composite cables, methods for production and use thereof
JP5913085B2 (en) End fixing structure and method of fiber reinforced plastic filament
US4650715A (en) Element for transmission of tractive forces
US4813221A (en) Flexible tension members
JP3820031B2 (en) Fiber reinforced plastic strands and strands and methods for their production
JPH0654134U (en) Tensile cable
WO2021171603A1 (en) Optical fiber cable gripping device
JP2005208430A (en) Optical cable
JPH11124957A (en) Reinforced fiber reinforcing bar and reinforcing method for concrete structure
JPH01272889A (en) Terminal setting of composite filamentous form or twisted form thereof
JP3466155B2 (en) Composite strand, composite cable and method of using the same
US4825796A (en) Cable grip devices
JP4110621B2 (en) Composite striatum
JPH0336972Y2 (en)
JPH0921936A (en) Method for preventing movement of coated optical fiber of optical cable
JP3472746B2 (en) Tendon cable
JPH07230722A (en) Tension resisting cable
JPH10115097A (en) Covered cable composed of pc-steel material and its anchoring method
JP2008281878A (en) Optical cable
JP2007234520A (en) High-tensile power cable
US20230175202A1 (en) Fiber-reinforced composite cable with tow and power transmission line
EP0884816A1 (en) Aerial cable and tension clamp assembly
JPH1030304A (en) Joint of concrete reinforced member
JP2632488B2 (en) Terminal fixing method of high strength fiber reinforced FRP tendon material
JPH0326570Y2 (en)