JPH065331B2 - Hybrid multiplexer / demultiplexer - Google Patents

Hybrid multiplexer / demultiplexer

Info

Publication number
JPH065331B2
JPH065331B2 JP62058919A JP5891987A JPH065331B2 JP H065331 B2 JPH065331 B2 JP H065331B2 JP 62058919 A JP62058919 A JP 62058919A JP 5891987 A JP5891987 A JP 5891987A JP H065331 B2 JPH065331 B2 JP H065331B2
Authority
JP
Japan
Prior art keywords
collimator
light
optical fiber
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62058919A
Other languages
Japanese (ja)
Other versions
JPS63225206A (en
Inventor
安昭 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62058919A priority Critical patent/JPH065331B2/en
Publication of JPS63225206A publication Critical patent/JPS63225206A/en
Publication of JPH065331B2 publication Critical patent/JPH065331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光ファイバ通信に用いられ、発光素子コリメ
ータ、光ファイバコリメータ、干渉フィルタ及び反射用
ミラーが1個の筐体に収納されたハイブリッド合分波器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is used for optical fiber communication, and is a hybrid combination in which a light emitting element collimator, an optical fiber collimator, an interference filter and a reflecting mirror are housed in one housing. It relates to a duplexer.

(従来の技術) 1本の光ファイバに波長の異なる複数の光信号を重畳し
て独立の伝送路を提供する波長分割多重伝送方式は、光
ファイバ伝送路の両端に接続された光合分波器で光信号
の重畳(合波)及び分離(分波)が行われる。光合分波
器は、伝送用ポートの他、送信用ポート及び受信用ポー
トを有し、送・受信用ポートは各々外部の発光用モジュ
ール及び受光用モジュールが光ファイバを介して接続さ
れる。
(Prior Art) A wavelength division multiplexing transmission system, in which a plurality of optical signals having different wavelengths are superimposed on one optical fiber to provide an independent transmission line, is an optical multiplexer / demultiplexer connected to both ends of the optical fiber transmission line. The optical signals are superposed (multiplexed) and separated (demultiplexed). The optical multiplexer / demultiplexer has a transmission port, a transmission port, and a reception port in addition to the transmission port. The transmission / reception port is connected to an external light emitting module and an external light receiving module through an optical fiber, respectively.

一方、最近では光合分波器、発光素子及び受光素子を一
体化し、光合分波器と各素子間の光ファイバを省略し
て、これらを直結させた、所謂ハイブリッド合分波器が
現れている。
On the other hand, recently, a so-called hybrid multiplexer / demultiplexer has emerged in which an optical multiplexer / demultiplexer, a light emitting element, and a light receiving element are integrated, the optical multiplexer / demultiplexer and the optical fiber between each element are omitted, and these are directly connected. .

3つの異なる波長光を用いて双方向伝送を行う従来のハ
イブリッド合分波器の例を第2図に示してある。このハ
イブリッド合分波器ではガラスブロック200の光通過面
にそれぞれ異なった光学特性を持つ干渉フィルタ201、2
02、203が光学接着剤にて貼り付けられている。各干渉
フィルタ201〜302には、異なった波長通過特性を有する
誘電体多層膜が用いられる。また、光ファイバコリメー
タ204と、発光素子コリメータ205とは干渉フィルタ201
を介して光学的に結合され、発光素子206からの光は干
渉フィルタ201を通過後、光ファイバ207へ結合される。
同様に他方の発光素子コリメータ208の発光素子209から
の光は、干渉フィルタを通過し、干渉フィルタ203及び2
01で反射して光ファイバ207へ結合される。また、光フ
ァイバ207からの光は干渉フィルタ201で反射した後、干
渉フィルタ203を通って受光素子コリメータ210の受光素
子211へ結合される。尚、図中、212、213、214、215は
各コリメータの球レンズである。
FIG. 2 shows an example of a conventional hybrid multiplexer / demultiplexer that performs bidirectional transmission using lights of three different wavelengths. In this hybrid multiplexer / demultiplexer, interference filters 201, 2 having different optical characteristics are provided on the light passage surface of the glass block 200.
02 and 203 are attached with an optical adhesive. A dielectric multilayer film having different wavelength pass characteristics is used for each of the interference filters 201 to 302. In addition, the optical fiber collimator 204 and the light emitting element collimator 205 are the interference filter 201.
The light from the light-emitting element 206 is optically coupled via the interference filter 201 and then coupled to the optical fiber 207.
Similarly, the light from the light emitting element 209 of the other light emitting element collimator 208 passes through the interference filter, and the interference filters 203 and 2
The light is reflected at 01 and coupled to the optical fiber 207. Further, the light from the optical fiber 207 is reflected by the interference filter 201, then passes through the interference filter 203 and is coupled to the light receiving element 211 of the light receiving element collimator 210. In the figure, reference numerals 212, 213, 214 and 215 are spherical lenses of each collimator.

このようにハイブリッド合分波器は、発光及び受光素子
と合分波素子が一体化されているので、送信及び受信ポ
ートが電気端子になり、従って取り扱いが容易で小型
化、低コストとなる利点がある。
In this way, in the hybrid multiplexer / demultiplexer, since the light emitting / receiving element and the multiplexing / demultiplexing element are integrated, the transmission and reception ports are electrical terminals, and therefore, the advantages of easy handling, downsizing, and low cost There is.

しかし、第2図に示した従来のハイブリッド合分波器に
あっては、全ての干渉フィルタ201〜203や光反射部がガ
ラスブロック200に固着されているので、これらの相対
位置を自由に調節出来ないため、最適な光結合系を得る
ためには発光素子、受光素子、光ファイバ各コリメータ
205、208、210、204の精密位置決めにより、光結合を達成
しなければならない。
However, in the conventional hybrid multiplexer / demultiplexer shown in FIG. 2, since all the interference filters 201 to 203 and the light reflecting portions are fixed to the glass block 200, their relative positions can be adjusted freely. Since it is not possible, in order to obtain the optimum optical coupling system, light emitting element, light receiving element, optical fiber collimator
Optical coupling must be achieved by the precise positioning of 205, 208, 210, 204.

また、光結合手段の一例として発表例の中には、位置合
わせに際して、各構成部品を予め精密に加工した後、治
具等を用いて無調整にて、該構成部品を筐体(ケースと
もいう)に固定している例もある。受光素子と光ファイ
バとの光結合系の場合や発光素子として発光ダイオード
(LED)、光ファイバとしてコア径の大きいマルチモ
ードファイバ(通常50μmのコア径)との光結合の場合
のように光結合条件の比較的ゆるい結合系に於ては、こ
の方法である程度の光結合が達成出来る。しかし、発光
素子としてレーザダイオード(LD)、光ファイバとし
てコア径の小さいシングルモードファイバ(通常10μm
のコア径)との光結合に於ては、極めて厳しい機械的、
光学的条件が要求されるため、斯る手段では係る結合系
の達成は極めて困難である。
Also, in the example of the announcement as an example of the optical coupling means, when the components are aligned, the components are processed in advance in a precise manner, and then the components are unadjusted by using a jig or the like. There is also an example where it is fixed to. Optical coupling such as in the case of an optical coupling system of a light receiving element and an optical fiber, a light emitting diode (LED) as a light emitting element, and a multimode fiber with a large core diameter (usually 50 μm core diameter) as an optical fiber In a coupling system with relatively mild conditions, some degree of optical coupling can be achieved by this method. However, a laser diode (LD) is used as a light emitting element, and a single mode fiber (usually 10 μm) with a small core diameter is used as an optical fiber.
In terms of optical coupling with the core diameter of
Since optical conditions are required, it is extremely difficult to achieve such a binding system by such means.

また、光結合を達成する別の手段として、発光素子、受
光素子の光学的最適位置決めを調整によって行った後、
筐体に固定する方法もある。この場合は上記のような光
結合条件の厳しい光結合系においても、光結合そのもの
は達成出来る。しかし、発光素子、受光素子、或は発光
素子コリメータ、受光素子コリメータは光結合調整工程
が終了した後、それらの位置をそのまま保持した状態で
固定されなければならないので機械的固定強度、発光素
子から筐体への放熱効果、受光素子の高周波接地が充分
満足されない状態で固定されることになり、ハイブリッ
ド合分波器としての信頼性、性能を充分発揮出来ない欠
点がある。即ちハイブリッド合分波器においては、これ
ら発光、受光素子及び光コリメータは筐体上に機械的に
充分安定して固定されることが必要であり、しかも発光
素子に関してはその発熱量を筐体上に効率よく伝導放熱
することが発光素子信頼性向上の面から要求され、ま
た、受光素子に関しては特に高周波誘導雑音の影響を招
かないよう充分なる高周波接地がなされることが必要で
ある。
In addition, as another means for achieving optical coupling, after performing optimal optical positioning of the light emitting element and the light receiving element by adjustment,
There is also a method of fixing to the case. In this case, the optical coupling itself can be achieved even in the optical coupling system having severe optical coupling conditions as described above. However, the light emitting element, the light receiving element, or the light emitting element collimator, the light receiving element collimator must be fixed with their positions held after the optical coupling adjustment process is completed. Since the heat radiation effect to the housing and the high-frequency grounding of the light receiving element are fixed in a state that is not sufficiently satisfied, there is a drawback that the reliability and performance of the hybrid multiplexer / demultiplexer cannot be fully exhibited. That is, in the hybrid multiplexer / demultiplexer, the light emitting element, the light receiving element, and the optical collimator need to be mechanically and stably fixed on the housing, and the heat generation amount of the light emitting element must be fixed on the housing. In order to improve the reliability of the light emitting device, it is necessary to efficiently conduct and dissipate heat, and it is necessary for the light receiving device to be sufficiently grounded at a high frequency so as not to be influenced by high frequency induction noise.

従来のハイブリッド合分波器の他の実施例の構成図を第
3図に示す。この場合は発光素子コリメータ301及び受
光素子コリメータ302は筐体300上に強固に取り付けるこ
とが出来る。即ちこのハイブリッド合分波器では、発光
素子303とレンズ304を組み合せて一体化した発光素子コ
リメータ301と、受光素子305とレンズ306を組み合せて
一体化した受光素子コリメータ302と、光ファイバ307と
レンズ308を組み合せて一体化した光ファイバコリメー
タ309をあらかじめ用意しておき、内部が分割用仕切壁3
10によって3分割された空間を持つ筐体用300内にこれ
らをそれぞれ収納配置させ、この分割用仕切壁310に設
けられた各光通過孔311、312に設けられた各干渉フィル
タ313、314を通して、発光素子303と光ファイバ307との
光結合を行うと同時に、受光素子305と同光ファイバ307
との光結合を行うように構成されている。尚、316は光
通過孔317を有する高周波遮幣板、318は電気信号入力端
子、319は電気信号出力端子、320は光ファイバコリメー
タ309のスリーブ、321はそのフェルール、322はその反
射防止用ガラス、323は光ファイバコリメータ309の取り
付け用の筐体貫通孔である。
FIG. 3 shows a block diagram of another embodiment of the conventional hybrid multiplexer / demultiplexer. In this case, the light emitting element collimator 301 and the light receiving element collimator 302 can be firmly mounted on the housing 300. That is, in this hybrid multiplexer / demultiplexer, a light emitting element collimator 301 in which a light emitting element 303 and a lens 304 are combined and integrated, a light receiving element collimator 302 in which a light receiving element 305 and a lens 306 are combined and integrated, an optical fiber 307 and a lens are combined. An optical fiber collimator 309 that is an integrated combination of 308 is prepared in advance, and the inside is a partition wall 3 for division.
These are housed and arranged in a housing 300 having a space divided into three by 10 and passed through interference filters 313 and 314 provided in respective light passage holes 311 and 312 provided in the dividing partition 310. , The light emitting element 303 and the optical fiber 307 are optically coupled, and at the same time, the light receiving element 305 and the optical fiber 307 are coupled.
Is configured to perform optical coupling with. In addition, 316 is a high-frequency shielding plate having a light passage hole 317, 318 is an electric signal input terminal, 319 is an electric signal output terminal, 320 is a sleeve of the optical fiber collimator 309, 321 is its ferrule, and 322 is its antireflection glass. , 323 are housing through holes for mounting the optical fiber collimator 309.

この時、発光素子コリメータ301及び受光素子コリメー
タ302は筐体300の所定の位置に無調整にて取り付け固定
されている。
At this time, the light emitting element collimator 301 and the light receiving element collimator 302 are attached and fixed to a predetermined position of the housing 300 without adjustment.

発光素子303と光ファイバ307との光結合に際しては発光
素子コリメータ301からの光ビームを基準にして光ファ
イバコリメータ309を位置調整した後、その位置を正確
に保持した状態で筐体300上に固定し、また受光素子305
と光ファイバ307との光結合に際しては、上記手段によ
って固定された光ファイバコリメータ309を基準として
光ファイバ307からの出射ビーム光を干渉フィルタ313及
び自在ミラー315にて反射させ、その反射光を自在ミラ
ー315の角度、位置調整にて受光素子305へ結合させる。
When the light emitting element 303 and the optical fiber 307 are optically coupled, the position of the optical fiber collimator 309 is adjusted with reference to the light beam from the light emitting element collimator 301, and then the position is accurately held and fixed on the housing 300. In addition, the light receiving element 305
At the time of optical coupling between the optical fiber 307 and the optical fiber 307, the beam emitted from the optical fiber 307 is reflected by the interference filter 313 and the universal mirror 315 with the optical fiber collimator 309 fixed by the above means as a reference, and the reflected light is freely distributed. It is coupled to the light receiving element 305 by adjusting the angle and position of the mirror 315.

即ち、本例の光結合調整は、光ファイバコリメータ309
の調整固定と、自在ミラー315の調整固定の2段階の調
整、固定が必要とされる。
That is, the optical coupling adjustment of this example is performed by the optical fiber collimator 309.
It is necessary to adjust and fix the free mirror 315 and the adjustable mirror 315 in two stages.

また光ファイバコリメータ309を調整固定するために、
光ファイバ307と、筐体貫通孔323との間に間隙を設ける
必要があり、光ファイバコリメータ309を固定した後、
その間隙の気密封止を接着剤の充填等にて施さねばなら
ない(この作業はなかなか困難なものである)。
In order to adjust and fix the optical fiber collimator 309,
It is necessary to provide a gap between the optical fiber 307 and the housing through hole 323, and after fixing the optical fiber collimator 309,
The gap must be hermetically sealed by filling with an adhesive or the like (this work is quite difficult).

(発明が解決しようとする問題点) このように、従来のハイブリッド合分波器においては、
それぞれの構造により次のような問題点があった。
(Problems to be Solved by the Invention) As described above, in the conventional hybrid multiplexer / demultiplexer,
Each structure had the following problems.

干渉フィルタや、光反射部がガラスブロックに固着さ
れている構造のものでは、発光素子コリメータ、受光素
子コリメータ、光ファイバコリメータの精密位置決めを
行って光結合を達成する必要があったため光結合特性の
劣下を招き易いこと。
In the case of an interference filter or a structure in which the light reflection part is fixed to the glass block, it is necessary to perform precise positioning of the light emitting element collimator, the light receiving element collimator, and the optical fiber collimator to achieve optical coupling. Easy to cause inferiority.

各構成部品を予め精密加工して無調整で筐体に固定す
る構造では、光結合に厳しい機械的、光学的条件が要求
されるので、光結合特性を向上させることが出来ないこ
と。
In a structure in which each component is precision machined in advance and fixed to the housing without adjustment, strict mechanical and optical conditions are required for optical coupling, so optical coupling characteristics cannot be improved.

発光素子、受光素子の光学的最適位置決めの調整後
に、これらを筐体に固定する構造のものでは、機械的に
安定に固定出来ず、発光素子の熱の充分な放熱及び受光
素子の充分な高周波接地を達成出来ないこと。
A structure that fixes the light emitting element and the light receiving element to the housing after adjusting the optical optimum positioning cannot mechanically and stably fix the light emitting element and the light receiving element. Not able to achieve grounding.

自在ミラーを用いる構造のものでは、光結合系におい
て、2段階の調整(非常に精密な調整が必要とされるの
で調整作業に相当の時間、工程がかかる)、固定を必要
とし、かつ光ファイバと筐体との間の気密封止作業を必
要とすること。
In the structure using the flexible mirror, the optical coupling system requires two-step adjustment (a very precise adjustment is required, which requires a considerable amount of time and steps for the adjustment work) and fixing, and an optical fiber. Requiring hermetic sealing between the housing and the enclosure.

この発明はかかる事情に鑑みてなされたものであり、第
1の目的は、発光素子としてレーザダイオード、光ファ
イバとしてシングルモードファイバ(むろんマルチモー
ドファイバでもよい)を光結合特性の劣下を招くことな
く容易に結合しうるハイブリッド合分波器を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and a first object thereof is to cause a laser diode as a light emitting element and a single mode fiber (or, of course, a multimode fiber) as an optical fiber to deteriorate optical coupling characteristics. It is to provide a hybrid multiplexer / demultiplexer that can be easily combined.

第2の目的は、素子コリメータ、受光素子コリメータ、
光ファイバコリメータの全てのコリメータを筐体内に直
接無調整にて取り付け固定することによって、機械的に
安定で発光素子からの放熱効果を大ならしめ、かつ発
光、受光素子の高周波接地を容易ならしむるとともに、
光ファイバコリメータを光ファイバ外力から保護し、し
かも気密封止を容易ならしむるハイブリッド合分波器を
提供することにある。
The second purpose is element collimator, light receiving element collimator,
By directly fixing and fixing all the collimators of the optical fiber collimator in the housing without adjustment, the heat radiation effect from the light emitting element is increased mechanically and the high frequency grounding of the light emitting element and the light receiving element is facilitated. Along with
It is an object of the present invention to provide a hybrid multiplexer / demultiplexer that protects an optical fiber collimator from an external force of an optical fiber and facilitates hermetic sealing.

第3の目的は、受光素子コリメータと光ファイバコリメ
ータ及び干渉フィルタ間の光結合を無調整にて実現し、
発光素子と光ファイバとの結合においては、ただ1回の
自在ミラーの調整のみでこれを行うことが出来るハイブ
リッド合分波器を提供することにある。
The third purpose is to realize optical coupling between the light receiving element collimator, the optical fiber collimator and the interference filter without adjustment,
It is an object of the present invention to provide a hybrid multiplexer / demultiplexer capable of performing the adjustment of the free mirror only once in coupling the light emitting element and the optical fiber.

第4の目的は、光ファイバとケース間との間隙を零に出
来ることで、その間の気密封止を容易にしかも完全に行
うことが出来る構造のハイブリッド合分波器を提供する
ことにある。
A fourth object is to provide a hybrid multiplexer / demultiplexer having a structure in which the gap between the optical fiber and the case can be reduced to zero, so that airtight sealing between them can be performed easily and completely.

(問題点を解決するための手段) この目的の達成を図るため、この発明のハイブリッド合
分波器によれば、 筐体を金属製筐体とし、この筐体に、光ファイバコリメ
ータ、発光素子コリメータおよび受光素子コリメータを
固定してあり、 受光素子コリメータを、光ファイバコリメータ及び発光
素子コリメータと、この筐体に設けられかつ光通過孔を
有する金属製仕切壁を隔てて、設け、 これら受光素子コリメータと光ファイバコリメータとを
ほぼ同一光軸上に配置すると共に、少なくとも第一及び
第二干渉フィルタが透光性ブロックに固着されて成る干
渉フィルタブロックを両コリメータ間の光路中に配置
し、 光反射手段を位置及び角度調節自在な光反射手段とし
て、この光反射手段を発光素子コリメータと光ファイバ
コリメータとの間の光路中に配置して成ることを特徴と
する。
(Means for Solving Problems) In order to achieve this object, according to the hybrid multiplexer / demultiplexer of the present invention, a housing is made of a metal, and the housing is provided with an optical fiber collimator and a light emitting element. The collimator and the light receiving element collimator are fixed, and the light receiving element collimator is provided by separating the optical fiber collimator and the light emitting element collimator from the metal partition wall provided in this housing and having a light passage hole. The collimator and the optical fiber collimator are arranged on substantially the same optical axis, and an interference filter block in which at least a first and a second interference filter are fixed to a translucent block is arranged in the optical path between the two collimators. The reflecting means is a light reflecting means whose position and angle can be adjusted, and the light reflecting means is provided between the light emitting element collimator and the optical fiber collimator. Characterized by comprising in place in road.

この発明の実施に当り、発光素子コリメータと受光素子
コリメータとを互いに光軸が平行となるように配置する
のが好適である。
In practicing the present invention, it is preferable to dispose the light emitting element collimator and the light receiving element collimator so that their optical axes are parallel to each other.

また、この発明の他の好適実施例では、発光素子コリメ
ータと受光素子コリメータとを互いに光軸が直交するよ
うに配置しても良い。
In another preferred embodiment of the present invention, the light emitting element collimator and the light receiving element collimator may be arranged so that their optical axes are orthogonal to each other.

さらに、光反射手段を、好ましくは、円筒部と、この円
筒部にしたボールジョイント式のホルダと、このホルダ
の上部に取り付けられた互いに鋭角で対向する二枚の平
面反射鏡とを以って構成するのが良い。
Further, the light reflecting means preferably comprises a cylindrical portion, a ball joint type holder formed in the cylindrical portion, and two plane reflecting mirrors attached to the upper portion of the holder and facing each other at an acute angle. Good to configure.

(作用) このように、この発明のハイブリッド合分波器の構成に
よれば、その筐体内部を発光素子部を含む光結合部と受
光素子部の少なくとも2つに仕切壁にて分割し、受光素
子コリメータと光ファイバコリメータをほぼ同一光軸上
の位置に無調整にて配置固定せしめ、かつこれらのコリ
メータを結ぶ光路上の空間に干渉フィルタブロックを無
調整にて挿入し、一方、発光素子コリメータから光ファ
イバコリメータに至る光路中に角度、位置調節自在な光
反射手段を設けることが出来る。また、金属製仕切壁上
には光通過用の孔があけられている。このため、発光素
子から受光素子への迷光の入射を防ぐだけでなく、電気
的誘導による漏話を防ぐことができる。
(Operation) As described above, according to the configuration of the hybrid multiplexer / demultiplexer of the present invention, the inside of the housing is divided into at least two of the optical coupling portion including the light emitting element portion and the light receiving element portion by the partition wall, The light receiving element collimator and the optical fiber collimator are arranged and fixed at almost the same optical axis position without adjustment, and the interference filter block is inserted into the space on the optical path connecting these collimators without adjustment. In the optical path from the collimator to the optical fiber collimator, it is possible to provide a light reflecting means whose angle and position can be adjusted. In addition, a hole for passing light is formed on the metal partition wall. Therefore, it is possible not only to prevent stray light from entering the light receiving element from the light emitting element, but also to prevent crosstalk due to electrical induction.

従って、光ファイバから受信されるべき波長を持つ光は
干渉フィルタ、光通過孔を通って受光素子へ直接結合さ
れ、一方送信されるべき他の波長を持つ発光素子からの
光は光反射手段、第一の干渉フィルタを通過後、第二干
渉フィルタで反射した後、光ファイバへと結合させるこ
とが出来る。
Therefore, the light having the wavelength to be received from the optical fiber is directly coupled to the light receiving element through the interference filter, the light passage hole, while the light from the light emitting element having the other wavelength to be transmitted is the light reflecting means, After passing through the first interference filter, after being reflected by the second interference filter, it can be coupled into an optical fiber.

この場合、発光素子から受光素子への電気的誘導による
影響は金属製仕切壁の効果によって避けられる。
In this case, the effect of electrical induction from the light emitting element to the light receiving element can be avoided by the effect of the metal partition wall.

(実施例) 以下、図面により、この発明の実施例を説明する。尚、
図はこの発明が理解出来る程度に概略的に示してあるに
すぎず、従って、各構成成分の形状、寸法、配置関係は
図示例に限定されるものではないことを理解されたい。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. still,
It is to be understood that the drawings are only schematically shown to the extent that the present invention can be understood, and therefore the shapes, dimensions, and arrangement relationships of the respective constituent components are not limited to the illustrated examples.

第1図にはこの発明が適用されたハイブリッド合分波器
の第1実施例を示す断面図である。
FIG. 1 is a sectional view showing a first embodiment of a hybrid multiplexer / demultiplexer to which the present invention is applied.

このハイブリッド合分波器を外側を被覆する金属製筐体
100、受光素子コリメータ101、発光素子コリメータ10
2、光ファイバコリメータ103、干渉フィルタブロック10
4及び光反射手段例えば自在ミラー105から構成されてい
る。
Metal housing that covers the outside of this hybrid multiplexer / demultiplexer
100, light receiving element collimator 101, light emitting element collimator 10
2, optical fiber collimator 103, interference filter block 10
4 and a light reflecting means, for example, a flexible mirror 105.

筐体100の内部は金属製仕切壁106によって受光素子コリ
メータ挿入孔107、発光素子コリメータ挿入孔108、光フ
ァイバコリメータ挿入孔109を含む光結合部空間110の3
つに分割されており、受光素子コリメータ挿入孔107に
は円柱状の受光素子コリメータ101が、発光素子コリメ
ータ挿入孔108には円柱状の発光素子コリメータ102が、
光ファイバコリメータ挿入孔109には円柱状の光ファイ
バコリメータ103がそれぞれ挿入され、また光結合部空
間110には干渉フィルタブロック104及び例えば自在ミラ
ーのような光反射手段105が図示する如く配置されてい
る。
The inside of the housing 100 is formed by a metal partition wall 106, which is a light coupling element space 110 including a light receiving element collimator insertion hole 107, a light emitting element collimator insertion hole 108, and an optical fiber collimator insertion hole 109.
The light receiving element collimator insertion hole 107 has a cylindrical light receiving element collimator 101, and the light emitting element collimator insertion hole 108 has a cylindrical light emitting element collimator 102.
A cylindrical optical fiber collimator 103 is inserted into each of the optical fiber collimator insertion holes 109, and an interference filter block 104 and a light reflecting means 105 such as a free mirror are arranged in the optical coupling portion space 110 as shown in the figure. There is.

発光素子コリメータ102は発光素子111と、球レンズ112
と、円筒状のスリーブ113からなり、発光素子111はレー
ザダイオードや、発光ダイオードが用いられて円筒状ス
リーブ113の内部で球レンズ112の焦点位置に配置されて
いる。このため、発光素子111からの放射光は球レンズ1
12で平行ビームに変換され、その平行ビーム光は円筒状
スリーブ113と大略同軸上に発射される。
The light emitting element collimator 102 includes a light emitting element 111 and a spherical lens 112.
And a cylindrical sleeve 113, and the light emitting element 111 is arranged at the focal position of the spherical lens 112 inside the cylindrical sleeve 113 using a laser diode or a light emitting diode. Therefore, the light emitted from the light emitting element 111 is emitted by the spherical lens 1.
It is converted into a parallel beam at 12, and the parallel beam is emitted substantially coaxially with the cylindrical sleeve 113.

一方、受光素子コリメータ101は受光素子114と、球レン
ズ115と、円筒状のスリーブ116からなり、受光素子114
が円筒状スリーブ116内部に於て球レンズ115の焦点位置
に配置されており、円筒状スリーブ116の同軸上にある
外部からの平行ビーム光が受光素子114に結合される。
尚、ハイブリッド合分波器に用いる発光素子111及び受
光素子114は、当方のハイブリッド合分波器の発光素子
からの光を相手方のハイブリッド合分波器の受光素子で
受光し、又、相手方のハイブリッド合分波器の発光素子
からの光を当方の受光素子で受光できるように構成して
ある。
On the other hand, the light receiving element collimator 101 includes a light receiving element 114, a spherical lens 115, and a cylindrical sleeve 116.
Is arranged at the focal position of the spherical lens 115 inside the cylindrical sleeve 116, and the parallel beam light from the outside which is coaxial with the cylindrical sleeve 116 is coupled to the light receiving element 114.
The light emitting element 111 and the light receiving element 114 used in the hybrid multiplexer / demultiplexer receive the light from the light emitting element of the hybrid multiplexer / demultiplexer of the other side by the light receiving element of the hybrid multiplexer / demultiplexer of the other side, and The light from the light emitting element of the hybrid multiplexer / demultiplexer can be received by the light receiving element on the other side.

光ファイバコリメータ103は先端の球レンズ117、光ファ
イバ118を内蔵したフェルール119、及びこれらを収納保
持する円筒状スリーブ120から構成されており、光ファ
イバ118の先端面は球レンズ117の焦点位置にあり、後端
は、筐体100を貫通して外部に延びている。このため球
レンズ117に入射した円筒状スリーブ120と同軸上にある
左方からの平行ビーム光は収束して光ファイバ118に結
合すると共に、光ファイバ118からの光は円筒状スリー
ブ120と同軸上の平行ビーム光となって左方へ発射され
る。尚、この場合、光ファイバコリメータ103を筐体100
へ直接強固な取り付けることが出来るので、コリメータ
取り付け部に筐体との間の間隙がない状態、即ち気密封
止を容易に実現出来ると共に、光ファイバに加わる外力
からも内部を保護することが出来る。
The optical fiber collimator 103 is composed of a spherical lens 117 at the tip, a ferrule 119 containing an optical fiber 118, and a cylindrical sleeve 120 for housing and holding these, and the tip surface of the optical fiber 118 is at the focal position of the spherical lens 117. The rear end extends through the housing 100 to the outside. Therefore, the parallel beam light from the left side that is coaxial with the cylindrical sleeve 120 that has entered the spherical lens 117 is converged and coupled to the optical fiber 118, and the light from the optical fiber 118 is coaxial with the cylindrical sleeve 120. It becomes a parallel beam of light and is emitted to the left. In this case, the optical fiber collimator 103 is attached to the housing 100.
Since it can be directly and firmly attached to the collimator, there is no gap between the collimator attachment part and the case, that is, airtight sealing can be easily realized and the inside can be protected from external force applied to the optical fiber. .

筐体100上の光ファイバコリメータ挿入孔109と受光素子
コリメータ挿入孔107とはほぼ光軸上に平行して設けら
れており、また発光素子コリメータ挿入孔108は光ファ
イバコリメータ挿入孔109と図示する如くほぼ平行して
設けられており、それぞれの挿入孔107〜109にはそれぞ
れのコリメータ101〜103が挿入されている。この場合、
発光素子コリメータ、受光素子コリメータ、光ファイバ
コリメータを予め無調整にて筐体を取り付けることが出
来る(作業工程が非常に楽になる)。
The optical fiber collimator insertion hole 109 on the housing 100 and the light receiving element collimator insertion hole 107 are provided substantially parallel to the optical axis, and the light emitting element collimator insertion hole 108 is shown as the optical fiber collimator insertion hole 109. As described above, the collimators 101 to 103 are inserted into the insertion holes 107 to 109, respectively. in this case,
The light emitting element collimator, the light receiving element collimator, and the optical fiber collimator can be attached to the housing without adjustment in advance (the work process becomes very easy).

また光ファイバコリメータ103と受光素子コリメータ101
とを結ぶ光軸上には光の波長に応じて光路を変換する機
能を有する干渉フィルタブロック104が傾斜して固着さ
れている。干渉フィルタは周知のように波長に応じた固
有の通過、反射特性を有しており、干渉フィルタブロッ
ク104は平行な研磨面を持つガラスブロック121の対向面
の適当な箇所に異種の干渉フィルタ122、123が光学的接
着剤等にて貼り付けられることで構成されている。この
干渉フィルタブロック104を筐体100内に設けられた基準
に(例えば筐体底面にケガかれた基準線)に合せるだけ
の簡易な設定で固定するだけでよい。そのとき、自動的
に光ファイバ118、干渉フィルタ121、受光素子114間の
光結合が達成され、光ファイバ118からの光は一方の干
渉フィルタ122を通って受光素子114に直接結合される。
In addition, the optical fiber collimator 103 and the light receiving element collimator 101
An interference filter block 104 having a function of converting an optical path according to a wavelength of light is obliquely fixed on an optical axis connecting with and. As is well known, the interference filter has peculiar passage and reflection characteristics depending on the wavelength, and the interference filter block 104 has different interference filters 122 at appropriate places on the facing surface of the glass block 121 having parallel polishing surfaces. , 123 are attached by an optical adhesive or the like. It is only necessary to fix the interference filter block 104 with a simple setting that matches the reference provided in the housing 100 (for example, the reference line scratched on the bottom surface of the housing). At that time, the optical coupling between the optical fiber 118, the interference filter 121, and the light receiving element 114 is automatically achieved, and the light from the optical fiber 118 is directly coupled to the light receiving element 114 through the one interference filter 122.

一方、第1図右側下方には、光反射手段105としての自
在ミラーが設置されており、発光素子111からの光はこ
の自在ミラー105にて反射され、干渉フィルタブロック1
04上の他方の干渉フィルタ123へ導かれ、これを透過
後、再び一方の干渉フィルタ122にて反射され、光ファ
イバ118へと結合される(受光素子114へ入る光と発光素
子111から放射される光は波長が異なるので干渉フィル
タブロック104の効果によってこのように光路が異なっ
てくれる)。
On the other hand, on the lower right side of FIG. 1, a universal mirror as the light reflecting means 105 is installed, and the light from the light emitting element 111 is reflected by the universal mirror 105 and the interference filter block 1
After being guided to the other interference filter 123 on 04, transmitted therethrough, it is reflected again by the one interference filter 122 and coupled to the optical fiber 118 (light entering the light receiving element 114 and emitted from the light emitting element 111). Since the wavelengths of the different lights are different, the optical path is different due to the effect of the interference filter block 104).

自在ミラー105は、一例として第4図(A)の要部斜視
図、(B)の平面図及び(C)の断面図で拡大して示す
ように、筐体100内の光結合部空間110の底部126の内面
に固着された円筒部127、この円筒部127に嵌合された球
形のホルダ128、このホルダ128の上部の平坦部に取り付
けられた2枚の平板ミラー129、130から構成されてい
る。2枚の平板ミラー129、130は適度な狭角例えば鋭角
(例えば好ましくは67.5°)を以って配置されており、
2回反射によって光路を変更せしめる構成となってい
る。
The flexible mirror 105 is, for example, as shown in an enlarged perspective view in FIG. 4A, a perspective view of a main part, a plan view of FIG. 4B, and a sectional view of FIG. It is composed of a cylindrical portion 127 fixed to the inner surface of the bottom portion 126 of the above, a spherical holder 128 fitted in the cylindrical portion 127, and two flat plate mirrors 129 and 130 attached to the flat portion above the holder 128. ing. The two flat plate mirrors 129 and 130 are arranged with an appropriate narrow angle, for example, an acute angle (eg, preferably 67.5 °),
The structure is such that the optical path is changed by two reflections.

円筒部127とホルダ128とは所謂ボールジョイントとなっ
ており、かつ円筒部127はこれを固定する前は筐体100の
底部126の内面を自由に動かすことが出来るので、この
自在ミラー105は或る範囲内の任意の方向からの入射光
を或る範囲内の任意な好適な方向へ反射させるように調
整した後に、固定することが出来る。従って、発光素子
111(特にレーザダイオード)と光ファイバ118(特にシ
ングルモードファイバ)との結合は、発光素子コリメー
タ102及び光ファイバコリメータ103間の光路と、受光素
子コリメータ101及び光ファイバコリメータ103間の光路
が同一平面内にあるときはもとより、同一平面内にのっ
ていない場合であっても、自在ミラー105の調整1ケ所
のみで行え、従来の2回の調整よりも調整が簡単とな
る。
The cylindrical portion 127 and the holder 128 are so-called ball joints, and the cylindrical portion 127 can freely move the inner surface of the bottom portion 126 of the housing 100 before fixing the cylindrical portion 127. The incident light from any direction within the range can be fixed after being adjusted so as to be reflected in any suitable direction within the range. Therefore, the light emitting element
The optical path between the light emitting element collimator 102 and the optical fiber collimator 103 and the optical path between the light receiving element collimator 101 and the optical fiber collimator 103 are coplanar with each other by coupling 111 (especially laser diode) and optical fiber 118 (especially single mode fiber). Not only when it is inside but also when it is not on the same plane, the adjustment of the universal mirror 105 can be performed at only one position, and the adjustment is easier than the conventional two times adjustment.

第1図に戻って発光素子111からの或る波長を持つ放射
光は球レンズ112にて平行ビーム光に変換され、光ビー
ム通過孔131を通った後、自在ミラー105の平板ミラー12
9および平板ミラー130にて光路を変更され、干渉フィル
タ123を通過し、再び第一干渉フィルタ122で反射し、球
レンズ117で集光されて光ファイバ118へと結合する。
Returning to FIG. 1, the radiated light having a certain wavelength from the light emitting element 111 is converted into a parallel beam light by the spherical lens 112, and after passing through the light beam passage hole 131, the flat mirror 12 of the universal mirror 105.
The optical path is changed by 9 and the plate mirror 130, passes through the interference filter 123, is reflected again by the first interference filter 122, is condensed by the spherical lens 117, and is coupled to the optical fiber 118.

一方、光ファイバ118からの他の波長を持つ光は球レン
ズ117で平行光ビーム光に変換されて、干渉フィルタ122
及び光ビーム通過孔132を通過した後、球レンズ115にて
集光されて受光素子114へと結合される。
On the other hand, the light having another wavelength from the optical fiber 118 is converted into a parallel light beam light by the spherical lens 117, and the interference filter 122
After passing through the light beam passage hole 132, it is condensed by the spherical lens 115 and coupled to the light receiving element 114.

即ち、この構成のハイブリッド合分波器では受光素子11
4、干渉フィルタ122、光ファイバ118間の結合を無調整
で行い、発光素子111と光ファイバ118との結合は光反射
手段である自在ミラー105の調整のみで最適結合を行う
構成法が採られている。
That is, in the hybrid multiplexer / demultiplexer having this configuration, the light receiving element 11
4, the interference filter 122, the optical fiber 118 is coupled without adjustment, and the light emitting element 111 and the optical fiber 118 are coupled with each other only by adjusting the free mirror 105 which is a light reflecting means. ing.

上記各素子の筐体100への実装は次の手順で行う。The above-mentioned elements are mounted on the housing 100 by the following procedure.

先ず、発光素子コリメータ102、受光素子コリメータ10
1、光ファイバコリメータ103を事前に製作しておき、こ
れらを筐体100にあけられた発光素子コリメータ挿入孔1
08、受光素子コリメータ挿入孔107、光ファイバコリメ
ータ挿入孔109のそれぞれ挿入して固定すると同時に干
渉フィルタブロック104を筐体100内の光結合部空間110
の所定箇所に固定する。
First, the light emitting element collimator 102 and the light receiving element collimator 10
1, the optical fiber collimator 103 is manufactured in advance, and these are formed in the housing 100, and the light emitting element collimator insertion hole 1
08, the light receiving element collimator insertion hole 107, and the optical fiber collimator insertion hole 109 are inserted and fixed, respectively, and at the same time, the interference filter block 104 is provided with the optical coupling space 110 in the housing 100.
Fix it in place.

これら3つ全てのコリメータ及び干渉フィルタブロック
の取り付けは、従来品のような正確さや光学調整は必要
とされないので、全て無調整で行える。
The installation of all three collimators and interference filter blocks does not require the precision and optical adjustments required in conventional products, so all can be done without adjustment.

一般に光ファイバから受光素子への結合条件は発光素子
(特にレーザダイオード)から光ファイバ(特にシング
ルモードファイバ)への結合条件に比し格段に緩いの
で、この構成のハイブリッド合分波器ではこのような結
合条件の違いを積極的に利用して光ファイバ118から受
光素子114への結合を無調整にて行い、発光素子111から
光ファイバ118への結合を光反射手段としての自由ミラ
ー105で調整にて行い得る構成としたものである。干渉
フィルタブロック104の光結合条件は、光ファイバ118と
受光素子111の結合条件より更に緩いので全く容易であ
る。
Generally, the coupling condition from the optical fiber to the light receiving element is much looser than the coupling condition from the light emitting element (especially laser diode) to the optical fiber (especially single mode fiber). The coupling from the optical fiber 118 to the light receiving element 114 is performed without adjustment by positively utilizing the difference in the coupling conditions, and the coupling from the light emitting element 111 to the optical fiber 118 is adjusted by the free mirror 105 as the light reflecting means. This is a configuration that can be performed in. The optical coupling condition of the interference filter block 104 is much easier than the coupling condition of the optical fiber 118 and the light receiving element 111, which is quite easy.

即ち、光ファイバ118と、受光素子114及び干渉フィルタ
122との結合はそれらのコリメータ101、103を各コリメー
タ挿入孔107、109に挿入固定するだけで光結合が達成さ
れる。
That is, the optical fiber 118, the light receiving element 114, and the interference filter.
The coupling with 122 is achieved by simply inserting and fixing the collimators 101, 103 in the collimator insertion holes 107, 109.

次に発光素子コリメータ102からの平行ビーム光を自在
ミラー105の調整にて光ファイバコリメータ103へ結合し
た後、自由ミラー105をその位置にて筐体100へ固着する
ことで全ての光結合工程を終了する。
Next, the parallel beam light from the light emitting element collimator 102 is coupled to the optical fiber collimator 103 by adjusting the free mirror 105, and then the free mirror 105 is fixed to the housing 100 at that position to perform all the optical coupling steps. finish.

第5図はこの発明の第2実施例を示す断面図であり、第
1図に示した構成成分と同一の構成成分については同一
の符号を付して示し、その詳細な説明を省略する。この
実施例では発光素子コリメータ102と受光素子コリメー
タ101とを互いに光軸を直角に配したものである。この
構成例では発光素子111からの光は球レンズ112を経て平
板ミラー130及び129で順次反射されて経路を変え、第二
干渉フィルタ123を通り、第一干渉フィルタ122で反射さ
れて光ファイバコリメータ103に達する。
FIG. 5 is a sectional view showing a second embodiment of the present invention. The same components as those shown in FIG. 1 are designated by the same reference numerals and their detailed description will be omitted. In this embodiment, the light emitting element collimator 102 and the light receiving element collimator 101 are arranged such that their optical axes are perpendicular to each other. In this configuration example, the light from the light emitting element 111 is sequentially reflected by the flat plate mirrors 130 and 129 via the spherical lens 112 to change the path, passes through the second interference filter 123, is reflected by the first interference filter 122, and is reflected by the optical fiber collimator. Reach 103.

この発明は上述した実施例にのみ限定されるものではな
く、この発明の範囲内で設計に応じて種々の変更又は変
形を行うことが出来る。例えば、光反射手段として二枚
の平板ミラーを用いているがプリズムを用いて形成して
もよい。又、干渉フィルタブロックに用いる透光性ブロ
ックはガラス又はプラスチックとすることが出来る。
The present invention is not limited to the above-described embodiments, and various changes or modifications can be made within the scope of the present invention depending on the design. For example, although two flat plate mirrors are used as the light reflecting means, they may be formed using prisms. The translucent block used for the interference filter block can be made of glass or plastic.

(発明の効果) 上述した説明からも明らかなように、この発明のハイブ
リッド光合分波器は、内部が仕切壁によって少なくとも
2分割され、各素子の外側を被覆する筐体と、筐体内の
各コリメータ挿入孔に各々配置固定された発光素子コリ
メータ、受光素子コリメータ及び光ファイバコリメータ
と、仕切壁を介して受光素子コリメータとほぼ各同軸位
置に固定された光ファイバコリメータと、仕切壁に各々
形成された光通過孔と、所定の位置に取り付けられた干
渉フィルタと、発光素子コリメータから光ファイバコリ
メータに至る光路中に配置された位置及び角度調節自在
な光反射手段とで構成されているので、発光素子として
レーザダイオード及び伝送路としてシングルモードファ
イバの使用が可能となり、また光結合系の劣化を招くこ
となくしかも無調整で発光素子コリメータ、受光素子コ
リメータ及び光ファイバコリメータをケース内に固定す
ることが出来る。それゆえ、発光素子、受光素子及び光
ファイバの機械的安定が図られるとともに、発光素子か
らの発熱を金属製筐体ケースへ効率よく放熱し、また受
光素子の高周波接地を容易にすることが出来、その上、
光ファイバコリメータとケースとのすき間がなくなるの
で、その間の気密封止は容易に行え、光ファイバ外力が
内部に直接及ばない。また、金属製仕切壁を設けてある
ので、発光素子から受光素子への迷光の入射を防ぐだけ
でなく、電気的誘導による漏話を防ぐことができる。
(Effects of the Invention) As is clear from the above description, the hybrid optical multiplexer / demultiplexer of the present invention has a case in which the inside is divided into at least two parts by the partition wall and covers the outside of each element, and the inside of the case. A light emitting element collimator, a light receiving element collimator and an optical fiber collimator which are respectively arranged and fixed in the collimator insertion holes, an optical fiber collimator which is fixed substantially coaxially with the light receiving element collimator through a partition wall, and formed on the partition wall respectively. Since it is composed of a light passage hole, an interference filter attached at a predetermined position, and a light reflection means whose position and angle can be adjusted, which is arranged in the optical path from the light emitting element collimator to the optical fiber collimator, A laser diode can be used as an element and a single mode fiber can be used as a transmission line, and the optical coupling system can be deteriorated. The light emitting element collimator, the light receiving element collimator, and the optical fiber collimator can be fixed in the case without any adjustment. Therefore, the light emitting element, the light receiving element, and the optical fiber can be mechanically stabilized, and the heat generated from the light emitting element can be efficiently radiated to the metal casing case, and the high frequency grounding of the light receiving element can be facilitated. ,Moreover,
Since there is no gap between the optical fiber collimator and the case, airtight sealing can be easily performed between them and the external force of the optical fiber does not directly reach the inside. Further, since the partition wall made of metal is provided, it is possible not only to prevent stray light from being incident on the light receiving element from the light emitting element but also to prevent crosstalk due to electrical induction.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明のハイブリッド合分波器の一実施例の
構造を概略的に示す断面図、 第2図及び第3図は従来のハイブリッド合分波器の説明
に供する断面図、 第4図はこの発明のハイブリッド合分波器に用いる光反
射手段の実施例の構造を概略的に示す図で、(A)は斜
視図、(B)は平面図、(C)は断面図、 第5図はこの発明のハイブリッド合分波器の他の実施例
の構造を概略的に示す断面図である。 100…筐体 101…受光素子コリメータ 102…発光素子コリメータ 103…光ファイバコリメータ 104…干渉フィルタブロック 105…(自在ミラー)光反射手段 106…金属製仕切壁 107…受光素子コリメータ挿入孔 108…発光素子コリメータ挿入孔 109…光ファイバコリメータ挿入孔 110…光結合部空間 111…発光素子 112、115、117…球レンズ 113、116、120…円筒状スリーブ 114…受光素子 118…光ファイバ 119…フェルール、121…ガラスブロック 121、123…干渉フィルタ 124…電気信号入力端子 125…電気信号出力端子 126…底部、127…円筒部 128…ホルダ 129、130…平板ミラー 131、132…光ビーム通過孔。
FIG. 1 is a sectional view schematically showing the structure of an embodiment of the hybrid multiplexer / demultiplexer of the present invention, and FIGS. 2 and 3 are sectional views for explaining a conventional hybrid multiplexer / demultiplexer. FIG. 1 is a diagram schematically showing the structure of an embodiment of a light reflecting means used in the hybrid multiplexer / demultiplexer of the present invention, (A) is a perspective view, (B) is a plan view, (C) is a sectional view, FIG. 5 is a sectional view schematically showing the structure of another embodiment of the hybrid multiplexer / demultiplexer of the present invention. 100 ... Housing 101 ... Light receiving element collimator 102 ... Light emitting element collimator 103 ... Optical fiber collimator 104 ... Interference filter block 105 ... (Flexible mirror) Light reflecting means 106 ... Metal partition wall 107 ... Light receiving element collimator insertion hole 108 ... Light emitting element Collimator insertion hole 109 ... Optical fiber collimator insertion hole 110 ... Optical coupling part space 111 ... Light emitting element 112, 115, 117 ... Ball lens 113, 116, 120 ... Cylindrical sleeve 114 ... Light receiving element 118 ... Optical fiber 119 ... Ferrule, 121 … Glass blocks 121, 123… Interference filter 124… Electrical signal input terminal 125… Electrical signal output terminal 126… Bottom, 127… Cylinder 128… Holders 129, 130… Flat mirrors 131,132… Light beam passage holes.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光ファイバコリメータと、発光素子コリメ
ータと、受光素子コリメータと、干渉フィルタと、光反
射手段とを筐体に設けて成るハイブリッド合分波器にお
いて、 前記筐体を金属製筐体とし、 前記筐体に、前記光ファイバコリメータ、前記発光素子
コリメータおよび前記受光素子コリメータを固定してあ
り、 前記受光素子コリメータを、前記光ファイバコリメータ
及び前記発光素子コリメータと、筐体に設けられかつ光
通過孔を有する金属製仕切壁を隔てて、設け、 前記受光素子コリメータと前記光ファイバコリメータと
をほぼ同一光軸上に配置すると共に、少なくとも第一及
び第二干渉フィルタが透光性ブロックに固着されて成る
干渉フィルタブロックを両コリメータ間の光路中に配置
し、 前記光反射手段を位置及び角度調節自在な光反射手段と
して、これを前記発光素子コリメータと前記光ファイバ
コリメータとの間の光路中に配置し て成ることを特徴とするハイブリッド合分波器。
1. A hybrid multiplexer / demultiplexer in which an optical fiber collimator, a light emitting element collimator, a light receiving element collimator, an interference filter, and a light reflecting means are provided in a housing, wherein the housing is made of metal. The optical fiber collimator, the light emitting element collimator and the light receiving element collimator are fixed to the housing, and the light receiving element collimator is provided in the housing and the optical fiber collimator and the light emitting element collimator. Provided with a metal partition wall having a light passage hole, the light receiving element collimator and the optical fiber collimator are arranged on substantially the same optical axis, and at least the first and second interference filters are provided in the light transmitting block. The fixed interference filter block is arranged in the optical path between both collimators, and the light reflection means is adjusted in position and angle. As lifting light reflecting means, the hybrid demultiplexer, characterized in that formed by placing it in an optical path between the optical fiber collimator and the light emitting element collimator.
【請求項2】前記発光素子コリメータと前記受光素子コ
リメータとを互いに光軸が平行となるように配置したこ
とを特徴とする特許請求の範囲第1項に記載のハイブリ
ッド合分波器。
2. The hybrid multiplexer / demultiplexer according to claim 1, wherein the light emitting element collimator and the light receiving element collimator are arranged so that their optical axes are parallel to each other.
【請求項3】前記発光素子コリメータと前記受光素子コ
リメータとを互いに光軸が直交するように配置したこと
を特徴とする特許請求の範囲第1項に記載のハイブリッ
ド合分波器。
3. The hybrid multiplexer / demultiplexer according to claim 1, wherein the light emitting element collimator and the light receiving element collimator are arranged such that their optical axes are orthogonal to each other.
【請求項4】前記光反射手段を、円筒部と、該円筒部に
嵌合したボールジョイント式のホルダと、該ホルダの上
部に取り付けられた互いに鋭角で対向する二枚の平面反
射鏡とを以って構成したことを特徴とする特許請求の範
囲第1〜第3項のいずれか一つのハイブリッド合分波
器。
4. The light reflecting means comprises a cylindrical portion, a ball joint type holder fitted to the cylindrical portion, and two flat reflecting mirrors mounted on the upper portion of the holder and facing each other at an acute angle. The hybrid multiplexer / demultiplexer according to any one of claims 1 to 3, wherein the hybrid multiplexer / demultiplexer is configured as described above.
JP62058919A 1987-03-16 1987-03-16 Hybrid multiplexer / demultiplexer Expired - Lifetime JPH065331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62058919A JPH065331B2 (en) 1987-03-16 1987-03-16 Hybrid multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62058919A JPH065331B2 (en) 1987-03-16 1987-03-16 Hybrid multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JPS63225206A JPS63225206A (en) 1988-09-20
JPH065331B2 true JPH065331B2 (en) 1994-01-19

Family

ID=13098230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62058919A Expired - Lifetime JPH065331B2 (en) 1987-03-16 1987-03-16 Hybrid multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JPH065331B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239314A1 (en) * 2001-03-08 2002-09-11 Schott Glas Optical filter assembly
WO2008098214A1 (en) * 2007-02-08 2008-08-14 Finisar Corporation Single piece triplexer housing
JP2009093101A (en) * 2007-10-12 2009-04-30 Hitachi Communication Technologies Ltd Optical module
TW201033665A (en) * 2009-03-04 2010-09-16 Apac Opto Electronics Inc Three-directional optical assembly
CN117687159A (en) * 2022-09-09 2024-03-12 华为技术有限公司 Bidirectional optical module and optical module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212711A (en) * 1984-04-06 1985-10-25 Hitachi Ltd Structure of optical multiplexer and demultiplexer for optical communication
JPS619610A (en) * 1984-06-25 1986-01-17 Nec Corp Module for bidirectional optical communication
JPS61150533A (en) * 1984-12-25 1986-07-09 Mitsubishi Electric Corp Optical wavelength multiplex circuit device for optical fiber communication

Also Published As

Publication number Publication date
JPS63225206A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
US6572278B2 (en) Opto-electronic device having staked connection between parts to prevent differential thermal expansion
US9363021B2 (en) Receiver optical module including optical de-multiplexer, lenses, and photodiodes vertically arranged to each other within housing
US6847450B2 (en) System and method for optical multiplexing and/or demultiplexing
US9350454B2 (en) Multi-laser transmitter optical subassembly
US7438480B2 (en) Optical module, optical transceiver, and optical joint sleeve
JPS5965809A (en) Electrooptic transmitter and/or optical coupler for connect-ing for electro-optic transmitter and/or optoelectronic receiver to light wave guide depending on wavelengh
US20060013541A1 (en) Optoelectronic module
AU2016391182B2 (en) Single optical fiber bi-directional sub-assembly
JPH11174265A (en) Optical fiber assembly
US20080187321A1 (en) Optical transceiver module
JPH065331B2 (en) Hybrid multiplexer / demultiplexer
JP4006249B2 (en) Optical transmission / reception module, mounting method therefor, and optical transmission / reception apparatus
US7682090B2 (en) Integrated focusing and reflecting structure in an optical assembly
JP2000501856A (en) Photoelectric transmitting and / or receiving module and method of manufacturing the same
US20040202478A1 (en) Electro-optical module for transmitting and/or receiving optical signals of at least two optical data channels
JP2865789B2 (en) Optical transmission module
JPH0656445B2 (en) Hybrid optical multiplexer / demultiplexer
JPH04175705A (en) Wavelength multiplex transmitting/receiving module
JPH04309908A (en) Wavelength multiplex transmission and reception module
JP3125820B2 (en) Bidirectional module
JP6943039B2 (en) Optical receiver module
JPH0451209A (en) Wavelength multiplex transmitting and receiving module
WO2024130018A1 (en) Interconnect module with wavelength division multiplexing/demultiplexing capability
JP2003167170A (en) Optical transmission module and method for manufacturing the same
JPH07294774A (en) Optical transmitter/receiver