JPH0652868A - Separator masking material for molten carbonate fuel cell and manufacture thereof - Google Patents

Separator masking material for molten carbonate fuel cell and manufacture thereof

Info

Publication number
JPH0652868A
JPH0652868A JP4186296A JP18629692A JPH0652868A JP H0652868 A JPH0652868 A JP H0652868A JP 4186296 A JP4186296 A JP 4186296A JP 18629692 A JP18629692 A JP 18629692A JP H0652868 A JPH0652868 A JP H0652868A
Authority
JP
Japan
Prior art keywords
separator
intermetallic compound
fuel cell
mask material
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4186296A
Other languages
Japanese (ja)
Inventor
Hiromitsu Fujii
博満 藤井
Makoto Kawakami
川上  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4186296A priority Critical patent/JPH0652868A/en
Publication of JPH0652868A publication Critical patent/JPH0652868A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a separator masking material having excellent corrosion resistance against carbonates by cladding Al to the surface of a base of a specific metal, and subjecting the base to internal diffusion process in a nonoxidizing atmosphere, thus forming a layer of Al intermetallic compound. CONSTITUTION:Al 10 to 500mum thick is clad by cold welding to the surface of a base comprising a single or laminated plate made from at least one or two kinds selected from Fe or Fe alloys, stainless steel, and Ni or Ni alloys and thereafter the base is subjected to internal diffusion process in a nonoxidizing atmosphere of hydrogen and the like at 400-650 deg.C to form a layer of Al intermetallic compound. A separator main body 5 is sandwiched between a cathode side masking material 10 having a base made from stainless steel and an anode side masking material 11 having a base made from Ni. Unit cells each comprising an electrolyte plate 1 held from both sides by an air electrode 3 and a fuel electrode 2 via separators 5 are stacked one atop another to provide a fuel cell, the electrolyte plate 1 including electrolyte made from a molten carbonate of an alkali metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料の持つ化学エネ
ルギーを直接電気エネルギーに変換する燃料電池に関
し、特にCO3 2-イオンを運ぶ電解質が溶融炭酸塩であ
り、運転温度が600〜700°Cである溶融炭酸塩型
燃料電池のセパレータマスク材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell for directly converting the chemical energy of a fuel into electric energy, and in particular, the electrolyte carrying CO 3 2- ions is a molten carbonate and the operating temperature is 600 to 700 °. The present invention relates to a separator mask material for a molten carbonate fuel cell, which is C.

【0002】[0002]

【従来の技術】近年、水素と空気を反応させて電気を発
生させる燃料電池が、新しい発電装置として注目されて
いる。燃料電池の種類には、電解質にリン酸水溶液を用
いるリン酸型(PAFC)、電解質にジルコニア系のセ
ラミックを用いる固体電解質型(SOFC)、電解質に
炭酸リチウム、炭酸カリウム等を用いる溶融炭酸塩型
(MCFC)がある。
2. Description of the Related Art In recent years, fuel cells, which generate electricity by reacting hydrogen with air, have been attracting attention as new power generators. The types of fuel cells include phosphoric acid type (PAFC) using an aqueous phosphoric acid solution as an electrolyte, solid electrolyte type (SOFC) using a zirconia-based ceramic as an electrolyte, and molten carbonate type using lithium carbonate, potassium carbonate, etc. as an electrolyte. (MCFC).

【0003】ここで、溶融炭酸塩型燃料電池(以下MC
FCという)を例にとって、その原理および基本構造を
簡単に説明する。図2に示すように、MCFCの構成
は、アルカリ金属および/またはアルカリ土類金属の溶
融炭酸塩を電解質としてリチウムアルミネート等の多孔
質物質にしみ込ませた電解質板1の両面を、燃料極(ア
ノード)2と空気極(カソード)3とで挟んだものを単
セル4となし、さらに、実用電力を得るためにセパレー
タ5を介して該単セル4を多層に積層し、前記セパレー
タ5と燃料極(アノード)2の間に形成させる通路空間
6には燃料となるH2とCOが供給され、セパレーター
5と空気極(カソード)2の間に形成させる通路空間7
には空気が供給される構成を基本とする。
Here, a molten carbonate fuel cell (hereinafter referred to as MC
The principle and basic structure will be briefly described by taking FC as an example. As shown in FIG. 2, the MCFC is configured such that both surfaces of an electrolyte plate 1 in which a molten carbonate of an alkali metal and / or an alkaline earth metal is impregnated with a porous material such as lithium aluminate as an electrolyte is used as a fuel electrode ( A unit sandwiched between an anode 2 and an air electrode (cathode) 3 is used as a unit cell 4, and the unit cell 4 is laminated in multiple layers via a separator 5 to obtain practical electric power. A passage space 6 formed between the electrode (anode) 2 is supplied with H 2 and CO serving as fuel, and a passage space 7 formed between the separator 5 and the air electrode (cathode) 2.
Basically, it is configured to be supplied with air.

【0004】発電の原理は、 (1) 燃料室にH2とCOを供給すると、燃料室に入
ったH2はアノードで1式の反応により電解質中のCO3
2-と反応してH2OとCO2を生成しe-を放出する。 H2+CO3 2- → H2O+CO2+2e- 1式 (2) e-は外部負荷を通ってカソードに戻り、発電
が行なわれる。 (3) 燃料中のCOは2式によりH2O反応して、H2
とCO2を生成する。生成されたH2とCO2は有効利用
される。 CO+H2O → H2+CO2 2式 (4) 空気室に入ったO2と1式、2式のリサイクル
されたCO2はカソードで次式3式の反応によりCO3 2-
を生成し、電解質中にCO3 2-を供給する。 1/2O2+CO2+2e- → CO3 2- 3式 なお、2式は1式で生成されるH2Oの有効利用と、C
2の3式の利用率補充に活用される。上記の反応は、
電解質を溶かした水に、一対の電極を差し込んで電流を
流すと、一方の電極表面に水素が発生し、もう一方の電
極表面に酸素が発生する、いわゆる水の電気分解反応の
逆の反応を応用したものであるといえる。
The principle of power generation is as follows: (1) When H 2 and CO are supplied to the fuel chamber, H 2 that has entered the fuel chamber is the anode and the CO 3 in the electrolyte is caused by the reaction of formula 1.
Reacts with 2- to produce H 2 O and CO 2 and releases e . H 2+ CO 3 2- → H 2 O + CO 2 + 2e - 1 Equation (2) e - back to the cathode through an external load, power generation is performed. (3) CO in the fuel reacts with H 2 O according to the equation 2 to generate H 2
And CO 2 are produced. The generated H 2 and CO 2 are effectively used. CO + H 2 O → H 2+ CO 2 2 formula (4) O 2 in the air chamber and the recycled CO 2 of formula 1 and formula 2 are CO 3 2- by the reaction of formula 3 at the cathode.
To produce CO 3 2− in the electrolyte. 1 / 2O 2 + CO 2 + 2e - → CO 3 2- 3 Formula Incidentally, two equations and effective use of H 2 O generated in one set, C
It is used to supplement the utilization rate of the three formulas of O 2 . The above reaction is
When a pair of electrodes is inserted into water containing an electrolyte and an electric current is applied, hydrogen is generated on the surface of one electrode, and oxygen is generated on the surface of the other electrode. It can be said that it is an application.

【0005】さて、上述したMCFCの構成において、
特に重要視されるのがセパレータの存在である。セパレ
ータは、炭酸塩に対する耐食性が要求されることから、
その材質に、例えばSUS310系などのステンレス鋼
や、アノード側の耐食性をより高めるために、ステンレ
ス鋼にNiをクラッドしたもの等を用いるのが一般的で
ある。セパレータの具体的な役割は、単セルを積層する
際に各々単セルを仕切る、燃料となるH2や、CO3 2-
補給するためのO2やCO2の供給路を形成する、燃料と
なるH2と、O2やCO2を遮断するなどの機能を有する
が、ほかにも、電解質板を保持するという役目も担う。
Now, in the above-mentioned MCFC configuration,
The presence of a separator is particularly important. Since the separator is required to have corrosion resistance against carbonates,
As the material, for example, stainless steel such as SUS310 series, or stainless steel with Ni clad to improve corrosion resistance on the anode side is generally used. The specific role of the separator is to partition the single cells when stacking the single cells, to form a supply path of O 2 or CO 2 for replenishing H 2 and CO 3 2− serving as fuel, and a fuel. It has a function of blocking H 2 and O 2 and CO 2 which become the other, and also plays a role of holding the electrolyte plate.

【0006】電解質板を保持するには、予め電解質板の
面積を、燃料極や空気極の面積よりも大きくしておくこ
とにより、容易にセパレータとの積層が可能となって、
電解質板を保持することできる。その際、電解質板はセ
パレータ同士の絶縁も兼ねることになるが、セパレータ
が直接溶融炭酸塩に接触する箇所(以下マスク部とい
う)では、著しい腐食が起こることが問題となってい
る。この腐食の原因は、燃料極側では燃料のH2と反応
生成物であるH2Oが、また、空気極側ではO2とリサイ
クルされたCO2が、それぞれ電解質中に面方向に濃淡
を生じて、電解質板端部で局部電池が発生することによ
る。
In order to hold the electrolyte plate, by making the area of the electrolyte plate larger than the areas of the fuel electrode and the air electrode in advance, it becomes possible to easily stack with the separator.
The electrolyte plate can be held. At that time, the electrolyte plate also serves as insulation between the separators, but there is a problem that significant corrosion occurs at a portion where the separator directly contacts the molten carbonate (hereinafter referred to as a mask portion). The cause of this corrosion is that H 2 of the fuel and H 2 O, which is a reaction product, on the fuel electrode side, and O 2 and recycled CO 2 on the air electrode side, respectively, in the plane direction in the electrolyte. This is due to the generation of local batteries at the edges of the electrolyte plate.

【0007】局部電池発生の問題については、現段階で
は解決する手段がないため、従来はセパレータが直接溶
融炭酸塩に接触する箇所、すなわちセパレータのマスク
部にアルミナイズ処理を施してマスク部の腐食に対処し
ていた。アルミナイズ処理としては、高温での溶融炭酸
塩に対する腐食が極めて少ないアルミ金属間化合物やア
ルミ酸化物(アルミナ)を溶射法、浸漬法、溶融メッキ
法などにより被覆する方法が採られている。
With respect to the problem of local battery generation, there is no means for solving it at this stage. Therefore, conventionally, the place where the separator comes into direct contact with the molten carbonate, that is, the mask portion of the separator is subjected to aluminizing treatment to corrode the mask portion. Was dealing with. As the aluminizing treatment, a method of coating an aluminum intermetallic compound or aluminum oxide (alumina), which is extremely less corrosive to molten carbonate at high temperature, by a thermal spraying method, a dipping method, a hot dipping method, or the like is adopted.

【0008】[0008]

【発明が解決しようとする課題】しかし、アルミナによ
るセパレータのマスク部への被覆は、上述の如くセパレ
ータの材質はステンレス鋼などの金属からなり、アルミ
ナはセラミックであるために、セパレータ材質である金
属とセラミックの2層構造となり、取扱いや熱膨張差に
より被覆層が剥離したり、被覆層にクラックが入ってガ
スや溶融塩が漏洩する可能性があり、装置寿命の低下や
事故に繋がる恐れがある。
However, the coating of alumina on the mask portion of the separator is made of a metal such as stainless steel as the separator as described above, and since alumina is a ceramic, the metal that is the separator material is used. It has a two-layer structure of ceramics and ceramics, and there is a possibility that the coating layer may peel off due to handling or the difference in thermal expansion, or cracks may occur in the coating layer and gas or molten salt may leak out, leading to a reduction in equipment life or an accident. is there.

【0009】また、アルミ金属間化合物によるセパレー
タのマスク部への被覆は、Al金属間化合物は硬くて脆
く、またアルミナの場合と同様に金属とAl金属間化合
物の2層構造となるため、被覆層の剥離やクラック発生
が生じる問題がある。すなわち、溶射法、浸漬法、溶融
メッキ法などの被膜形成手段を用いたアルミナイズ処理
では、セパレータ材質と被覆層が2層構造となるため、
被覆層の剥離やクラックが発生する問題があり、アルミ
ナイズ処理後に隠さん処理を施したものにおいても微少
なピンホールの存在及び酸素の混入によるアルミナの生
成や、また被覆層厚み寸法の制御が困難であるために有
効なAl金属間化合物層を形成することが困難であり、
マスク材表面に金属Alが残存したり、さらに高価な方
法であるなどの種々の問題があった。
The aluminum intermetallic compound is used to coat the mask portion of the separator because the Al intermetallic compound is hard and brittle, and has a two-layer structure of metal and Al intermetallic compound as in the case of alumina. There is a problem that layer peeling and cracking occur. That is, since the separator material and the coating layer have a two-layer structure in the aluminizing treatment using the coating forming means such as the thermal spraying method, the dipping method, and the hot dipping method,
There is a problem that peeling or cracking of the coating layer occurs, and even in the case of concealing treatment after aluminizing treatment, the generation of alumina due to the presence of minute pinholes and the inclusion of oxygen, and the control of the coating layer thickness dimension Difficult to form an effective Al intermetallic compound layer,
There are various problems such as metal Al remaining on the surface of the mask material and a more expensive method.

【0010】この発明は、上述の溶融炭酸塩型燃料電池
用セパレータマスク材の問題を解決し、所要基板表面に
均一で所定厚みのAl金属間化合物層を設け、炭酸塩に
対するすぐれた耐食性を有するセパレータマスク材を提
供することを目的とし、また、高耐食性を有するセパレ
ータマスク材を容易に製造できる製造方法の提供を目的
としている。
The present invention solves the problems of the separator mask material for a molten carbonate fuel cell described above, provides an Al intermetallic compound layer having a uniform thickness with a predetermined thickness on the surface of the required substrate, and has excellent corrosion resistance to carbonates. An object of the present invention is to provide a separator mask material, and an object of the present invention is to provide a manufacturing method capable of easily manufacturing a separator mask material having high corrosion resistance.

【0011】[0011]

【課題を解決するための手段】発明者らは、炭酸塩に対
するすぐれた耐食性を有するセパレータマスク材を目的
に、著しい腐食に対応できるセパレータのマスク部の材
質を種々検討した結果、単板または積層板からなる金属
基板表面に、特定厚みのAlを冷間圧接によりクラッド
した後、非酸化性雰囲気中にて所要温度で内部拡散処理
を施すことにより、耐食性にすぐれたAl金属間化合物
層を均一で所定厚みに成膜できることを知見し、この発
明を完成した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted various studies on the material of the mask portion of a separator that can cope with remarkable corrosion, for the purpose of a separator mask material having excellent corrosion resistance to carbonates, and as a result, a single plate or laminated After a certain thickness of Al is clad by cold pressure welding on the surface of a metal substrate made of a plate, an internal intermetallic compound layer with excellent corrosion resistance is made uniform by performing internal diffusion treatment at the required temperature in a non-oxidizing atmosphere. The present invention has been completed by finding out that a film can be formed in a predetermined thickness by.

【0012】すなわち、この発明は、FeまたはFe合
金、ステンレス鋼、NiまたはNi合金のうち少なくと
も1種または2種以上の単板または積層板からなる基板
表面にクラッドしたAlと基板表面材料との金属間化合
物層を少なくとも基板の一主面に有することを特徴とす
る溶融炭酸塩型燃料電池用セパレータマスク材である。
また、この発明は上記構成において、金属間化合物層厚
みが10μm〜500μmであることを特徴とする溶融
炭酸塩型燃料電池用セパレータマスク材である。
That is, according to the present invention, Al clad on the surface of a substrate made of at least one or two or more of Fe or Fe alloy, stainless steel, Ni or Ni alloy and a substrate surface material. A separator mask material for a molten carbonate fuel cell, comprising an intermetallic compound layer on at least one main surface of a substrate.
Further, the present invention is the separator mask material for a molten carbonate fuel cell, characterized in that the intermetallic compound layer has a thickness of 10 μm to 500 μm in the above structure.

【0013】さらに、この発明は、FeまたはFe合
金、ステンレス鋼、NiまたはNi合金のうち少なくと
も1種または2種以上の単板または積層板からなる基板
表面に、冷間圧接によりAlを10μm〜500μmの
厚みでクラッドした後、非酸化性雰囲気中、400°C
〜650°Cで内部拡散処理することを特徴とする溶融
炭酸塩型燃料電池用セパレータマスク材の製造方法であ
る。
Further, according to the present invention, Al is applied to the surface of a substrate composed of a single plate or a laminated plate of at least one kind or two kinds or more of Fe or Fe alloy, stainless steel, Ni or Ni alloy by cold pressure welding in an amount of 10 μm to 10 μm. After clad to a thickness of 500 μm, 400 ° C in a non-oxidizing atmosphere
A method for producing a separator mask material for a molten carbonate fuel cell, which is characterized by performing an internal diffusion treatment at ˜650 ° C.

【0014】この発明において、セパレータマスク材の
基板としては、セパレータ本体との整合性を考慮して、
Fe、ステンレス鋼、Niのうち少なくとも1種または
2種以上の単板または積層板が好ましいが、Feを主成
分とする合金やNiを主成分とする合金でも差し支えな
く、またステンレス鋼としては、SUS310などの一
般的に防錆性、耐食性にすぐれたものが好ましい。従っ
て、Alをクラッドした基板表面に形成されるAl金属
間化合物は、表面材料に応じて種々化合物となるが、F
eAl3、Fe2Al5、FeAl2、Fe3Al、Fe5
l、AlNi3、Al3Ni5、AlNiなど、セパレー
タマスク材の基板とAlとの金属間化合物であればよ
く、燃料電池の使用温度においても安定である化合物が
好ましい。
In the present invention, as the substrate of the separator mask material, in consideration of the compatibility with the separator body,
A single plate or a laminated plate of at least one kind or two or more kinds of Fe, stainless steel, and Ni is preferable, but an alloy containing Fe as a main component or an alloy containing Ni as a main component may also be used. Generally, SUS310 or the like, which is excellent in rust prevention and corrosion resistance, is preferable. Therefore, the Al intermetallic compound formed on the surface of the substrate clad with Al may be various compounds depending on the surface material.
eAl 3 , Fe 2 Al 5 , FeAl 2 , Fe 3 Al, Fe 5 A
1, an intermetallic compound such as AlNi 3 , Al 3 Ni 5 , AlNi, etc. between the substrate of the separator mask material and Al is preferable, and a compound that is stable even at the operating temperature of the fuel cell is preferable.

【0015】基板にクラッドするAlの厚みを10μm
〜500μmとする理由は、厚みが10μm未満では内
部拡散処理時に、Al量が少なすぎて基板とAlとの金
属間化合物野形成量が少なくなってAlをクラッドした
効果がなくなり、耐食性が劣化するので好ましくなく、
また厚みが500μmを越えると、内部拡散処理時に基
板表面に、基板とAlとの金属間化合物が形成される量
が相対的に少なくなって、表面にまで金属間化合物が形
成されず実質的にAlの単一金属がそのまま表面に残っ
てしまうため、燃料電池の使用温度である600〜70
0°Cでは660°Cの融点であるAlは溶けてしまう
ことになり、ひいてはガスや溶融塩の漏洩に繋がり、装
置寿命の低下や大事故を引き起こす可能性があり好まし
くない。
The thickness of Al clad on the substrate is 10 μm
The reason for setting the thickness to 500 μm is that if the thickness is less than 10 μm, the amount of Al is too small at the time of internal diffusion treatment, the amount of intermetallic compound formed between the substrate and Al is small, and the effect of clad Al is lost, and corrosion resistance deteriorates. So unfavorable,
On the other hand, if the thickness exceeds 500 μm, the amount of the intermetallic compound of the substrate and Al formed on the surface of the substrate during the internal diffusion treatment is relatively small, and the intermetallic compound is not formed even on the surface. Since the single metal of Al remains on the surface as it is, the operating temperature of the fuel cell is 600 to 70.
At 0 ° C, Al, which has a melting point of 660 ° C, will be melted, which will lead to leakage of gas and molten salt, which may shorten the life of the apparatus and cause a major accident, which is not preferable.

【0016】この発明のセパレータマスク材は、セパレ
ータ本体と組み合せてセルの積層時に一体化するもので
あり、例えば、図1のaに示す如く、ステンレス鋼基板
の片面にAlをクラッドして内部拡散処理してAl金属
間化合物層を設けたセパレータマスク材10と、Niの
片面にAlをクラッドして内部拡散処理してAl金属間
化合物層を設けたセパレータマスク材11を各々別に用
意して、セパレータ5本体を挟んでAl金属間化合物層
が各電解質板1に当接するようにセルの積層時に一体化
することができる。また、ステンレス鋼とNiをクラッ
ドした積層基板の両面にさらにAlをクラッドして内部
拡散処理して表面にAl金属間化合物層を設けたセパレ
ータマスク材12を、セパレータ本体と組み合せてセル
の積層組立て時に、Al金属間化合物層が各電解質板1
に当接させるなど、セパレータ本体の構成とその材質と
の整合性や耐食性などを考慮して、基板材の構成、積層
状態を適宜選定するとよい。上述の如く、セパレータ本
体とセパレータマスク材を個別に作成する他、セパレー
タ本体を作製する際に、ステンレス鋼とNiをクラッド
して、さらに、マスク部に相当する場所にストライプ状
にAlを両面クラッドしたものを、所要の形状に加工し
てセパレータとなした後、内部拡散処理するなど、最初
から一体物で構成することもできる。
The separator mask material of the present invention is combined with the separator body to be integrated when the cells are laminated. For example, as shown in FIG. 1a, one surface of a stainless steel substrate is clad with Al and internally diffused. Separately, a separator mask material 10 having an Al intermetallic compound layer formed thereon and a separator mask material 11 having an Al intermetallic compound layer provided by clad Al on one side of Ni and internally diffusing are prepared. The Al intermetallic compound layer can be integrated at the time of stacking the cells so that the Al intermetallic compound layer contacts the respective electrolyte plates 1 with the main body of the separator 5 interposed therebetween. Further, a separator mask material 12 having an Al intermetallic compound layer provided on the surface by clad with Al on both sides of a laminated substrate clad with stainless steel and Ni, is combined with the separator body to form a cell laminated assembly. Sometimes, the Al intermetallic compound layer is used for each electrolyte plate 1
It is advisable to appropriately select the configuration and the laminated state of the substrate material in consideration of the compatibility between the configuration of the separator body and its material, the corrosion resistance, etc. As described above, the separator body and the separator mask material are separately prepared. In addition, when the separator body is prepared, stainless steel and Ni are clad, and Al is striped on both sides in a stripe shape at a place corresponding to the mask portion. It is also possible to form an integrated product from the beginning by processing the formed product into a desired shape to form a separator and then performing an internal diffusion process.

【0017】この発明において、セパレータマスク材の
基板表面にAlをクラッドする冷間圧接する手段は冷間
圧延など、公知の圧延手段を用いることができ、積層基
板の場合、基板材料の積層と同時に行なうこともでき
る。基板表面にAlをクラッドする冷間圧接は通常大気
中で行うが、非酸化性雰囲気中で行なうことが望まし
い。
In the present invention, known rolling means such as cold rolling can be used as means for cold pressure welding for clad Al on the substrate surface of the separator mask material. You can also do it. Cold pressure welding for clad Al on the substrate surface is usually performed in the atmosphere, but it is desirable to perform it in a non-oxidizing atmosphere.

【0018】この発明において、内部拡散処理は水素や
不活性ガスなどの非酸化性雰囲気中で行なうことが好ま
しく、後述する温度範囲内で所要時間行なうが、その際
には、セパレータマスク材の基体となる金属の材質を考
慮し、セパレータマスク材の内部に巨視的に組成勾配が
でき、かつ、Alをクラッドした表面にAl金属間化合
物が形成させるような雰囲気、温度、時間の条件を適宜
選定して内部拡散処理を施すことが好ましい。例えば、
ステンレス鋼(SUS)とAlとの場合、図3aに示す
如きAlをクラッドした表面に、bに示す如く内部に巨
視的に組成勾配ができ、かつ、Alをクラッドした表面
にAl金属間化合物が形成させることが好ましい。
In the present invention, the internal diffusion treatment is preferably carried out in a non-oxidizing atmosphere such as hydrogen or an inert gas, and is carried out for a required time within the temperature range described later. Considering the material of the metal to be used, a composition gradient is macroscopically formed inside the separator mask material, and the conditions of the atmosphere, temperature, and time are selected so that the Al intermetallic compound is formed on the surface clad with Al. Then, it is preferable to perform an internal diffusion treatment. For example,
In the case of stainless steel (SUS) and Al, on the surface clad with Al as shown in FIG. 3a, a macroscopic composition gradient can be formed inside as shown in b, and on the surface clad with Al, Al intermetallic compounds It is preferably formed.

【0019】内部拡散処理の温度は、400°C未満で
は内部拡散処理が起こりにくく、Alの単一金属がその
まま表面に残ってしまうため好ましくなく、また、65
0°Cを越えると処理時間によっては、表面のAlが解
けてしまうため好ましくない。よって内部拡散処理は4
00°C〜650°Cの温度範囲で行なうことが最も好
ましい。また、内部拡散処理は、セパレータマスク材の
みの状態で行なったり、セパレータ本体との一体化後に
行なうなど、MCFCの組み立て前の段階で都合に応じ
て行なうことができるが、内部拡散処理後の表面には硬
くて脆いアルミ金属間化合物が形成されているため、搬
送や取扱いの際に、カケやキズが入る可能性もあること
から、内部拡散処理前のセパレータマスク材を用いてM
CFCを組立て、燃料及び空気を供給する直前に、MC
FC全体を加熱して内部拡散処理することも好ましい方
法である。
If the temperature of the internal diffusion treatment is less than 400 ° C., the internal diffusion treatment is unlikely to occur, and a single metal of Al remains on the surface, which is not preferable.
If the temperature exceeds 0 ° C, Al on the surface may be dissolved depending on the treatment time, which is not preferable. Therefore, the internal diffusion process is 4
Most preferably, it is carried out in the temperature range of 00 ° C to 650 ° C. In addition, the internal diffusion treatment can be performed at any stage before the MCFC is assembled, such as when the separator mask material is used alone or after integration with the separator body. Since a hard and brittle aluminum intermetallic compound is formed on the surface of the product, it is possible that chips and scratches will be formed during transportation and handling.
Just before assembling the CFC and supplying fuel and air, the MC
It is also a preferable method to heat the entire FC to perform internal diffusion treatment.

【0020】[0020]

【作用】この発明は、単板または積層板からなる所要材
料の基板表面に冷間圧接によりAlを10μm〜500
μmの厚みの範囲で任意の厚みに高均一度でクラッドす
ることができ、その後非酸化性雰囲気中にて所要温度で
内部拡散処理を施すことにより、含有酸素濃度が著しく
低減されたAl金属間化合物層を高均一度で所要層厚み
で形成できるため、緻密で均一なAl金属間化合物層を
基板表面に高密着強度で形成でき、取扱いや熱膨張差に
よるAl金属間化合物層の剥離やクラック発生が皆無に
なる。
According to the present invention, Al is applied in an amount of 10 μm to 500 μm by cold pressure welding to the surface of a substrate made of a single material or a laminated material.
It can be clad to any thickness in the thickness range of μm with high uniformity, and is then subjected to internal diffusion treatment at a required temperature in a non-oxidizing atmosphere, so that the content of oxygen in the Al metal can be significantly reduced. Since the compound layer can be formed with a high degree of uniformity and a required layer thickness, a dense and uniform Al intermetallic compound layer can be formed on the substrate surface with high adhesion strength, and peeling or cracking of the Al intermetallic compound layer due to handling or thermal expansion difference. There will be no occurrence.

【0021】[0021]

【実施例】【Example】

実施例1 板厚3.0mmのSUS310材と板厚0.35mmの
Alを冷間圧延によりクラッドした後、水素雰囲気中で
500℃×30minの内部拡散処理を施して、板厚
1.1mmのカソード側マスク材を得た。また、板厚
3.0mmのNi材と板厚0.35mmのAlを前記と
同様の方法及び内部拡散処理を施して板厚1.1mmの
アノード側マスク材を得た。このように別々に作製し
て、図1aに示す如く、セパレータ本体を両マスク材で
挟み、セル組立て時に機械的に一体化した。すなわち、
前記セパレータを介して、アルカリ金属の溶融炭酸塩か
らなる電解質をリチウムアルミネートにしみ込ませた電
解質板の両面を、空気極(カソード)と燃料極(アノー
ド)で挟んだものを単セルとなしたものを、数層に積層
して、溶融炭酸塩型燃料電池を組み立てた。セパレータ
本体に形成された空間に燃料となるH2やO2等供給して
燃料電池を運転をしたところ、この発明によるセパレー
タマスク材は、燃料電池運転時の温度にも溶けることが
なく、長時間安定して運転することができ、また運転後
にマスク材を確認したところ、電解質板との接触面にお
ける腐食の進行もなく、剥離やクラックの発生も皆無で
あった。
Example 1 A SUS310 material having a plate thickness of 3.0 mm and an Al plate having a plate thickness of 0.35 mm were clad by cold rolling, and then subjected to internal diffusion treatment at 500 ° C. for 30 min in a hydrogen atmosphere to give a plate having a plate thickness of 1.1 mm. A cathode side mask material was obtained. Further, a Ni material having a plate thickness of 3.0 mm and Al having a plate thickness of 0.35 mm were subjected to the same method and internal diffusion treatment as described above to obtain an anode-side mask material having a plate thickness of 1.1 mm. Thus prepared separately, the separator body was sandwiched by both mask materials as shown in FIG. 1a, and mechanically integrated during cell assembly. That is,
A single cell was formed by sandwiching an air electrode (cathode) and a fuel electrode (anode) on both sides of an electrolyte plate impregnated with lithium aluminate containing an electrolyte composed of molten carbonate of an alkali metal through the separator. The melted carbonate fuel cell was assembled by stacking several layers. When the fuel cell was operated by supplying H 2 or O 2 as fuel to the space formed in the separator body, the separator mask material according to the present invention did not melt even at the temperature during fuel cell operation and It was possible to operate stably for a time, and when the mask material was checked after the operation, no corrosion progressed on the contact surface with the electrolyte plate, and no peeling or cracking occurred.

【0022】比較例1 実施例1と同様のSUS310材基板のカソード側マス
ク材とNi材基板のアノード側マスク材を、それぞれ基
板表面にAlをめっきして、片面に厚さ1.1mmのア
ルミナイズ処理を施して作製し、実施例1と同様に燃料
電池を組み立てて運転をしたところ、電解質板との接触
面が一部解けており、表面に凹凸を生じていた。また、
マスク材端部がめくれあがったような状態であった。
Comparative Example 1 The cathode side mask material of the SUS310 material substrate and the anode side mask material of the Ni material substrate similar to those of the example 1 are plated with Al on the surface of each substrate, and one side is made of aluminum having a thickness of 1.1 mm. When the fuel cell was manufactured by performing a nitizing treatment and assembled and operated in the same manner as in Example 1, the contact surface with the electrolyte plate was partially unraveled, and unevenness was generated on the surface. Also,
The edge of the mask material looked like it had turned up.

【0023】実施例2 板厚6.0mmのSUS310材と板厚3.0mmのN
i材及び板厚0.35mmの2枚のAlを、Al−SU
S−Ni−Alとなるように冷間圧延によりクラッドし
た後、水素雰囲気中で500℃×30minの内部拡散
処理を施した板厚3.2mmのカソード・アノード一体
型のマスク材を、前述の図1のbに示す構成のMCFC
に用いた。上記のセパレータマスク材は、実施例1と同
様に、燃料電池運転時の温度にも溶けることがなく、長
時間安定して運転することができ、また運転後にマスク
材を確認したところ、電解質板との接触面における腐食
の進行もなく、剥離やクラックの発生も皆無であった。
Example 2 SUS310 material having a plate thickness of 6.0 mm and N having a plate thickness of 3.0 mm
i-material and two pieces of Al with a plate thickness of 0.35 mm are replaced with Al-SU
After clad by cold rolling so as to become S-Ni-Al, the cathode / anode integrated mask material with a plate thickness of 3.2 mm subjected to internal diffusion treatment at 500 ° C. × 30 min in a hydrogen atmosphere was used as described above. MCFC with the configuration shown in FIG. 1b
Used for. Similar to Example 1, the separator mask material described above did not melt at the temperature during fuel cell operation, and could be stably operated for a long time. Further, when the mask material was confirmed after the operation, an electrolyte plate was obtained. There was no progress of corrosion on the contact surface with and no peeling or cracking occurred.

【0024】[0024]

【発明の効果】この発明は、単板または積層板からなる
金属基板表面に、特定厚みのAlを冷間圧接によりクラ
ッドした後、非酸化性雰囲気中にて所要温度で内部拡散
処理を施すことにより、耐食性にすぐれたAl金属間化
合物層を均一かつ所定厚みに成膜することができ、従来
の成膜方法で基板に設けたAl金属間化合物層に比べ、
含有酸素濃度が著しく低減され、緻密で均一でかつ高密
着強度で形成されており、また取扱いや熱膨張差による
該表面層の剥離やクラック発生が皆無になる利点があ
る。また、この発明は、Alをクラッドした基板表面に
内部拡散処理でAl金属間化合物を形成するため、クラ
ッド時に高精度で均一膜厚みのAl層を設けることがで
き、内部拡散処理で含有酸素濃度の低い耐食性にすぐれ
たAl金属間化合物層を容易に形成でき、セパレータマ
スク材を安価に提供できる。
According to the present invention, the surface of a metal substrate composed of a single plate or a laminated plate is clad with Al having a specific thickness by cold pressure welding, and then an internal diffusion treatment is performed at a required temperature in a non-oxidizing atmosphere. By this, an Al intermetallic compound layer having excellent corrosion resistance can be formed uniformly and with a predetermined thickness, and compared with an Al intermetallic compound layer provided on a substrate by a conventional film forming method,
The oxygen content is remarkably reduced, and it is formed densely, uniformly and with high adhesion strength, and there is an advantage that peeling and cracking of the surface layer due to handling and difference in thermal expansion are completely eliminated. Further, according to the present invention, since the Al intermetallic compound is formed on the surface of the substrate clad with Al by the internal diffusion treatment, an Al layer having a uniform film thickness can be provided with high accuracy at the time of the cladding, and the oxygen concentration contained in the internal diffusion treatment The Al intermetallic compound layer excellent in low corrosion resistance can be easily formed, and the separator mask material can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】a,bともにこの発明のセパレータマスク材を
用いた燃料電池の断面説明図である。
FIG. 1 is a cross-sectional explanatory view of a fuel cell using a separator mask material of the present invention for both a and b.

【図2】燃料電池の基本的な構造を示す分解斜視説明図
である。
FIG. 2 is an exploded perspective view showing the basic structure of a fuel cell.

【図3】a,bともにこの発明のセパレータマスク材の
内部拡散状態を表す模式図である。
FIG. 3 is a schematic view showing an internal diffusion state of the separator mask material of the present invention in both a and b.

【符号の説明】[Explanation of symbols]

1 電解質板 2 燃料極(アノード) 3 空気極(カソード) 4 単セル 5 セパレータ 6,7 通路空間 10,11,12 セパレータマスク材 1 Electrolyte Plate 2 Fuel Electrode (Anode) 3 Air Electrode (Cathode) 4 Single Cell 5 Separator 6,7 Passage Space 10, 11, 12 Separator Mask Material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月10日[Submission date] September 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】また、アルミ金属間化合物によるセパレー
タのマスク部への被覆は、Al金属間化合物は硬くて脆
く、またアルミナの場合と同様に金属とAl金属間化合
物の2層構造となるため、被覆層の剥離やクラック発生
が生じる問題がある。すなわち、溶射法、浸漬法、溶融
メッキ法などの被膜形成手段を用いたアルミナイズ処理
では、セパレータ材質と被覆層が2層構造となるため、
被覆層の剥離やクラックが発生する問題があり、アルミ
ナイズ処理後に拡散処理を施したものにおいても微少な
ピンホールの存在及び酸素の混入によるアルミナの生成
や、また被覆層厚み寸法の制御が困難であるために有効
なAl金属間化合物層を形成することが困難であり、マ
スク材表面に金属Alが残存したり、さらに高価な方法
であるなどの種々の問題があった。
The aluminum intermetallic compound is used to coat the mask portion of the separator because the Al intermetallic compound is hard and brittle, and has a two-layer structure of metal and Al intermetallic compound as in the case of alumina. There is a problem that layer peeling and cracking occur. That is, since the separator material and the coating layer have a two-layer structure in the aluminizing treatment using the coating forming means such as the thermal spraying method, the dipping method, and the hot dipping method,
There is a problem of peeling or cracking of the coating layer, and even if a diffusion treatment is performed after aluminizing treatment, it is difficult to control the thickness of the coating layer and the formation of alumina due to the presence of minute pinholes and the inclusion of oxygen. Therefore, it is difficult to form an effective Al intermetallic compound layer, and there are various problems such as metal Al remaining on the surface of the mask material and a more expensive method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】すなわち、この発明は、FeまたはFe合
金、ステンレス鋼、NiまたはNi合金のうち少なくと
も1種または2種以上の単板または積層板からなる基板
表面にクラッドしたAlと基板材料との金属間化合物層
を少なくとも基板の一主面に有することを特徴とする溶
融炭酸塩型燃料電池用セパレータマスク材である。ま
た、この発明は上記構成において、金属間化合物層厚み
が10μm〜500μmであることを特徴とする溶融炭
酸塩型燃料電池用セパレータマスク材である。
Namely, the present invention, Fe or Fe alloy, stainless steel, and at least one or more veneer or cladding on the substrate surface made of laminate of Al and based plate material cost of the Ni or Ni alloy A separator mask material for a molten carbonate fuel cell, comprising an intermetallic compound layer on at least one main surface of a substrate. Further, the present invention is the separator mask material for a molten carbonate fuel cell, characterized in that the intermetallic compound layer has a thickness of 10 μm to 500 μm in the above structure.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】比較例1 実施例1と同様のSUS310材基板のカソード側マス
ク材とNi材基板のアノード側マスク材を、それぞれ基
板表面にAlをめっきして、片面に厚さ0.1mmのア
ルミナイズ処理を施して作製し、実施例1と同様に燃料
電池を組み立てて運転をしたところ、電解質板との接触
面が一部解けており、表面に凹凸を生じていた。また、
マスク材端部がめくれあがったような状態であった。
Comparative Example 1 The cathode side mask material of the SUS310 material substrate and the anode side mask material of the Ni material substrate similar to those in Example 1 were plated with Al on the surface of each substrate, and one side of which had a thickness of 0.1 mm. When the fuel cell was manufactured by subjecting it to an aluminizing treatment and was then assembled and operated in the same manner as in Example 1, the contact surface with the electrolyte plate was partially unraveled, and unevenness was generated on the surface. Also,
The edge of the mask material looked like it had turned up.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 FeまたはFe合金、ステンレス鋼、N
iまたはNi合金のうち少なくとも1種または2種以上
の単板または積層板からなる基板表面にクラッドしたA
lとその基板材料との金属間化合物層を少なくとも基板
の一主面に有することを特徴とする溶融炭酸塩型燃料電
池用セパレータマスク材。
1. Fe or Fe alloy, stainless steel, N
A clad on the surface of a substrate composed of a single plate or a laminated plate of at least one or more of i or Ni alloys
1. A separator mask material for a molten carbonate fuel cell, which has an intermetallic compound layer of 1 and its substrate material on at least one main surface of the substrate.
【請求項2】 金属間化合物層厚みが10μm〜500
μmであることを特徴とする請求項1記載の溶融炭酸塩
型燃料電池用セパレータマスク材。
2. The intermetallic compound layer has a thickness of 10 μm to 500.
The separator mask material for a molten carbonate fuel cell according to claim 1, wherein the separator mask material has a thickness of μm.
【請求項3】 FeまたはFe合金、ステンレス鋼、N
iまたはNi合金ののうち少なくとも1種または2種以
上の単板または積層板からなる基板表面に、冷間圧接に
よりAlを10μm〜500μmの厚みでクラッドした
後、非酸化性雰囲気中、400°C〜650°Cで内部
拡散処理することを特徴とする溶融炭酸塩型燃料電池用
セパレータマスク材の製造方法。
3. Fe or Fe alloy, stainless steel, N
After clad Al to a thickness of 10 μm to 500 μm by cold pressure welding on the surface of a substrate composed of a single plate or a laminated plate of at least one kind or two kinds or more of i or Ni alloy, it is 400 ° C. in a non-oxidizing atmosphere. A method of manufacturing a separator mask material for a molten carbonate fuel cell, which comprises performing internal diffusion treatment at C to 650 ° C.
JP4186296A 1992-06-19 1992-06-19 Separator masking material for molten carbonate fuel cell and manufacture thereof Pending JPH0652868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4186296A JPH0652868A (en) 1992-06-19 1992-06-19 Separator masking material for molten carbonate fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4186296A JPH0652868A (en) 1992-06-19 1992-06-19 Separator masking material for molten carbonate fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0652868A true JPH0652868A (en) 1994-02-25

Family

ID=16185839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4186296A Pending JPH0652868A (en) 1992-06-19 1992-06-19 Separator masking material for molten carbonate fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0652868A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889536A1 (en) * 1997-07-03 1999-01-07 Siemens Aktiengesellschaft Bipolar metallic plate for high-temperature fuel cell stack
NL1006185C2 (en) * 1996-05-31 2001-12-10 Korea Heavy Ind & Construction Anti-corrosion treatment method for a fuel cell separator with molten carbonate.
WO2002005369A1 (en) * 2000-07-12 2002-01-17 Forschungszentrum Jülich GmbH Aluminous interconnector for fuel cells
WO2003028134A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for preparation thereof
KR100394777B1 (en) * 1996-06-19 2003-11-17 한국전력공사 Surface treatment of molten carbonate fuel cell separator
KR100394776B1 (en) * 1996-05-31 2003-11-17 한국전력공사 Anticorrosive coating method for gas sealing part of fuel cell separator
WO2003100900A1 (en) * 2002-05-21 2003-12-04 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
KR100877714B1 (en) * 2007-03-23 2009-01-09 한국과학기술연구원 Separator for cooling MCFC, MCFC including the same and method for cooling MCFC using the separator for cooling MCFC

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1006185C2 (en) * 1996-05-31 2001-12-10 Korea Heavy Ind & Construction Anti-corrosion treatment method for a fuel cell separator with molten carbonate.
KR100394776B1 (en) * 1996-05-31 2003-11-17 한국전력공사 Anticorrosive coating method for gas sealing part of fuel cell separator
KR100394777B1 (en) * 1996-06-19 2003-11-17 한국전력공사 Surface treatment of molten carbonate fuel cell separator
EP0889536A1 (en) * 1997-07-03 1999-01-07 Siemens Aktiengesellschaft Bipolar metallic plate for high-temperature fuel cell stack
WO2002005369A1 (en) * 2000-07-12 2002-01-17 Forschungszentrum Jülich GmbH Aluminous interconnector for fuel cells
US7166386B2 (en) 2001-09-19 2007-01-23 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for preparation thereof
WO2003028134A1 (en) * 2001-09-19 2003-04-03 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for preparation thereof
WO2003100900A1 (en) * 2002-05-21 2003-12-04 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
US6858341B2 (en) 2002-05-21 2005-02-22 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
GB2405029B (en) * 2002-05-21 2005-11-16 Idatech Llc Bipolar plate assembly fuel cell stacks and fuel cell systems incorporating the same
US7147677B2 (en) 2002-05-21 2006-12-12 Idatech, Llc Bipolar plate assembly, fuel cell stacks and fuel cell systems incorporating the same
GB2405029A (en) * 2002-05-21 2005-02-16 Idatech Llc Bipolar plate assembly fuel cell stacks and fuel cell systems incorporating the same
KR100877714B1 (en) * 2007-03-23 2009-01-09 한국과학기술연구원 Separator for cooling MCFC, MCFC including the same and method for cooling MCFC using the separator for cooling MCFC

Similar Documents

Publication Publication Date Title
US7550174B2 (en) Low contact resistance bonding method for bipolar plates in a PEM fuel cell
JP3070038B2 (en) Current collector for fuel cell and method of manufacturing the same
US6967065B1 (en) Separator of proton exchange fuel cell and its manufacturing method
JP4638731B2 (en) Conductive fluid distribution element, method for manufacturing the conductive fluid distribution element, and fuel cell
KR100436456B1 (en) Polymer electrolyte fuel cell
US7674546B2 (en) Metallic separator for fuel cell and method for anti-corrosion treatment of the same
US8071252B2 (en) Interconnector for high-temperature fuel cells
JP2010003689A (en) Fuel cell interconnecting structure and related method as well as data
US6090228A (en) Anticorrosive treatment method for a separator of molten carbonate fuel cell
JPH11162478A (en) Separator for fuel cell
JPH0652868A (en) Separator masking material for molten carbonate fuel cell and manufacture thereof
JP2006107936A (en) Interconnector for planar solid oxide fuel cell
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JPH10208759A (en) Separator for molten carbonate type fuel cell
JPS62262376A (en) Melted carbonate type fuel cell
JPH0790440A (en) Metallic material for fused carbonate type fuel cell
KR101483489B1 (en) Seperator for fuel cell and method for manufacturing the same
KR100394777B1 (en) Surface treatment of molten carbonate fuel cell separator
JPH06267550A (en) Separator for molten carbonate type fuel cell and its anticorrosive processing method
JP7324983B2 (en) INTERCONNECTOR MEMBER AND METHOD FOR MANUFACTURING INTERCONNECTOR MEMBER
JP2822457B2 (en) Fuel cell separator and method of manufacturing the same
JPH0684530A (en) Solid electrolyte type fuel cell
JPH0315158A (en) Separator for fuel cell
KR101229075B1 (en) Stack for molten carbonate fuel cell and method of producing separator for molten carbonate fuel cell
JP2020119626A (en) Inter-cell connecting member, solid oxide fuel cell, sofc mono generation system, sofc cogeneration system, and manufacturing method inter-cell connecting member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040116

A521 Written amendment

Effective date: 20040305

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071112

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081112

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081112

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091112

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101112

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131112