JPH0652714B2 - Thin film material manufacturing method - Google Patents

Thin film material manufacturing method

Info

Publication number
JPH0652714B2
JPH0652714B2 JP56045559A JP4555981A JPH0652714B2 JP H0652714 B2 JPH0652714 B2 JP H0652714B2 JP 56045559 A JP56045559 A JP 56045559A JP 4555981 A JP4555981 A JP 4555981A JP H0652714 B2 JPH0652714 B2 JP H0652714B2
Authority
JP
Japan
Prior art keywords
thin film
hydrogen
film material
silicon
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56045559A
Other languages
Japanese (ja)
Other versions
JPS57160124A (en
Inventor
寿一 嶋田
良史 片山
靖寛 白木
瑛一 丸山
宏和 松原
彰利 石坂
良昌 村山
昭 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56045559A priority Critical patent/JPH0652714B2/en
Publication of JPS57160124A publication Critical patent/JPS57160124A/en
Publication of JPH0652714B2 publication Critical patent/JPH0652714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 本発明は薄膜材料の製造法に関し、更に詳述すれば、シ
リコンを主構成元素とする薄膜材料の製造法に関するも
のである。
The present invention relates to a method for producing a thin film material, and more specifically to a method for producing a thin film material containing silicon as a main constituent element.

従来シリコンを主構成元素とする薄膜材料は真空蒸着
法、スパツタリング法、グロー放電法、熱分解法、プラ
ズマ輸送法、化成分解堆積法等によつて作られていた。
そのため形成された薄膜材料は通常全体が単結晶となら
ず、多結晶や非晶質およびこれらの混在したものとな
り、多結晶にあつては結晶粒界等が、また、非晶質にあ
つてはダングリングボンド等が薄膜中に多数存在する。
この様な薄膜を半導体材料として利用する場合、結晶粒
界やダングリングボンドが作る電子状態が禁止帯中に多
数現われ、p,n形の制御が出来ず、また光導電材料と
して利用する場合その光電変換効率が低下することが良
く知られている。最近高周波によるシラン(SiH4)の
グロー放電分解法によつて作られた水素を含む非晶質シ
リコン(a−Si:H)が光導電材料としての使用が検討
され、太陽電池や光導電センサ等への応用が開けつつあ
る。しかしながらa−Si:H中のキヤリヤの移動度は
10-1〜10-2cmV-1S-1と極めて小さく等価直列抵抗が大き
すぎたり、応答速度が遅いという欠点があつた。一方、
最近微結晶薄膜シリコンを用いた薄膜能動素子の研究が
盛んとなり、10-8Torr以下の超高真空中でシリコン
を蒸着することになり多数キヤリヤ移動度の大きい微結
晶薄膜が得られることが報告されている。この薄膜中で
の多数キヤリヤ移動度は10cmV-1S-1とa−Si膜に比べ
て数桁大きく、多数キヤリヤを利用する目的には優れた
材料である。しかしながらこの材料は少数キヤリヤの走
行が主役となる光導電素子や光起電力素子に用いるには
少数キヤリヤの拡散距離が結晶粒界等で制限されている
ため不適当であつた。
Conventionally, a thin film material containing silicon as a main constituent element has been produced by a vacuum vapor deposition method, a sputtering method, a glow discharge method, a thermal decomposition method, a plasma transportation method, a chemical composition deposition method, or the like.
Therefore, the formed thin film material is usually not a single crystal, but a polycrystal, an amorphous material, or a mixture thereof. For a polycrystal, a grain boundary, etc. Has many dangling bonds in the thin film.
When such a thin film is used as a semiconductor material, a large number of electronic states formed by crystal grain boundaries or dangling bonds appear in the forbidden band, p and n types cannot be controlled, and when it is used as a photoconductive material, It is well known that the photoelectric conversion efficiency decreases. Recently, the use of amorphous silicon containing hydrogen (a-Si: H) produced by the glow discharge decomposition method of silane (SiH 4 ) by high frequency as a photoconductive material has been studied, and a solar cell or a photoconductive sensor has been investigated. The application to the etc. is opening. However, the mobility of carriers in a-Si: H is
It was extremely small at 10 -1 to 10 -2 cmV -1 S -1 and had the drawback that the equivalent series resistance was too large and the response speed was slow. on the other hand,
Recently, research on thin-film active devices using microcrystalline thin-film silicon has become popular, and it is reported that silicon will be deposited in an ultrahigh vacuum of 10 -8 Torr or less, and many microcrystalline thin films with high carrier mobility can be obtained. Has been done. The mobility of many carriers in this thin film is 10 cmV -1 S -1 , which is several orders of magnitude higher than that of the a-Si film, and it is an excellent material for the purpose of utilizing many carriers. However, this material is unsuitable for use in a photoconductive element or a photovoltaic element in which the traveling of a minority carrier is the main role because the diffusion distance of the minority carrier is limited by crystal grain boundaries.

この点を改善するため水素プラズマ中で400℃以下程
度で加熱処理することが試みられている。しかしながら
400℃以下では水素の薄膜中での拡散が遅く、1μm
程度拡散させるのに1時間〜10時間という長時間を要
する欠点があつた。
In order to improve this point, heat treatment in hydrogen plasma at about 400 ° C. or lower has been attempted. However, at 400 ° C or lower, the diffusion of hydrogen in the thin film is slow and 1 μm.
There is a drawback that it takes a long time of 1 to 10 hours to diffuse the particles.

本発明の目的は上記欠点のない簡単な方法で拡散係数の
大きい水素を含有した薄膜材料の製造法を提供すること
にある。
An object of the present invention is to provide a method for producing a thin film material containing hydrogen having a large diffusion coefficient by a simple method without the above-mentioned drawbacks.

上記目的を達成するための本発明の構成は、基板上にシ
リコン薄膜を形成する工程と、上記基板を400℃以上
の真空雰囲気、不活性ガス雰囲気、または、水素雰囲気
の孰れか1つの雰囲気中に於ける水素プラズマによる熱
処理を行なう工程と、引き続いて、上記基板を所定の温
度勾配で300℃以下にまで徐々に低下せながら上記プ
ラズマ熱処理を継続させる徐冷工程とを有してなる。
The structure of the present invention for achieving the above object includes a step of forming a silicon thin film on a substrate, a vacuum atmosphere at 400 ° C. or higher, an inert gas atmosphere, or a hydrogen atmosphere, or only one atmosphere. It comprises a step of performing a heat treatment with hydrogen plasma therein, and a gradual cooling step of continuing the plasma heat treatment while gradually lowering the substrate to 300 ° C. or less at a predetermined temperature gradient.

本発明は上述の様に、水素の拡散係数の大きい高温にお
いて水素プラズマ処理を行う点が肝要である。高温にす
れば拡散係数が大きくなり、短時間に薄膜の奥深く種々
の元素等を導入出来る。ところが、このままではシリコ
ン薄膜中の水素の場合約400℃以上ではシリコンと水
素の化学結合が切れてしまうので有効に水素を膜中に導
入することが出来ない。しかし、本発明の今一つの徐冷
工程によつて水素を膜中に導入できるようになつた。す
なわち、上述の様に、水素プラズマ中で加熱拡散処理後
冷却中も水素プラズマ中に保ち、水素がシリコン中で安
定な化学結合を作る温度まで降下後プラズマ中から取出
す点にあるからである。この様にすることの特長は次の
通りである。微結晶シリコン薄膜中の微結晶粒界は原子
配列に乱れがあり、非晶質的な部分が存在する。この様
な所に水素が結合するとその結合エネルギに場所的なバ
ラツキが出来、分布を生ずる。また拡散過程においても
活性化エネルギに分布があり、一定温度で拡散をすると
大きな活性化エネルギの結合位置には水素が入りにく
く、逆に小さな活性化エネルギの位置では水素とシリコ
ンの結合が不安定となり特性改善に有効な水素を所定の
位置に保つことが出来ない。これに対し本発明のごとく
プラズマ中にて加熱および冷却を行うと高温では水素導
入に大きな活性化エネルギの必要な部分に有効に水素が
入り、徐々に温度を下降することで順次結合の弱い位置
に水素が結合することになる。徐冷の際の温度勾配は0.
5〜10℃/分であることが望ましい。また、このとき、
400℃以上の温度から300℃以下の温度に下降させ
ることが肝要である。400℃以上は水素がシリコン膜
中に充分行き渡るのに必要な温度であり、また、200
℃以下のプラズマではシリコン膜に逆に欠陥を与えるの
で200℃〜300℃まで上記徐冷を行なうことが望ま
しい。このため短時間に均一にかつ有効に水素をシリコ
ン薄膜中に導入することが出来ることになり、応用上極
めて優れた方法と特性を与え得るものである。
As described above, it is important for the present invention to perform hydrogen plasma treatment at a high temperature where the hydrogen diffusion coefficient is large. When the temperature is raised, the diffusion coefficient becomes large, and various elements and the like can be introduced deep into the thin film in a short time. However, if hydrogen is contained in the silicon thin film as it is, hydrogen cannot be effectively introduced into the film because the chemical bond between silicon and hydrogen is broken at about 400 ° C. or higher. However, it has become possible to introduce hydrogen into the film by another slow cooling step of the present invention. That is, as described above, this is because the hydrogen plasma is kept in the hydrogen plasma during cooling after the heat diffusion treatment, and the hydrogen is taken out from the plasma after it has dropped to a temperature at which a stable chemical bond is formed in silicon. The features of doing this are as follows. The microcrystalline grain boundaries in the microcrystalline silicon thin film have disordered atomic arrangement and have amorphous portions. When hydrogen is bound to such a location, the binding energy of the hydrogen varies locally and a distribution is produced. Also, there is a distribution of activation energy in the diffusion process, and if diffusion occurs at a constant temperature, it is difficult for hydrogen to enter the bonding position of large activation energy, and conversely, the bonding of hydrogen and silicon is unstable at the position of small activation energy. Therefore, it is not possible to keep hydrogen, which is effective for improving the characteristics, at a predetermined position. On the other hand, when heating and cooling are performed in the plasma as in the present invention, hydrogen is effectively introduced into a portion requiring a large activation energy for hydrogen introduction at high temperature, and the temperature is gradually decreased to gradually weaken the bonding position. Hydrogen will be bonded to. The temperature gradient during gradual cooling is 0.
It is preferably 5 to 10 ° C / min. Also, at this time,
It is important to lower the temperature from 400 ° C or higher to 300 ° C or lower. A temperature of 400 ° C. or higher is a temperature necessary for hydrogen to sufficiently spread in the silicon film, and is 200
If the plasma is lower than 0 ° C, the silicon film is adversely affected. Therefore, it is desirable to perform the slow cooling to 200 ° C to 300 ° C. For this reason, hydrogen can be introduced into the silicon thin film uniformly and effectively in a short time, and an extremely excellent method and characteristics can be given in application.

この様な水素プラズマを使用したものとして、グロー放
電法、スパツタリング法、CVD法、分子線蒸着法、イ
オンプレーテイング法、イオンクラスタービーム法など
がある。これらは、全く差違なく同様に使用できる。
There are glow discharge method, spattering method, CVD method, molecular beam deposition method, ion plating method, ion cluster beam method and the like as the method using such hydrogen plasma. These can be used as well without any difference.

以下本発明を実施例によつて詳しく説明する。The present invention will be described in detail below with reference to examples.

実施例 分子線成長法により非晶質または微結晶およびこれらの
混合物を形成する方法について述べる。第1図は本実施
例の薄膜形成装置の概要を示す図である。1は真空容器
で2の排気装置によつて10-10Torr程度に排気出来
る。まずガラス基板5を4のホルダーに固定する。この
ホルダーは加熱用ヒータを内蔵しており、かつ6の高周
波電極の対向電極となつている。次に2の排気装置で2
×10-10Torrに排気し、6の高周波電極は破線で示
した右側の位置に移動させ、3の電子線蒸発源よりシリ
コンを蒸発させ5の基板に1μmのシリコン薄膜を得
た。この場合基板の温度を100℃に保つと非晶質、5
20℃に保つと非晶質と微結晶の混合物、610℃に保
つと略微結晶薄膜が得られた。このことは同時に測定出
来る電子線回折パターンによつて確認できる。次に6の
高周波電極を実線の位置に移動させ、8の水素ガス供給
装置と9の排気バルブを調整して水素ガス圧力を0.04T
orrに調節し、非晶質にあつては400℃、非晶質と
微結晶の混合物にあつては500℃、微結晶薄膜にあつ
ては600℃に加熱し、7の高周波電力20Wを印加し
た。こうすると、電極5,6の間およびその近傍にグロ
ー放電が生じ水素プラズマが形成される。上記それぞれ
の温度で約10分間保持した後約0.5〜10℃/分、普通
4℃/の降温速度で200℃まで下降させ、しかる後高
周波入力を切り、引続き降温させ、約50℃にて真空容
器1から試料を取出した。
Example A method for forming amorphous or microcrystal and a mixture thereof by a molecular beam growth method will be described. FIG. 1 is a diagram showing an outline of the thin film forming apparatus of this embodiment. Reference numeral 1 is a vacuum container, which can be evacuated to about 10 -10 Torr by the evacuation device of 2. First, the glass substrate 5 is fixed to the holder of 4. This holder has a built-in heater for heating and serves as a counter electrode of the high frequency electrode of 6. Then 2 with 2 exhaust system
The gas was evacuated to × 10 -10 Torr, the high frequency electrode 6 was moved to the right side position indicated by the broken line, and silicon was evaporated from the electron beam evaporation source 3 to obtain a 1 μm silicon thin film on the substrate 5. In this case, if the substrate temperature is kept at 100 ° C.
A mixture of amorphous and fine crystals was obtained when kept at 20 ° C, and a substantially fine crystalline thin film was obtained when kept at 610 ° C. This can be confirmed by an electron beam diffraction pattern that can be measured at the same time. Next, move the high-frequency electrode 6 to the position indicated by the solid line, adjust the hydrogen gas supply device 8 and the exhaust valve 9 to adjust the hydrogen gas pressure to 0.04T.
Adjusted to orr, heated to 400 ° C. for amorphous, 500 ° C. for mixture of amorphous and microcrystalline, 600 ° C. for microcrystalline thin film, and applied high frequency power 20 W of 7 did. As a result, glow discharge occurs between the electrodes 5 and 6 and in the vicinity thereof, and hydrogen plasma is formed. After holding at each of the above temperatures for about 10 minutes, the temperature is lowered to 200 ° C at a rate of about 0.5-10 ° C / min, usually 4 ° C / min, then the high frequency input is turned off, the temperature is continuously lowered, and vacuum is applied at about 50 ° C. The sample was taken out of the container 1.

この様にして得た材料の特長を示す一例が第2図の光吸
収スペクトルである。21は100℃で蒸着し、400
℃でプラズマ処理したもの、すなわち、徐冷工程を有し
ない試料である。22は520℃で蒸着し、500℃で
プラズマ処理したもの、23は610℃で蒸着し、60
0℃でプラズマ処理したものである。また24は従来の
グロー放電法によつて作つた非晶質薄膜のもの、25は
単結晶のものである。これから明らかなごとく本発明の
方法によれば21から25の間の極めて広い範囲にわた
つて光吸収スペクトルを任意に選択形成出来ることがわ
かる。加えてこの様にして得た薄膜の少数キヤリヤ走行
距離は電子については25の結晶より短かいが、24の
グロー放電法によるものよりいずれも長く1〜7μmも
ある。また正孔については24のグロー放電法によるも
のが約0.05μmであつたのに本発明の材料では0.07〜0.
4μmと極めて長くなつている。また多数キヤリヤ移動
度は0.1〜10cm2/V・Sと24のグロー放電法によるも
のにくらべて1桁程度大きいことがわかつた。
An example of the characteristics of the material thus obtained is the light absorption spectrum of FIG. 21 is vapor-deposited at 100 ° C. and 400
This is a sample that has been plasma-treated at ° C, that is, a sample that does not have a slow cooling step. 22 was vapor-deposited at 520 ° C. and plasma-treated at 500 ° C., 23 was vapor-deposited at 610 ° C., 60
It was plasma-treated at 0 ° C. Further, 24 is an amorphous thin film formed by the conventional glow discharge method, and 25 is a single crystal. As is apparent from the above, it is understood that the method of the present invention can arbitrarily select and form the light absorption spectrum over a very wide range between 21 and 25. In addition, the minority carrier travel distance of the thin film thus obtained is shorter than 25 crystals for electrons, but 1 to 7 μm longer than that of 24 by the glow discharge method. Regarding the holes, the value obtained by the glow discharge method in 24 was about 0.05 μm, but it was 0.07-0.
It is extremely long at 4 μm. It was also found that the mobility of many carriers was 0.1 to 10 cm 2 / V · S and about one digit larger than that of the glow discharge method of 24.

上述の実施例では、ガラス基板上にシリコン薄膜を形成
させた場合についてのみ記載したが、これに限らず、ス
テンレスなど他の基板上にシリコン膜を形成した場合も
全く同様に特性のよい水素添加の薄膜材料が得られた。
また、シリコンに限らずGe,GaAsなどの他の半導
体材料で薄膜を形成させた場合も全く同様であつた。構
成、製法等は全く同様にして得られるので説明は割愛す
る。
In the above-mentioned embodiment, the case where the silicon thin film is formed on the glass substrate is described. However, the present invention is not limited to this, and the case where the silicon film is formed on the other substrate such as stainless steel, hydrogenation having excellent characteristics is similarly performed. Thin film material was obtained.
The same applies to the case where the thin film is formed of not only silicon but also other semiconductor materials such as Ge and GaAs. The structure, manufacturing method, and the like are obtained in exactly the same manner, so the description is omitted.

以上詳述した様に、本発明は形成された半導体薄膜を4
00℃以上のプラズマ雰囲気から300℃以下のプラズ
マ雰囲気に徐冷させることにより特性の良好な薄膜材料
を提供できる点工業的利益大なるものである。
As described in detail above, according to the present invention, the formed semiconductor thin film is
By gradually cooling from a plasma atmosphere of 00 ° C or higher to a plasma atmosphere of 300 ° C or lower, a thin film material having good characteristics can be provided, which is an industrial advantage.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に使用した薄膜材料の製造装置の概略
図、第2図は本発明により形成された薄膜材料の特性図
である。 1……真空容器、2……排気装置、3……電子線蒸発
源、4……ホルダー、5……ガラス基板、6……高周波
電極、7……高周波電力、8……水素ガス供給装置、9
……排気バルブ。
FIG. 1 is a schematic diagram of an apparatus for producing a thin film material used in the present invention, and FIG. 2 is a characteristic diagram of a thin film material formed by the present invention. 1 ... vacuum container, 2 ... exhaust device, 3 ... electron beam evaporation source, 4 ... holder, 5 ... glass substrate, 6 ... high frequency electrode, 7 ... high frequency power, 8 ... hydrogen gas supply device , 9
...... Exhaust valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白木 靖寛 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 丸山 瑛一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 松原 宏和 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 石坂 彰利 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 村山 良昌 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 新谷 昭 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 Appl.Phys.Lett.33 〔5〕,(1978−9−1),P.440〜442 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Shiraki 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Eiichi Maruyama 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. (72) Inventor Hirokazu Matsubara, 1-280, Higashi Koikeku, Kokubunji, Tokyo, Hitachi, Ltd., Central Research Institute, Ltd. (72) Inventor, Akitoshi Ishizaka, 1-280, Higashi Koikeku, Kokubunji, Tokyo, Hitachi, Ltd. (72) Inventor Yoshimasa Murayama 1-280 Higashi Koigokubo, Kokubunji City, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor Akira Shintani 1-280 Higashi Koigokubo, Kokubunji, Tokyo Hitachi Research Center, Ltd. (56) Reference Reference Appl. Phys. Lett. 33 [5], (1978-9-1), p. 440 ~ 442

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】結晶粒界やダングリングボンドを有する半
導体薄膜を基板上に形成する工程と、上記半導体薄膜が
形成された上記基板を400℃以上に加熱して水素プラ
ズマ雰囲気中で熱処理を行う工程と、引き続いて上記基
板を所定の温度勾配で冷却する除冷工程と、200〜3
00℃の温度まで冷却後上記水素プラズマを停止する工
程とを有することを特徴とする薄膜材料の製造法。
1. A step of forming a semiconductor thin film having a grain boundary or a dangling bond on a substrate, and heating the substrate on which the semiconductor thin film is formed at 400 ° C. or higher to perform heat treatment in a hydrogen plasma atmosphere. 200 to 3 steps, followed by a cooling step of cooling the substrate with a predetermined temperature gradient
And a step of stopping the hydrogen plasma after cooling to a temperature of 00 ° C.
【請求項2】上記温度勾配は、0.5〜10℃/分であ
ることを特徴とする特許請求の範囲第1項記載の薄膜材
料の製造法。
2. The method for producing a thin film material according to claim 1, wherein the temperature gradient is 0.5 to 10 ° C./minute.
【請求項3】上記薄膜材料は、Si、GeまたはGaA
sであることを特徴とする特許請求の範囲第1項または
第2項に記載の薄膜材料の製造法。
3. The thin film material is Si, Ge or GaA.
The method for producing a thin film material according to claim 1 or 2, wherein s is s.
JP56045559A 1981-03-30 1981-03-30 Thin film material manufacturing method Expired - Lifetime JPH0652714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56045559A JPH0652714B2 (en) 1981-03-30 1981-03-30 Thin film material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56045559A JPH0652714B2 (en) 1981-03-30 1981-03-30 Thin film material manufacturing method

Publications (2)

Publication Number Publication Date
JPS57160124A JPS57160124A (en) 1982-10-02
JPH0652714B2 true JPH0652714B2 (en) 1994-07-06

Family

ID=12722711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56045559A Expired - Lifetime JPH0652714B2 (en) 1981-03-30 1981-03-30 Thin film material manufacturing method

Country Status (1)

Country Link
JP (1) JPH0652714B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067547B2 (en) * 1983-06-09 1994-01-26 富士通株式会社 Vapor phase growth equipment
JPH04321277A (en) * 1991-04-19 1992-11-11 Sanyo Electric Co Ltd Formation of amorphous silicon thin film and manufacture of photoelectromotive device using the same
JPH088371B2 (en) * 1993-03-10 1996-01-29 株式会社日立製作所 Thin film solar cell and method of manufacturing the same
JP3027968B2 (en) 1998-01-29 2000-04-04 日新電機株式会社 Film forming equipment
US7273818B2 (en) * 2003-10-20 2007-09-25 Tokyo Electron Limited Film formation method and apparatus for semiconductor process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.33〔5〕,(1978−9−1),P.440〜442

Also Published As

Publication number Publication date
JPS57160124A (en) 1982-10-02

Similar Documents

Publication Publication Date Title
US5248621A (en) Method for producing solar cell devices of crystalline material
US4402762A (en) Method of making highly stable modified amorphous silicon and germanium films
US4237151A (en) Thermal decomposition of silane to form hydrogenated amorphous Si film
JP2000277439A (en) Plasma cvd method for crystalline silicon thin-film and manufacture of silicon thin-film photoelectric conversion device
JPS58130517A (en) Manufacture of single crystal thin film
JP3897622B2 (en) Method for producing compound semiconductor thin film
US5397737A (en) Deposition of device quality low H content, amorphous silicon films
JPH0652714B2 (en) Thin film material manufacturing method
GB2127438A (en) Depositing a film onto a substrate by electron-beam evaporation
JP3351679B2 (en) Method for manufacturing polycrystalline silicon thin film laminate and silicon thin film solar cell
US6251183B1 (en) Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process
Tsuo et al. Ion beam hydrogenation of amorphous silicon
JPH02208925A (en) Formation of semiconductor film
Chao et al. Effects of substrate temperature on the orientation of ultrahigh vacuum evaporate Si and Ge films
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JPH04298020A (en) Manufacture of silicon thin film crystal
JP4256522B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JPS6313340B2 (en)
JP3556483B2 (en) Method for manufacturing silicon-based thin film photoelectric conversion device
JP3300802B2 (en) Semiconductor manufacturing method
JPH05263219A (en) Production of copper indium selenide thin film
JPS63297293A (en) Method for growing crystal
Wiesmann Method of producing hydrogenated amorphous silicon film
Albin et al. The effect of source microstructure on the close-space sublimation of CdTe thin films for solar cell applications
JPH03284882A (en) Semiconductor thin film and manufacture thereof