JPH0652233B2 - Ultra fine particle measuring device - Google Patents

Ultra fine particle measuring device

Info

Publication number
JPH0652233B2
JPH0652233B2 JP60183487A JP18348785A JPH0652233B2 JP H0652233 B2 JPH0652233 B2 JP H0652233B2 JP 60183487 A JP60183487 A JP 60183487A JP 18348785 A JP18348785 A JP 18348785A JP H0652233 B2 JPH0652233 B2 JP H0652233B2
Authority
JP
Japan
Prior art keywords
gas
corona
electrode
particle
burst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60183487A
Other languages
Japanese (ja)
Other versions
JPS6243540A (en
Inventor
閃一 増田
Original Assignee
閃一 増田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 閃一 増田 filed Critical 閃一 増田
Priority to JP60183487A priority Critical patent/JPH0652233B2/en
Publication of JPS6243540A publication Critical patent/JPS6243540A/en
Publication of JPH0652233B2 publication Critical patent/JPH0652233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,ガス中に浮遊する粒径0.1ミクロン以下の
超微粒子の個数濃度と粒径分布を測定するための装置で
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is an apparatus for measuring the number concentration and particle size distribution of ultrafine particles suspended in a gas and having a particle size of 0.1 micron or less.

〔従来の技術〕[Conventional technology]

従来のこの種の分離装置は,粒子に電荷を与えたのち直
流電界中を流通せしめ,その電気的移動度の差を粒子電
荷による微少電流を測定することによって検出する型式
のエアロゾル電気的移動度分析装置が用いられている。
This type of conventional separation device is a type of aerosol electric mobility in which a particle is charged and then passed through a DC electric field, and the difference in electric mobility is detected by measuring a minute current due to the particle charge. An analyzer is used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記型式の電気的移動度分析装置では,粒径が0.1ミク
ロン以下と極度に小さく,且つその個数濃度が低い場
合,粒子電荷による電流値が極めて小さくなって,誤差
の増大をさけられず,逐には測定自体が不可能となる。
In the electric mobility analyzer of the above type, when the particle size is extremely small, 0.1 micron or less, and the number concentration is low, the current value due to the particle charge becomes extremely small, and the error cannot be avoided, and It becomes impossible to measure itself.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は,それ自体公知である電気的移動度分析装置
において微少電流計による粒子電荷検出の代わりに負電
荷をもたせた粒子が正コロナ電極に到来する度に生ずる
バースト・コロナのパルスを検出することにより粒子検
出を行う。
The present invention detects a pulse of a burst corona generated every time a negatively charged particle arrives at a positive corona electrode in place of particle charge detection by a microammeter in an electric mobility analyzer known per se. Particle detection is performed by doing so.

すなわち,本発明はガス中に浮遊する超微粒子に負コロ
ナ放電,ラヂオアイソトープ等を利用して,粒子1個毎
に電荷素量e〔C〕の負電荷を与えるための「粒子予備
荷電部」と,同心円筒電極,平行平板電極等の平行電極
系と,その両電極間に可変直流電圧v〔V〕を印加する
ための可変直流電源から成る「粒子分離部」と,該平行
電極系の一端より清浄キャリヤガスを供給してこれを両
電極間に層流状に他端へと流通せしめるためのガス吸引
口,ガス除塵用フィルター,ポンプ等より成る「キャリ
ヤガス流通系」を有し,更に該粒子予備荷電部の出口よ
り負帯電超微粒子を浮遊せしめたガスを一定の流量で該
平行電極系上流側の負電極附近に一様に供給するため帯
電超微粒子供給口と供給管路より成る所の「連結部」
と,該平行電極系下流側の正電極附近より一様に流通ガ
スの一部(以下抽出ガスと呼ぶ)とともにその場所に到
達せる帯電超微粒子を抽出するための帯電超微粒子抽出
口と,吸引管路,吸引ポンプ等より成る「抽出ガス吸引
系」を有し,更に該吸引管路に介入して設けられた,針
状,管状,線状,ナイフ刃状,円筒刃状等の放電極およ
び,これと絶縁の上対向配設せる板状,金網状,円筒状
等の放向電極より成るコロナ電極系と,その両電極間に
放電極が正となる如くコロナ開始電圧直前の電圧を印加
するための直流電源と,該放電極より発生するバースト
・コロナをその際,該コロナ電極系に流れるパルス電流
又は発光により検出計数するためのバースト・コロナ計
数器より成る「負帯電超微粒子計数部」から成る超微粒
子測定装置である。
That is, the present invention utilizes a negative corona discharge, a radioisotope, etc. to the ultrafine particles floating in the gas to provide a "particle precharge portion" for giving a negative charge of the elementary charge e [C] to each particle. , A parallel electrode system such as a concentric cylindrical electrode, a parallel plate electrode, etc., and a "particle separation unit" composed of a variable DC power supply for applying a variable DC voltage v [V] between the two electrodes, and the parallel electrode system. It has a "carrier gas flow system" consisting of a gas suction port for supplying a clean carrier gas from one end and circulating it between both electrodes in a laminar flow to the other end, a filter for gas dust removal, a pump, etc. Further, in order to uniformly supply the gas in which the negatively charged ultrafine particles are suspended from the outlet of the particle precharging unit at a constant flow rate to the vicinity of the negative electrode on the upstream side of the parallel electrode system, the charged ultrafine particle supply port and the supply line are provided. "Connecting part"
And a charged ultrafine particle extraction port for extracting the charged ultrafine particles that reach the place together with a part of the flowing gas (hereinafter referred to as the extracted gas) evenly near the positive electrode on the downstream side of the parallel electrode system, and suction Needle-shaped, tubular-shaped, linear-shaped, knife-blade-shaped, cylindrical-blade-shaped discharge electrodes that have an "extracted gas suction system" consisting of a pipeline, a suction pump, etc. And, the corona electrode system consisting of the plate-shaped, wire-mesh-shaped, and cylindrical-shaped emitting electrodes that are arranged so as to face each other in an insulating manner and the voltage immediately before the corona starting voltage so that the emitting electrode is positive between both electrodes. "Negatively charged ultrafine particle counting" comprising a DC power source for applying the voltage and a burst corona counter for detecting and counting the burst corona generated from the discharge electrode by pulse current or light emission flowing in the corona electrode system at that time. Is an ultrafine particle measuring device

〔作 用〕[Work]

前記粒子荷電部から連結部を経て,粒子分離部の上流側
負電極附近に供給された負電荷e〔C〕を有する超微粒
子は、クーロン力により正電極に向って平均速度 で移動する。但し,=V/d=正負電極間の平均電界速
度〔V/m〕,d=電極間距離〔m〕,η=ガス粘度〔Ns/
m2〕,a=粒子半径〔m〕,Cm=1+2.514(λ/2a)
+0.8(λ/a)×exp〔−0.55(2a/λ)〕,λ=ガス
分子の平均自由行程で, は粒子半経aと印加電圧Vの関数となる。すなわち, いま電極間のキャリヤガスの平均流通速度をVg〔m/
s〕,帯電超微粒子の供給口と抽出口間の距離をL
〔m〕とすると,下記条件を満足する粒子半径a〔m〕
の粒子のみが上記抽出口より検出ガスと共に抽出され負
帯電超微粒子計数部のコロナ電極系に導入される。
The ultrafine particles having the negative charge e [C] supplied near the negative electrode on the upstream side of the particle separating portion through the connecting portion from the particle charging portion, have an average velocity toward the positive electrode due to Coulomb force. To move. Where, = V / d = average electric field velocity between positive and negative electrodes [V / m], d = distance between electrodes [m], η = gas viscosity [Ns /
m 2 ], a = particle radius [m], Cm = 1 + 2.514 (λ / 2a)
+0.8 (λ / a) × exp [−0.55 (2a / λ)], λ = mean free path of gas molecule, Is a function of the particle half diameter a and the applied voltage V. That is, Now, let the average flow rate of the carrier gas between the electrodes be Vg [m / m
s], the distance between the charged ultrafine particle supply port and the extraction port is L
Let [m] be the particle radius a [m] that satisfies the following conditions:
Only the particles are extracted together with the detection gas from the extraction port and introduced into the corona electrode system of the negatively charged ultrafine particle counting section.

こ負帯電超微粒子は、直ちにクーロン力によって正の放
電極近傍に到達し,その場所の強力な電界によって電子
を離脱放出,この電子が放電極に向って走行中に衝突電
離による電子崩れを発生して大きなパルス電流および発
光を伴う正のバースト・コロナを生ずる。したがって,
このパルス電流又は発光を上記バースト・コロナ計数器
で一定時間検出計数することによって,所定の粒子半径
aの粒子の個数濃度 が測定でき,更に印加電圧Vを変えることにより,種々
のaに対する個数濃度,さらには粒経分布を測定するこ
とが可能となる。この場合,バースト・コロナは1個の
超微粒子到来毎に1個宛発生するから,如何にその個数
濃度が小さく,またその粒径が小さくても正確に と粒径分布を測定することが可能となるのである。
The negatively charged ultrafine particles immediately reach the vicinity of the positive discharge electrode due to the Coulomb force, desorb and emit electrons due to the strong electric field at that location, and the electrons collapse due to impact ionization while traveling toward the discharge electrode. Resulting in a positive burst corona with large pulse current and emission. Therefore,
The pulse current or light emission is detected and counted by the burst corona counter for a certain period of time to determine the number concentration of particles having a predetermined particle radius a. Can be measured, and by changing the applied voltage V, it is possible to measure the number concentration for various a and further the particle size distribution. In this case, one burst corona is generated each time one ultrafine particle arrives, so no matter how small the number concentration is and how small the particle size is, it is accurate. It is possible to measure the particle size distribution.

〔実施例〕〔Example〕

本発明の特徴を実施例および図面により説明すると,第
1図において,1は粒子分離部で,接地せる外部円筒2
と絶縁3を介してこれより絶縁支持せる内部円筒4より
成る同心円筒状の平行電極系5と,両電極間に4を2に
対して正とする如き極性をもって可変直流電圧Vを印加
する所の可変直流電源6より成る。7,8はそれぞれ外
部円筒2の上下端を密閉する円板で、7と内部円筒4の
半径状頂部9の中間位置に7と平行に外部円筒2の内部
を上下に支切る整流用多孔板10がある。その上部空間11
の側壁に清浄キャリヤガス入口12があり,空気取入口13
を有する除塵用高性能フィルター14に連結されている。
半球状頂部9のつけ根の位置に対向する外部円筒2の内
壁に帯電超微粒子供給口としての円環状スリット15があ
り,その外周に円還状の導入室15′がある。内部円筒4
はその下方部に帯電超微粒子抽出口としての円還状スリ
ット16があり,更にその下方に延長部17を有してその中
に負帯電超微粒子計数部18を内蔵している。またスリッ
ト16と円板8の中間位置に、内外円筒4,2の間の間隙
を上下に支切る整流用多孔板19があり,その下部空間20
の側壁にキャリヤガス出口21があり,ガス流量計22,弁
23を介して吸引ポンプ24に連結されている。25は入口2
6,出口供給管27を供えた粒子予備荷電部で,27は15′
を介して円還状スリット15に連結されている。28は内部
円筒4のスリット16から上の部分29を支持する支柱で,
16から下の部分30への抽出ガスの流通をさまたげない。
負帯電超微粒子計数部18は内部円筒下方部30内にガス流
をさえぎる如く,かつ円筒軸と直交して絶縁物31により
支持配設された中央部分にガス流通用金網32を有する所
の金属円板対向電極33と,これと対向してその下方に絶
縁碍管35により支持されて円筒軸上に配設さた放電極34
と、30の下端を密閉する金属円板36と34の間に挿入さ
れ,放電極に正のコロナ開始電圧直前の直流電圧を印加
するための可変直流電源37と,上記円板対向電極33に接
続された内蔵電源を有するバースト・コロナ電流測定用
の電流計38,その出力パルス信号を光信号としてパルス
計数器39に供給するための光ファイバー40,放電極尖端
41のバースト・パルスに伴う発光を光電子倍増管42上に
集光するための凹面鏡43,42の出力を38に供給するため
の導体44より成る。45は碍管35を支持する金属隔壁,46
はその上方の支切整流用多孔板で45,46の間の空間47の
側壁に抽出ガス出口48があり,ガス流量計49,弁50を介
して吸引ポンプ51に連結されている。いま吸引ポンプ2
4,51を作動させ,それぞれの吸引ガス流量を調節し
て,内外円筒電極4,2間の間隙52を下方に流れる清浄
キャリヤガスが層流状に所定平均流速Vg〔m/s〕をも
って流れる如くし,かつスリット15より供給される負帯
電超微粒子を浮遊せるガスの供給量が上記層流を乱さな
い程度の低い値とし,かつスリット16からのガス抽出流
量がこの供給量とほぼ見合うものになる如く設定する。
この時,印加電圧Vに対して,式(1),(2)を満足する粒
子半径a〔m〕を有する所の負電荷−e〔C〕を有する
超微粒子が点線53に沿って間隙52の内部を運動の上スリ
ット16より下方内部円筒30内に入り,金網32を通過して
クーロン力により放電極34の尖端41へと移動し,その結
果,すでに述べた機構により粒子1個毎に1つのバース
ト・コロナを発生する。これに伴うパルス電流を38,40
を介してパルス計数器39に供給するとともに,その発光
を43,42,44を介して39に供給し,その一方又は両者の
パルス信号を一定時間積算計数する。54はコンピュータ
ーで39の積算計数値,流量計22の指示出力(入口26から
の吸引ガス流と一定の比例関係にある),可変直流電源
6の電圧計55の指示出力をそれぞれ導線56,57,58を介
して供給することにより,超微粒子の各粒径毎の絶対個
数濃度と粒径分布を計録計59に記録する。
The features of the present invention will be described with reference to the examples and the drawings. In FIG.
And a parallel electrode system 5 having a concentric cylindrical shape and comprising an inner cylinder 4 which is insulated and supported via an insulation 3 and a place for applying a variable DC voltage V between both electrodes with a polarity such that 4 is positive with respect to 2. Variable DC power supply 6 of. Reference numerals 7 and 8 denote discs for sealing the upper and lower ends of the outer cylinder 2, respectively, and a rectifying perforated plate for vertically supporting the inside of the outer cylinder 2 in the intermediate position between the radial top 9 of the inner cylinder 4 and 7 There is 10. Its upper space 11
There is a clean carrier gas inlet 12 on the side wall of the
Is connected to a high-performance filter 14 for removing dust.
A circular slit 15 as a charged ultrafine particle supply port is provided on the inner wall of the outer cylinder 2 facing the position of the base of the hemispherical top portion 9, and a circular-circular introduction chamber 15 'is provided on the outer periphery thereof. Internal cylinder 4
Has a circular slit 16 as a charged ultrafine particle extraction port in the lower part thereof, and further has an extension part 17 therebelow and has a negatively charged ultrafine particle counting part 18 built therein. Further, at the intermediate position between the slit 16 and the disk 8, there is a rectifying perforated plate 19 for vertically supporting a gap between the inner and outer cylinders 4 and 2, and a lower space 20 thereof.
There is a carrier gas outlet 21 on the side wall of the
It is connected to the suction pump 24 via 23. 25 is entrance 2
6 、 Particle precharging part with outlet supply pipe 27, 27 is 15 '
It is connected to the consignment slit 15 through. 28 is a pillar that supports the upper part 29 from the slit 16 of the inner cylinder 4,
It does not block the flow of the extracted gas from 16 to the lower part 30.
The negatively charged ultrafine particle counting unit 18 is a metal at a place having a gas distribution wire mesh 32 in a central portion supported by an insulator 31 so as to block the gas flow in the lower portion 30 of the inner cylinder and orthogonal to the cylinder axis. A disk-opposing electrode 33 and a discharge electrode 34 facing the disk-shaped electrode 33 and disposed below the disk-shaped electrode 33 on a cylindrical shaft and supported by an insulating porcelain tube 35.
, A variable DC power supply 37 for inserting a DC voltage immediately before the positive corona starting voltage to the discharge electrode, and a metal plate 36 and 34 for sealing the lower end of the disk 30, and the disk counter electrode 33. An ammeter 38 for measuring burst corona current having a built-in power source connected thereto, an optical fiber 40 for supplying its output pulse signal as an optical signal to a pulse counter 39, and a tip of a discharge electrode.
Consists of a conductor 44 for supplying the output of the concave mirrors 43, 42 to 38 for collecting the light emission accompanying the burst pulse of 41 on the photomultiplier tube 42. 45 is a metal partition wall supporting the porcelain tube 35, 46
Is a porous plate for cutoff rectification above it, and has an extraction gas outlet 48 on the side wall of the space 47 between 45 and 46, and is connected to a suction pump 51 via a gas flow meter 49 and a valve 50. Now suction pump 2
By operating 4 and 51 and adjusting the flow rate of each suction gas, the clean carrier gas flowing downward in the gap 52 between the inner and outer cylindrical electrodes 4 and 2 flows in a laminar flow with a predetermined average flow velocity Vg [m / s]. And the amount of gas supplied from the slit 15 for suspending the negatively charged ultrafine particles is set to a low value so as not to disturb the laminar flow, and the gas extraction flow rate from the slit 16 is almost equal to this supply amount. Set as follows.
At this time, with respect to the applied voltage V, the ultrafine particles having a negative charge −e [C] having a particle radius a [m] satisfying the equations (1) and (2) have a gap 52 along the dotted line 53. In the inside of the cylinder, it enters the lower inner cylinder 30 through the upper slit 16 of the movement, passes through the wire mesh 32 and moves to the tip 41 of the discharge electrode 34 by Coulomb force. Generates one burst corona. The pulse current accompanying this is 38, 40
The pulse light is supplied to the pulse counter 39 via, and the emitted light is supplied to 39 via 43, 42 and 44, and one or both pulse signals are integrated and counted for a certain period of time. Reference numeral 54 is a computer, and the integrated count value of 39, the instruction output of the flowmeter 22 (which has a constant proportional relationship with the suction gas flow from the inlet 26), and the instruction output of the voltmeter 55 of the variable DC power supply 6 are lead wires 56 and 57, respectively. , 58 to record the absolute number concentration and particle size distribution of the ultrafine particles for each particle size in the totalizer 59.

第2図,第3図,第4図はそれぞれ負帯電超微粒子計数
部のコロナ電極系の異る構成様態を示す図である。
FIGS. 2, 3, and 4 are views showing different configurations of the corona electrode system of the negatively charged ultrafine particle counting section.

第2図において60は円錐状の抽出ガス通路で,その内部
に円筒状金網対向電極61が絶縁物62,63を介して半球状
及び円筒状のガード電極64,65を具備して配設され,そ
の中心軸上に絶縁物66,碍管67に支持された線状放電線
68がある。図における37より46までの要素の名稱と機能
は,第1図における同一番号のそれと同じである。この
コロナ電極系では,負帯電超微粒子が金網61を通って一
様に分散しつつ線状放電極に向って対稱に進行し,流入
部位によるミスカウントの可能性が少くなる。
In FIG. 2, reference numeral 60 denotes a conical extraction gas passage, in which a cylindrical wire mesh counter electrode 61 is disposed with insulating materials 62, 63 and hemispherical and cylindrical guard electrodes 64, 65. , Linear discharge wire supported by insulator 66 and porcelain insulator 67 on its central axis
There are 68. The names and functions of the elements 37 to 46 in the figure are the same as those of the same numbers in FIG. In this corona electrode system, the negatively charged ultrafine particles uniformly disperse through the wire net 61 and progress toward the linear discharge electrode, and the possibility of miscounting due to the inflow site is reduced.

第3図は接地せる針状放電極69の尖端70部に,それを同
心状にとりまく漏計状ガイド71のしぼられた下端72から
抽出負帯電超微粒子を供給する方式のもので,この場
合,対向電極73は周辺部に多数のガス排出用小孔74を有
するとともに,絶縁物75を介して気密に支持された内室
76の床位置に固定された上,電流計38を介して直流電源
75により73に負の直流電圧が接地函体77に対して印加さ
れている。77は接地された外室,78は抽出ガス出口であ
る。この方式の特徴は,バースト・コロナに伴う放電極
からの正イオン放出により後続負帯電超微粒子が正に荷
電され,ミスカウントすることがないので,粒子個数濃
度の高い場合に好適である。
FIG. 3 shows a method of supplying extracted negatively charged ultrafine particles to the tip 70 of the needle-shaped discharge electrode 69 to be grounded from the squeezed lower end 72 of the leaky meter-shaped guide 71 surrounding it concentrically. The counter electrode 73 has a large number of small gas discharge holes 74 in the periphery and is hermetically supported by an insulator 75.
Fixed to the floor position of 76, DC power supply via ammeter 38
A negative DC voltage is applied to the ground box 77 at 75 by 73. 77 is a grounded outer chamber, and 78 is an extraction gas outlet. The feature of this system is that it is suitable for the case where the particle number concentration is high, because the subsequent negatively charged ultrafine particles are positively charged by the positive ion emission from the discharge electrode due to the burst corona and there is no miscount.

第4図はコロナ放電極79を鋭くとがった円筒刃状とし,
その中心部に同心的に半球状のガスのガイド80を設け
て,円還状スリット81より79近傍に負帯電超微粒子を供
給する様にしたもので,第3図の例において抽出ガス流
路の端部面積を大きくし,抽出ガス流量の増大を容易な
らしめたものである。図におけるその他の要素は,第3
図における同一番号のそれと同じである。また79の直径
を小さくし管状刃型放電極としてもよい。
In Fig. 4, the corona discharge electrode 79 has a sharp, cylindrical blade shape,
A hemispherical gas guide 80 is concentrically provided in the central portion thereof so that negatively charged ultrafine particles are supplied to the vicinity of 79 from the conical slit 81. In the example of FIG. The end area of the is enlarged, and the flow rate of the extracted gas is easily increased. The other elements in the figure are the third
It is the same as that of the same number in the figure. Further, the diameter of 79 may be reduced to form a tubular blade type discharge electrode.

〔発明の効果〕〔The invention's effect〕

本発明は上記のような構成とすることにより,粒径がナ
イメーター領域の超微粒子の個数濃度と粒経分布を個数
濃度の大小に拘わらず,極めて正確に測定することを可
能ならしめる。
According to the present invention, with the above-mentioned structure, it is possible to measure the number concentration and particle size distribution of ultrafine particles having a particle size in the nimeter region extremely accurately regardless of the number concentration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の縦断面図,第2図,第3図,
第4図はそれぞれその負帯電超微粒子計数部のコロナ電
極系の異る構成様態を示す縦断面図である。 1……粒子分離部 2……外部円筒電極 4……内部円筒電極 5……平行電極系 6……可変直流電源 13,26……ガス吸引口 14……ガス除塵用フィルター 15……供給口 16……抽出口 18……負帯電超微粒子計数部 22,49……ガス流量計 24,51……吸引ポンプ 25……粒子予備荷電部 32……金網 33……状対向電極 37,75……直流電源 38……電流計 39……パルス計数器 41,69……針状放電極 42……光電子倍増管 61……円筒状金網対向電極 68……線状放電極 71,80……ガスガイド 73……板状対向電極 79……円筒刃状放電極
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2, FIG.
FIG. 4 is a vertical cross-sectional view showing different structural aspects of the corona electrode system of the negatively charged ultrafine particle counting section. 1-Particle separation unit 2-External cylindrical electrode 4-Internal cylindrical electrode 5-Parallel electrode system 6-Variable DC power supply 13,26-Gas suction port 14-Gas dust filter 15-Supply port 16 …… Extraction port 18 …… Negatively charged ultrafine particle counter 22, 49 …… Gas flowmeter 24, 51 …… Suction pump 25 …… Particle precharge part 32 …… Wire mesh 33 …… Shaped counter electrode 37, 75… … DC power source 38 …… Ammeter 39 …… Pulse counter 41, 69 …… Needle-shaped discharge electrode 42 …… Photomultiplier tube 61 …… Cylindrical wire mesh counter electrode 68 …… Linear discharge electrode 71, 80 …… Gas Guide 73 …… Plate-shaped counter electrode 79 …… Cylindrical blade-shaped discharge electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガス中に浮遊する超微粒子に負電荷を与え
るためのガス吸引口26と,ガス出口を備えた粒子予備荷
電部25と,間隙52にガス通路を形成する平行電極系5,
その両電極間に可変直流電圧を印加するための可変直流
電源6より成る粒子分離部1と,該平行電極系の一端か
ら清浄キャリヤガスを供給してこれを上記間隙52に層流
状に他端へと流通せしめるためのガス吸引口13,ガス除
塵用フィルター14,ポンプ24より成るキャリヤガス流通
系を有し,更に該粒子予備荷電部25のガス出口より負帯
電超微粒子を浮遊せしめたガスを,該平行電極系5の上
流側の負電極附近に供給するための供給口15と供給管路
27を備えた連結部と,該平行電極系5の下流側の正電極
附近より流通ガスの一部を到達負帯電超微粒子とともに
抽出するための抽出口16と,抽出ガスの吸引管路,吸引
ポンプ51より成る抽出ガス吸引系を有し,更に該吸引管
路に介入して抽出負帯電超微粒子を検出計数するための
負帯電超微粒子計数部18を有する所のエアロゾル電気的
移動度分析装置において,該負帯電超微粒子計数部18が
放電極34と,これと絶縁対向せる対向電極とより成るコ
ロナ電極系と,その両電極間に放電極34を正とする如き
極性をもってコロナ開始電圧直前の電圧を印加するため
の直流電源37と,該放電極より発生せるバースト・コロ
ナを検出計数するためのバースト・コロナ計数器より成
ることを特徴とする所の超微粒子測定装置。
1. A gas suction port 26 for giving a negative charge to ultrafine particles floating in a gas, a particle precharging unit 25 having a gas outlet, and a parallel electrode system 5, which forms a gas passage in a gap 52.
A particle separation unit 1 composed of a variable DC power source 6 for applying a variable DC voltage between the two electrodes, and a clean carrier gas is supplied from one end of the parallel electrode system to another in a laminar flow in the gap 52. A gas having a carrier gas flow system consisting of a gas suction port 13 for circulating the gas to the end, a filter 14 for removing gas, and a pump 24, and negatively charged ultrafine particles suspended from the gas outlet of the particle precharging unit 25. And a supply line for supplying the gas to the vicinity of the negative electrode on the upstream side of the parallel electrode system 5.
A connecting portion provided with 27, an extraction port 16 for extracting a part of the circulating gas from the vicinity of the positive electrode on the downstream side of the parallel electrode system 5 together with the negatively charged ultrafine particles, a suction pipe line for the extraction gas, and suction Aerosol electric mobility analyzer having a negatively charged ultrafine particle counting unit 18 for detecting and counting extracted negatively charged ultrafine particles by interposing an extraction gas suction system including a pump 51 and intervening in the suction pipe line. , The negatively charged ultrafine particle counting unit 18 has a corona electrode system composed of a discharge electrode 34 and a counter electrode which is insulated and opposed to the discharge electrode 34, and has a polarity such that the discharge electrode 34 is positive between the both electrodes immediately before the corona start voltage. An ultrafine particle measuring device characterized by comprising a DC power supply 37 for applying the above voltage and a burst corona counter for detecting and counting burst corona generated from the discharge electrode.
【請求項2】バースト・コロナ計数器が,該コロナ電極
系と該直流電源37より成る回路に介入してバースト・コ
ロナ発生時に流れる電流パルスを検出するための電流計
38と,これに接続せるパルス計数器39より成ることを特
徴とする所の,特許請求の範囲1に記載の超微粒子測定
装置。
2. An ammeter for a burst corona counter to intervene in a circuit consisting of the corona electrode system and the DC power supply 37 to detect a current pulse flowing when a burst corona occurs.
The ultrafine particle measuring device according to claim 1, characterized in that the device comprises 38 and a pulse counter 39 connected thereto.
【請求項3】バースト・コロナ計数器が該放電極34の尖
端41にバースト・コロナ発生時に生ずる発光を検出する
ための光検出器42とこれに接続せるパルス計数器39より
成ることを特徴とする所の,特許請求の範囲1に記載の
超微粒子測定装置。
3. A burst corona counter comprising a photodetector 42 for detecting light emission at the tip 41 of said discharge electrode 34 when a burst corona occurs and a pulse counter 39 connected thereto. The ultra-fine particle measuring device according to claim 1, which is used.
JP60183487A 1985-08-21 1985-08-21 Ultra fine particle measuring device Expired - Lifetime JPH0652233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183487A JPH0652233B2 (en) 1985-08-21 1985-08-21 Ultra fine particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183487A JPH0652233B2 (en) 1985-08-21 1985-08-21 Ultra fine particle measuring device

Publications (2)

Publication Number Publication Date
JPS6243540A JPS6243540A (en) 1987-02-25
JPH0652233B2 true JPH0652233B2 (en) 1994-07-06

Family

ID=16136671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183487A Expired - Lifetime JPH0652233B2 (en) 1985-08-21 1985-08-21 Ultra fine particle measuring device

Country Status (1)

Country Link
JP (1) JPH0652233B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107500U (en) * 1991-02-27 1992-09-17 三菱重工業株式会社 Axial blower or compressor
US20030015045A1 (en) 2001-07-23 2003-01-23 Takehito Yoshida Particle counting method and particle counter
EP1681550A1 (en) * 2005-01-13 2006-07-19 Matter Engineering AG Method and apparatus for measuring number concentration and average diameter of aerosol particles
JP4905040B2 (en) * 2006-10-06 2012-03-28 株式会社島津製作所 Particle classifier
CN101887003B (en) 2010-06-29 2016-06-08 上海杰远环保科技有限公司 A kind of microparticle measuring device and measuring method thereof
US9182331B2 (en) * 2012-08-31 2015-11-10 The Boeing Company Measurement of solid, aerosol, vapor, liquid and gaseous concentration and particle size
JP6797846B2 (en) * 2015-07-03 2020-12-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Particle sensor and particle sensing method
CN109382211B (en) * 2017-08-14 2024-05-07 北京吉鼎环保科技有限公司 Electrostatic dust removal pulse power supply

Also Published As

Publication number Publication date
JPS6243540A (en) 1987-02-25

Similar Documents

Publication Publication Date Title
US5214386A (en) Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
US3114877A (en) Particle detector having improved unipolar charging structure
US3526828A (en) Method and apparatus for measuring particle concentration
US8044350B2 (en) Miniaturized ultrafine particle sizer and monitor
JP4561835B2 (en) Classification device and fine particle measuring device
EP2853882A1 (en) Particle count measurement device
US3413545A (en) Apparatus and method for determining aerosol particle concentration and particle size distribution
US6827761B2 (en) Particle concentrator
JP2874786B2 (en) Electrostatic detector for aerosol particles
US20120274933A1 (en) Detection system for airborne particles
US3449667A (en) Electrogasdynamic method and apparatus for detecting the properties of particulate matter entrained in gases
US4769609A (en) Measurement of ultra-fine particles utilizing pulsed corona signals
CN109709004B (en) Measurement system and method for simultaneously measuring number concentration and mass concentration of tail gas particulate matters
US10675639B2 (en) Device for collecting particles contained in an aerosol, comprising electrometres to determine nanoparticle concentration and particle size
JPH07318477A (en) Electric-mobility spectrometer for aerosol particle contained in atmosphere to be tested
JPH0652233B2 (en) Ultra fine particle measuring device
US3628139A (en) Method and apparatus for sensing particulate matter
US2932966A (en) Apparatus for smoke detection
EP0310348B1 (en) Method and apparatus for the measurement of airborne fibres
JP2004507757A (en) Apparatus for measuring particle size distribution of aerosol particles
US7098462B2 (en) Microfabricated device for selectively removing and analyzing airborne particulates from an air stream
US5442190A (en) Method and apparatus for the measurement of airborne fibres
GB2195204A (en) Measuring instrument of ultra- fine particles
JP2008145347A (en) Faraday cup ammeter and particle measuring apparatus
GB2346700A (en) Particulate size detector