JPH0650782B2 - Tandem structure solar cell - Google Patents

Tandem structure solar cell

Info

Publication number
JPH0650782B2
JPH0650782B2 JP61141565A JP14156586A JPH0650782B2 JP H0650782 B2 JPH0650782 B2 JP H0650782B2 JP 61141565 A JP61141565 A JP 61141565A JP 14156586 A JP14156586 A JP 14156586A JP H0650782 B2 JPH0650782 B2 JP H0650782B2
Authority
JP
Japan
Prior art keywords
layer
solar cell
tandem structure
structure solar
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61141565A
Other languages
Japanese (ja)
Other versions
JPS62296569A (en
Inventor
唯司 富川
秀夫 糸崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61141565A priority Critical patent/JPH0650782B2/en
Publication of JPS62296569A publication Critical patent/JPS62296569A/en
Publication of JPH0650782B2 publication Critical patent/JPH0650782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は太陽光エネルギーの光変換効率を高めたタンデ
ム構造太陽電池に関する。
TECHNICAL FIELD The present invention relates to a tandem structure solar cell having an improved light conversion efficiency of solar energy.

〔従来の技術〕[Conventional technology]

太陽電池としては、半導体材料として結晶シリコン、ア
モルフアスシリコン(a-Si)、GaAsのような化合物半導
体を使用したもの等が各分野で実用化されており、中で
も安価で大面積のものが製造できるa-Si太陽電池が注目
され多くの研究がなされている。
As solar cells, crystalline silicon, amorphous silicon (a-Si), and those that use compound semiconductors such as GaAs have been put to practical use in various fields, among others. The a-Si solar cells that can be produced have received much attention and many studies have been made.

かかる太陽電池の半導体層はpin単位セルが最小構造で
あり、更に光変換効率を高めるためにpin単位セルを2
個以上有するタンデム構造が知られている。例えば、2
個のpin単位セルを有するタンデム構造太陽電池は、第
3図に示すように、ガラス1上に設けた透明電極2と金
属電極3との間にp単位セル4及びp
単位セル5を挿入し、単位セル4、5間の接合がn
となるように構成してある。
The semiconductor layer of such a solar cell has a minimum pin unit cell structure.
Tandem structures having more than one tandem structure are known. For example, 2
As shown in FIG. 3, the tandem structure solar cell having pin unit cells has p 1 i 1 n 1 unit cells 4 and p 2 between the transparent electrode 2 and the metal electrode 3 provided on the glass 1. i 2
n 2 unit cell 5 is inserted, and the junction between unit cells 4 and 5 is n
It is configured to be 1 p 1 .

ところが、タンデム構造太陽電池においては、上記の如
く2個のpin単位セル間にpn接合が存在するために、こ
のpn接合面で整流作用が生じ、各単位セルで発生した電
流の流れが妨げられるので、第4図に曲線(I)で示すよ
うに電圧の上昇に伴つて得られる電流が急激に低下して
しまい理想的な電流−電圧曲線(III)に比較して極めて
特性が悪く、最大出力点における出力が低いという欠点
があつた。
However, in the tandem structure solar cell, since the pn junction exists between the two pin unit cells as described above, a rectifying action occurs at this pn junction surface, and the flow of current generated in each unit cell is blocked. Therefore, as shown by the curve (I) in Fig. 4, the current obtained with the increase of the voltage drops sharply and the characteristics are extremely poor compared to the ideal current-voltage curve (III). There was a drawback that the output at the output point was low.

この欠点を解決する一手段として、本発明者等は特願昭
60−241817号(昭和60年10月28日出願)でpn接合面を改
良したタンデム構造太陽電池を提案した。
As a means for solving this drawback, the present inventors
We proposed a tandem structure solar cell with an improved pn junction surface in No. 60-241817 (filed on October 28, 1985).

第3図で説明すれば、このタンデム構造太陽電池は、pn
接合を形成するn層及びp層を高出力で形成したり
高濃度の不純物をドープすることによりn層及びp
層の内部欠陥準位並びにn接合面の界面欠陥準位
を高め、n接合面の抵抗を低下させて電流の流れ
をスムーズにしたものである。ひの結果、電流−電圧曲
線は第4図の(II)の如く改善されたが、同時にi
接合面及びp接合面にも界面欠陥準位が形成され
るので、i層及びi層で生成したキヤリヤがトラツ
プされて電極に有効に収集されず、第4図の(III)に示
す理想的な電流−電圧曲線に比べてまだ効率が低いとい
う問題があつた。
Referring to FIG. 3, this tandem structure solar cell is
By forming the n 1 layer and the p 2 layer forming the junction with high output or by doping with a high concentration of impurities, the n 1 layer and the p 2 layer
Increase the interface defect level of an internal defect level and n 1 p 2 bonding surface of the layer is obtained by the current flow smoothly by reducing the resistance of the n 1 p 2 joint surfaces. As a result, the current-voltage curve was improved as shown in (II) of FIG. 4, but at the same time i 1 n 1
Since interfacial defect levels are also formed on the joint surface and the p 2 i 2 joint surface, the carriers generated in the i 1 layer and the i 2 layer are trapped and are not effectively collected in the electrode, and thus (III in FIG. There is a problem that the efficiency is still lower than the ideal current-voltage curve shown in FIG.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は上記特願昭60−241817号発明を更に改良し、n
層及びp層のキヤリヤ収集電極としての機能を損な
うことなくn接合面の抵抗を小さくしてキヤリヤ
の再結合をスムースにすることにより、光変換効率の高
いタンデム構造太陽電池を提供することを目的とする。
The present invention is a further improvement of the invention of Japanese Patent Application No. 60-241817 mentioned above.
A tandem structure solar cell with high light conversion efficiency can be obtained by smoothing the recombination of carriers by reducing the resistance of the n 1 p 2 junction surface without impairing the function of the 1- layer and p 2 -layers as the carrier collecting electrode. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために、本発明のタンデム構造太陽
電池においては、第1図に示すように各pin単位セル4
と5の間にi型のアモルフアス層6を挿入して単位セル
4、5間の接合をn−i型アモルフアス−pとす
る。
In order to achieve this object, in the tandem structure solar cell of the present invention, as shown in FIG.
The i-type amorphous layer 6 is inserted between the first and the second cells 5 to make the junction between the unit cells 4 and 5 n1-i-type amorphous-p2.

各pin単位セル間に挿入するi型アモルフアス層は、特
にa−Ge:Hが好ましく、n−アモルフアス−p
接合での電流−電圧特性が第2図に示すように直線的で
且つ傾きが急な方が好ましい。
The i-type amorphous layer inserted between each pin unit cell is preferably a-Ge: H, and n 1 -amorphous-p 2
It is preferable that the current-voltage characteristics at the junction be linear and have a steep slope as shown in FIG.

〔作用〕[Action]

本発明において各pin単位セル間に挿入されるi型a−
Ge:H膜は内部欠陥準位が高く、しかも挿入された層
と接合するn層及びp層との接合面での界面欠陥準
位が高くなるので、n接合間の抵抗が小さくなつ
てキヤリヤの再結合がスムースになる。
In the present invention, an i-type a-inserted between each pin unit cell
The Ge: H film has a high internal defect level, and also has a high interface defect level at the interface between the inserted layer and the n 1 layer and the p 2 layer, so that the resistance between the n 1 p 2 junctions is high. As the size becomes smaller, the rejoining of the carrier becomes smoother.

しかも、i型a−Ge:H膜は不純物を含まないi型の
水素化されたアモルフアスゲルマニウムであるから、内
部欠陥準位が適度であって高すぎないので両側のn
及びp層に悪影響を与えず、i接合面及びp
接合面にキヤリアをトラツプする余分な界面欠陥準
位が形成されることがない。
Moreover, i-type a-Ge: H film because it is Amorufu Ass Germanium hydrogenation of i-type containing no impurities, internal defect level since too high a modest sides n 1 layer of and p 2 I 1 n 1 interface and p 2 without adversely affecting the layers
No extra interface defect level for trapping a carrier is formed on the i 2 bonding surface.

かゝる作用はタンデム構造セルに共通であるから、タン
デム構造太陽電池以外のタンデム構造を有するイメージ
センサーや感光体にも応用することが可能である。
Since such an operation is common to the tandem structure cell, it can be applied to an image sensor or a photoconductor having a tandem structure other than the tandem structure solar cell.

〔実施例〕〔Example〕

第1図に示す2つのpin単位セル4、5を有するa-Siの
タンデム構造太陽電池を通常の方法で製造したが、n
層とp層は高周波出力0.05w/cm2及び基板温度250℃で
形成し、他方アモルフアス層は同じ高周波出力であるが
基板温度150℃でi型a-Ge:H膜を20Å形成した。
The tandem structure solar cell of the a-Si having a two pin unit cells 4 and 5 shown in FIG. 1 were produced in the usual way, n 1
The p-layer and the p 2 layer were formed with a high-frequency output of 0.05 w / cm 2 and a substrate temperature of 250 ° C., while the amorphous layer has the same high-frequency output but a substrate temperature of 150 ° C. and an i-type a-Ge: H film of 20 liters was formed.

比較のために、第3図に示す特願昭60−241817号による
従来のタンデム構造太陽電池を製造したが、内部欠陥準
位を高めるためn層とp層は高周波出力0.5w/cm2
び基板温度250℃で形成した。尚、単位セル4及び5の
各層の膜厚は上記本発明の実施例と同一に形成した。
For comparison, a conventional tandem structure solar cell according to Japanese Patent Application No. 60-241817 shown in FIG. 3 was manufactured. The n 1 layer and the p 2 layer had a high-frequency output of 0.5 w / cm 2 to increase the internal defect level. 2 and a substrate temperature of 250 ° C. The film thickness of each layer of the unit cells 4 and 5 was formed to be the same as that of the above-mentioned embodiment of the present invention.

これら二つのタンデム構造太陽電池の太陽光線照射下で
の電流−電圧特性は下記第1表の通りであつた。
The current-voltage characteristics of these two tandem structure solar cells under the irradiation of sunlight are shown in Table 1 below.

本発明の実施例では、n層とp層との間で電流がス
ムースに流れると共にi接合面及びi接合
面での電力損失がないので、短絡電流(Jsc)は6.9mA/c
m2を示し、曲線因子(FF)は49%であつた。
In the example of the present invention, since the current smoothly flows between the n 1 layer and the p 2 layer and there is no power loss at the i 1 n 1 junction surface and the i 2 p 2 junction surface, the short circuit current (Jsc) Is 6.9 mA / c
m 2 and the fill factor (FF) was 49%.

これに対し従来例においては、n接合面では電流
がスムースに流れるが、i接合面及びi
合面で電力損失が生じるので、短絡電流は6.5mA/cm2
曲線因子は43%にすぎなかつた。
In the conventional example contrast, n 1 p 2 current flows smoothly in the bonding surface, so the power losses in the i 1 n 1 joint surfaces and i 2 p 2 bonding surface, the short-circuit current is 6.5 mA / cm 2 ,
The fill factor was only 43%.

〔発明の効果〕〔The invention's effect〕

本発明によれば、pin単位セル間で対向しているn層及
びp層のキヤリヤ収集電極としての機能を損なわずに該
n層とp層との間の抵抗を小さくしてキヤリヤの再結合
をスムースにすることができるので、第4図の理想的な
電流−電圧曲線(III)に近い特性を有し光変換効率の高
いタンデム構造太陽電池を提供することができる。
According to the present invention, the recombination of carriers is reduced by reducing the resistance between the n layer and the p layer without impairing the function of the n layer and the p layer facing each other between the pin unit cells as the carrier collecting electrodes. Therefore, it is possible to provide a tandem structure solar cell having characteristics close to the ideal current-voltage curve (III) of FIG. 4 and high light conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のタンデム構造太陽電池の一例を示す断
面図であり、第2図は本発明のタンデム構造太陽電池の
n−アモルフアス−p接合面での電流−電圧特性であ
り、第3図は従来のタンデム構造太陽電池の断面図であ
り、第4図はタンデム構造太陽電池の出力特性を示すグ
ラフである。 1…ガラス基板、2…透明電極、3…金属電極、4、5
…単位セル、6…アモルフアス層、7…n′層、8…
p′
FIG. 1 is a cross-sectional view showing an example of the tandem structure solar cell of the present invention, and FIG. 2 is a current-voltage characteristic at the n-amorphous-p junction surface of the tandem structure solar cell of the present invention. The figure is a cross-sectional view of a conventional tandem structure solar cell, and FIG. 4 is a graph showing the output characteristics of the tandem structure solar cell. 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... Metal electrode, 4, 5
... unit cell, 6 ... Amorufuasu layer, 7 ... n '1 layer, 8 ...
p '2-layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2個以上のpin単位セルを有するタンデ
ム構造太陽電池において、各単位セル間にi型a−G
e:H膜を挿入し、単位セル間の接合をn−i型アモル
ファス−p接合としたことを特徴とするタンデム構造太
陽電池。
1. In a tandem structure solar cell having two or more pin unit cells, an i-type a-G is provided between each unit cell.
An e: H film is inserted, and a tandem structure solar cell is characterized in that a junction between unit cells is an ni-type amorphous-p junction.
JP61141565A 1986-06-17 1986-06-17 Tandem structure solar cell Expired - Lifetime JPH0650782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141565A JPH0650782B2 (en) 1986-06-17 1986-06-17 Tandem structure solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141565A JPH0650782B2 (en) 1986-06-17 1986-06-17 Tandem structure solar cell

Publications (2)

Publication Number Publication Date
JPS62296569A JPS62296569A (en) 1987-12-23
JPH0650782B2 true JPH0650782B2 (en) 1994-06-29

Family

ID=15294930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141565A Expired - Lifetime JPH0650782B2 (en) 1986-06-17 1986-06-17 Tandem structure solar cell

Country Status (1)

Country Link
JP (1) JPH0650782B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459966A (en) * 1987-08-31 1989-03-07 Sharp Kk Laminated multilayer amorphous solar cell
US5246506A (en) * 1991-07-16 1993-09-21 Solarex Corporation Multijunction photovoltaic device and fabrication method
JP4674780B2 (en) * 2001-02-08 2011-04-20 株式会社カネカ Method for manufacturing tandem thin film solar cell
JP4618694B2 (en) * 2000-10-04 2011-01-26 株式会社カネカ Method for manufacturing tandem thin film solar cell
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0153043A3 (en) * 1984-02-15 1986-09-24 Energy Conversion Devices, Inc. Ohmic contact layer

Also Published As

Publication number Publication date
JPS62296569A (en) 1987-12-23

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
Pulfrey MIS solar cells: A review
AU717476B2 (en) Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
JP2814351B2 (en) Photoelectric device
JPS6155268B2 (en)
Schmeits et al. Impurity photovoltaic effect in c-Si solar cells. A numerical study
Green et al. 25-percent efficient low-resistivity silicon concentrator solar cells
JPH0650782B2 (en) Tandem structure solar cell
CA1216919A (en) Inverted, optically enhanced solar cell
JPH09283781A (en) Photovoltaic device
EP0248953A1 (en) Tandem photovoltaic devices
JP3206350B2 (en) Solar cell
JPH0613639A (en) Photovoltaic device
JPS633471A (en) Solar battery of tandem structure
JPH0636429B2 (en) Heterojunction photoelectric device and heterojunction photoelectric device
JP2004095669A (en) Photoelectric conversion element
JPS636882A (en) Photocell of tandem structure
JP2632740B2 (en) Amorphous semiconductor solar cell
JP2673021B2 (en) Solar cell
JPH09181343A (en) Photoelectric conversion device
JPS6249754B2 (en)
RU2099818C1 (en) Light energy to electric energy converter
JP3474891B2 (en) Method for manufacturing photovoltaic device
Masu et al. A monolithic GaAs solar cell array
JPS5983916A (en) Amorphous multielement semiconductor