JPH0650646A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH0650646A
JPH0650646A JP4205322A JP20532292A JPH0650646A JP H0650646 A JPH0650646 A JP H0650646A JP 4205322 A JP4205322 A JP 4205322A JP 20532292 A JP20532292 A JP 20532292A JP H0650646 A JPH0650646 A JP H0650646A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
capillary tube
cooler
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4205322A
Other languages
Japanese (ja)
Inventor
Makoto Fukuchi
誠 福地
Kenji Maru
健治 丸
Nobuyasu Yamagishi
庸泰 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4205322A priority Critical patent/JPH0650646A/en
Publication of JPH0650646A publication Critical patent/JPH0650646A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To maintain a refrigerant circulation amount in a refrigerating cycle at a suitable value by connecting a plurality of capillary tubes having different resistance values in parallel with a tube between a condenser and a cooler. CONSTITUTION:A refrigerant discharge side of a compressor 11 is connected to a refrigerant inlet side of a condenser 12, and a dryer is connected to a refrigerant outlet side of the condenser 12. A refrigerant tube from the dryer is output from a condensing unit 4 into a room and connected to a cooler 7 in a heat insulation box 3 through a passage controller and a pressure reducing unit 18. A tube 19 from the cooler 7 is output from the box 3 out of the room, and connected to a refrigerant suction side of the compressor 11. The unit 18 has a plurality of capillary tubes connected in parallel with a refrigerant tube. A resistance value against a refrigerant flow is largest at the first capillary tube, intermediate at the second capillary tube, and lowest at the third capillary tube. Three solenoid valves of the controller are respectively connected in series with the capillary tubes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却ユニットを設けた
断熱箱体を屋内に設け、凝縮ユニットを屋外に設けた冷
蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator in which a heat insulating box having a cooling unit is provided indoors and a condensing unit is provided outdoors.

【0002】[0002]

【従来の技術】従来より冷蔵庫は圧縮機等の機械部品を
搭載する関係上、室内では排熱による温度上昇及び騒音
が発生する問題があり、そこで、近年では冷凍サイクル
の冷却器等から成る冷却ユニットを具備した断熱箱体の
みを屋内に設置し、騒音及び排熱を発生する圧縮機及び
凝縮器等から成る凝縮ユニットは屋外に設置することに
よってこれらの問題を解決する所謂リモートコンデンシ
ング仕様の冷蔵庫が開発されている。
2. Description of the Related Art Conventionally, since refrigerators are equipped with mechanical parts such as compressors, there is a problem that temperature rise and noise occur due to exhaust heat in a room. A so-called remote condensing specification that solves these problems by installing only a heat insulating box with a unit indoors and installing a condensing unit consisting of a compressor and a condenser that generate noise and exhaust heat outdoors is installed. A refrigerator is being developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、係る構
成の冷蔵庫は冬季等に屋外の温度(外気温度)が低下し
た場合、凝縮器による冷媒の液化が促進されることによ
り、冷凍サイクルの高圧側の圧力上昇が不足し、単一の
キャピラリチューブでは制御し切れなくなって冷凍サイ
クル内の冷媒循環量が不足し、所要冷凍能力を確保でき
なくなる問題がある。これを解決するためにキャピラリ
チューブの代わりに冷媒流量を調整可能な膨張弁を用い
ると、レシーバータンク等も追加しなければならず、断
熱箱体内の物品収納容積を圧迫すると共に、コストも高
騰する問題があった。
However, when the outdoor temperature (outside air temperature) is lowered in winter, etc., the refrigerator having the above-described structure promotes the liquefaction of the refrigerant by the condenser, so that the high-pressure side of the refrigeration cycle is cooled. There is a problem that the pressure rise is insufficient and the single capillary tube cannot control it, and the refrigerant circulation amount in the refrigeration cycle becomes insufficient, so that the required refrigeration capacity cannot be secured. In order to solve this, if an expansion valve that can adjust the flow rate of the refrigerant is used instead of the capillary tube, a receiver tank and the like must be added, which pressurizes the article storage volume in the heat insulation box and also increases the cost. There was a problem.

【0004】ところで、例えば特公昭59−5816号
公報(F25B5/00)には、冷凍サイクルの凝縮器
と蒸発器の間に複数のキャピラリチューブを接続し、負
荷の大きさに応じて各キャピラリチューブへの冷媒流通
を変更することにより冷媒循環量を調整する冷房装置が
示されている。本発明は、以上の如き従来の状況を踏ま
え、所謂リモートコンデンシング仕様の冷蔵庫におい
て、物品収納容積の縮小、及びコストの高騰を生じるこ
となく、外気温度の変動に対して冷凍サイクル内の冷媒
循環量を適切に制御することができる冷蔵庫を提供する
ことを目的とする。
By the way, for example, in Japanese Patent Publication No. 59-5816 (F25B5 / 00), a plurality of capillary tubes are connected between a condenser and an evaporator of a refrigeration cycle, and each capillary tube is connected according to the size of load. There is shown a cooling device that adjusts the refrigerant circulation amount by changing the refrigerant flow to and from. In view of the conventional situation as described above, the present invention, in a so-called remote condensing specification refrigerator, circulates the refrigerant in the refrigeration cycle against the fluctuation of the outside air temperature without reducing the storage volume of the article and increasing the cost. It is an object of the present invention to provide a refrigerator whose amount can be appropriately controlled.

【0005】[0005]

【課題を解決するための手段】本発明の冷蔵庫は、冷却
ユニットを具備した断熱箱体を屋内に設け、冷却ユニッ
トと共に冷凍サイクルを構成する凝縮ユニットを屋外に
設けたものであって、凝縮ユニットを構成する圧縮機及
び凝縮器と、冷却ユニットを構成する冷却器と、凝縮器
と冷却器の間の配管に並列に接続され、相互に冷媒流通
に対する抵抗値の異なる複数のキャピラリチューブと、
各キャピラリチューブへの冷媒流通を切り換える流路制
御装置と、直接若しくは間接的に得られた屋外の温度に
基づいて流路制御装置を制御する制御装置とを具備して
おり、この制御装置は屋外の温度が低い場合は流路制御
装置により、抵抗値の小さいキャピラリチューブに冷媒
を流通させることを特徴とする。
The refrigerator of the present invention comprises a heat insulating box having a cooling unit provided indoors, and a condensation unit constituting a refrigeration cycle together with the cooling unit provided outdoors. A compressor and a condenser that configure the, a cooler that configures the cooling unit, and a plurality of capillary tubes that are connected in parallel to the pipe between the condenser and the cooler, and have different resistance values for the refrigerant flow from each other,
A flow path control device that switches the flow of refrigerant to each capillary tube and a control device that controls the flow path control device based on the outdoor temperature obtained directly or indirectly are provided. When the temperature is low, the flow passage control device causes the refrigerant to flow through the capillary tube having a small resistance value.

【0006】[0006]

【作用】本発明の冷蔵庫は、凝縮器と冷却器の間の配管
に抵抗値の異なる複数のキャピラリチューブが並列に接
続されており、制御装置が屋外の温度に応じて流路制御
装置により流路を切り換え、屋外の温度が低い場合には
抵抗値の小さいキャピラリチューブに冷媒を流通させる
ので、低外気温により高圧側の圧力が上昇しない場合に
も冷凍サイクル内の冷媒循環量を適正な値に維持するこ
とができる。このとき膨張弁を設ける必要はない。
In the refrigerator of the present invention, a plurality of capillary tubes having different resistance values are connected in parallel to the pipe between the condenser and the cooler, and the control device is operated by the flow path control device according to the outdoor temperature. When the outdoor temperature is low, the refrigerant flows through a capillary tube with a small resistance value, so even if the pressure on the high pressure side does not rise due to low outside air temperature, the refrigerant circulation amount in the refrigeration cycle should be an appropriate value. Can be maintained at. At this time, it is not necessary to provide an expansion valve.

【0007】[0007]

【実施例】次に、図面に基づき本発明の実施例を説明す
る。図1は本発明の冷蔵庫1の縦断側面図、図2は冷蔵
庫1の冷媒回路図、図3は冷蔵庫1の制御装置2の電気
回路図を示す。図1において、冷蔵庫1は所謂リモート
コンデンシングユニット仕様の冷蔵庫であり、屋内に据
え付けられた断熱箱体3と、屋外に設置された凝縮ユニ
ット4とから構成されている。断熱箱体3内には冷却ユ
ニット6を構成する冷却器7とクーリングファン8が取
り付けられており、このクーリングファン8により、冷
却器7と熱交換した冷気を庫内9に図中矢印の如く強制
循環して庫内9に収納した食品等を冷却保存するもので
ある。凝縮ユニット4は架台10上に取り付けられた圧
縮機11、凝縮器12及びコンデンシングファン13と
から構成され、図2におけるドライヤー14もこの凝縮
ユニット4に含まれる。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a vertical side view of a refrigerator 1 of the present invention, FIG. 2 is a refrigerant circuit diagram of the refrigerator 1, and FIG. 3 is an electric circuit diagram of a control device 2 of the refrigerator 1. In FIG. 1, a refrigerator 1 is a refrigerator of a so-called remote condensing unit specification, and includes a heat insulating box 3 installed indoors and a condensing unit 4 installed outdoors. A cooler 7 and a cooling fan 8 that form a cooling unit 6 are attached to the inside of the heat insulating box 3, and the cool air that has exchanged heat with the cooler 7 is stored in the interior 9 as shown by the arrow in the figure by the cooling fan 8. The food or the like that is forcibly circulated and stored in the storage 9 is cooled and stored. The condensing unit 4 is composed of a compressor 11, a condenser 12 and a condensing fan 13 mounted on a pedestal 10, and the dryer 14 in FIG. 2 is also included in the condensing unit 4.

【0008】次に、図2の冷媒回路図を参照しながら各
機器の配管接続を説明する。圧縮機11の冷媒吐出側は
凝縮器12の冷媒入口側に接続され、凝縮器12の冷媒
出口側にはドライヤー14が接続される。ドライヤー1
4から出た冷媒配管16は凝縮ユニット4から出て屋内
に入り、流路制御装置17及び減圧装置18を経て断熱
箱体3内の冷却器7に接続される。冷却器7から出た冷
媒配管19は断熱箱体3から出て屋外に臨み、圧縮機1
1の冷媒吸込側に接続される。係る接続によって圧縮機
11、凝縮器12、減圧装置18及び冷却器7は周知の
冷凍サイクルを構成する。
Next, the piping connection of each device will be described with reference to the refrigerant circuit diagram of FIG. The refrigerant discharge side of the compressor 11 is connected to the refrigerant inlet side of the condenser 12, and the dryer 14 is connected to the refrigerant outlet side of the condenser 12. Dryer 1
The refrigerant pipe 16 exiting from No. 4 exits from the condensing unit 4 and enters the room, and is connected to the cooler 7 in the heat insulating box body 3 via the flow path control device 17 and the pressure reducing device 18. The refrigerant pipe 19 coming out from the cooler 7 comes out from the heat insulating box 3 and faces the outside, and the compressor 1
1 is connected to the refrigerant suction side. With such connection, the compressor 11, the condenser 12, the decompression device 18, and the cooler 7 constitute a known refrigeration cycle.

【0009】前記減圧装置18は冷媒配管16に対して
相互に並列接続された3本のキャピラリチューブ21、
22、23から構成されている。各キャピラリチューブ
21、22、23は相互に管内径が異なり、キャピラリ
チューブ21が最も内径が小さく、キャピラリチューブ
22が中くらいで、キャピラリチューブ23が最も大き
い関係となっている。即ち、冷媒流通に対する抵抗値は
キャピラリチューブが最も大きく、キャピラリチューブ
22が中くらいで、キャピラリチューブ23が最も小さ
く、冷媒を流し易い状態となっている。そして、前記流
路制御装置17は3つの電磁弁24、25、26から成
り、電磁弁24はキャピラリチューブ21に、電磁弁2
5はキャピラリチューブ22に、そして電磁弁26はキ
ャピラリチューブ23にそれぞれ直列に接続されること
により、電磁弁24が開けば冷媒がキャピラリチューブ
21に流れ、電磁弁25が開けば冷媒がキャピラリチュ
ーブ22に流れ、電磁弁26が開けば冷媒がキャピラリ
チューブ23に流れるように構成されている。
The decompression device 18 includes three capillary tubes 21 connected in parallel to the refrigerant pipe 16,
It is composed of 22 and 23. The respective capillary tubes 21, 22, and 23 have mutually different tube inner diameters. The capillary tube 21 has the smallest inner diameter, the capillary tube 22 is medium, and the capillary tube 23 is the largest. That is, the resistance value to the flow of the refrigerant is highest in the capillary tube, medium in the capillary tube 22, and smallest in the capillary tube 23, so that the refrigerant easily flows. The flow path control device 17 is composed of three electromagnetic valves 24, 25, and 26. The electromagnetic valve 24 is attached to the capillary tube 21 and the electromagnetic valve 2 is provided.
5 is connected to the capillary tube 22 and the electromagnetic valve 26 is connected to the capillary tube 23 in series, so that the refrigerant flows into the capillary tube 21 when the electromagnetic valve 24 is opened, and the refrigerant flows into the capillary tube 22 when the electromagnetic valve 25 is opened. When the solenoid valve 26 is opened, the refrigerant flows into the capillary tube 23.

【0010】次に図3において、制御装置2は流路制御
装置17を制御するものであり、マイクロコンピュータ
28により構成され、このマイクロコンピュータ28に
はコンデンシングファン13によって凝縮器12に吸い
込まれる空気の温度を検出する感知センサ29の出力が
入力されると共に、マイクロコンピュータ28の出力に
は二接点式のリレー31、32のコイル33、34が接
続されている。リレー31のコモン接点31Cは交流電
源ACに接続され、リレー31の常閉接点31Aと交流
電源AC間には電磁弁24が接続されている。リレー3
1の常開接点31Bにはリレー32のコモン接点32C
が接続され、リレー32の常閉接点32Aと交流電源A
C間には電磁弁25が接続されている。また、リレー3
2の常開接点32Bと交流電源AC間には電磁弁26が
接続される。尚、各電磁弁24、25、26は通電され
て流路を開くものとする。
In FIG. 3, the control device 2 controls the flow path control device 17 and is constituted by a microcomputer 28, and the microcomputer 28 has air sucked into the condenser 12 by the condensing fan 13. The output of the sensing sensor 29 for detecting the temperature is input, and the output of the microcomputer 28 is connected to the coils 33, 34 of the two-contact type relays 31, 32. The common contact 31C of the relay 31 is connected to the AC power supply AC, and the solenoid valve 24 is connected between the normally closed contact 31A of the relay 31 and the AC power supply AC. Relay 3
1 normally open contact 31B has a common contact 32C of the relay 32
Is connected to the normally closed contact 32A of the relay 32 and the AC power source A.
A solenoid valve 25 is connected between C and C. Also, relay 3
The solenoid valve 26 is connected between the normally open contact 32 </ b> B and the AC power supply AC. The solenoid valves 24, 25, 26 are energized to open the flow paths.

【0011】以上の構成で、図4のマイクロコンピュー
タ28のプログラムを示すフローチャートを参照しなが
ら本発明の冷蔵庫1の動作を説明する。今、夏季等であ
って屋外の温度(以下、外気温度と称する。)が高く、
+15℃以上の環境であるものとすると、マイクロコン
ピュータ28はステップS1で感知センサ29より凝縮
器12の吸込空気温度をセンサ感知温度Tとして読み込
み、ステップS2でこのセンサ感知温度Tが+15℃よ
り低いか否か判断する。ここでは前述の如く外気温度が
15℃以上であるから、ステップS3に進み、リレー3
1及び32のコイル33、34をいずれも非通電(OF
F)として図3の如く各接点を閉じ、電磁弁24に通電
して電磁弁24を開き、他の電磁弁25、26は閉じ
る。これによって図2の冷媒回路では最も内径の小さい
キャピラリチューブ21のみに冷媒が流通可能となる。
With the above configuration, the operation of the refrigerator 1 of the present invention will be described with reference to the flowchart showing the program of the microcomputer 28 of FIG. Now, in summer, etc., the outdoor temperature (hereinafter referred to as the outside air temperature) is high,
Assuming that the environment is + 15 ° C. or higher, the microcomputer 28 reads the intake air temperature of the condenser 12 as the sensor sensing temperature T from the sensing sensor 29 in step S1, and the sensor sensing temperature T is lower than + 15 ° C. in step S2. Judge whether or not. Since the outside air temperature is 15 ° C. or higher as described above, the process proceeds to step S3 and the relay 3
Both the coils 33 and 34 of 1 and 32 are not energized (OF
As F), each contact is closed as shown in FIG. 3, the solenoid valve 24 is energized to open the solenoid valve 24, and the other solenoid valves 25 and 26 are closed. This allows the refrigerant to flow only through the capillary tube 21 having the smallest inner diameter in the refrigerant circuit of FIG.

【0012】この状態で圧縮機11が運転されると、圧
縮機11から吐出された高温高圧のガス冷媒は凝縮器1
2に流入し、そこに強制流通される外気によって空冷さ
れて凝縮する。凝縮器12から出た液冷媒はドライヤー
14を経て、開いている電磁弁24を通過し、最も管内
径の小さいキャピラリチューブ21にて絞られ、減圧さ
れて冷却器7に流入し、そこで蒸発する。このときに生
ずる吸熱作用によって冷却器7と熱交換した空気は冷却
され、クーリングファン8により庫内9に循環される。
その後、冷却器7を出た冷媒は冷媒配管19を通って圧
縮機11に吸い込まれることになる。
When the compressor 11 is operated in this state, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 is condensed in the condenser 1.
2 and is cooled by air by the outside air forcedly distributed there to be condensed. The liquid refrigerant discharged from the condenser 12 passes through the dryer 14, passes through the open solenoid valve 24, is throttled by the capillary tube 21 having the smallest inner diameter, is depressurized, flows into the cooler 7, and is evaporated there. . The air that has exchanged heat with the cooler 7 is cooled by the endothermic action that occurs at this time, and is circulated in the interior 9 by the cooling fan 8.
After that, the refrigerant discharged from the cooler 7 is sucked into the compressor 11 through the refrigerant pipe 19.

【0013】ここで、夜間等に外気温度が低下すると、
コンデンシングファン13によって凝縮器12に流通さ
れる空気温度も低くなるため、凝縮器12に流入した冷
媒は凝縮し易くなる。従って、凝縮器12内部に液冷媒
が溜まる状況となるため、凝縮ユニット4内部の冷媒圧
力、即ち、冷凍サイクルの高圧側の圧力上昇が不十分と
なり、冷凍サイクルの冷却器7への冷媒循環量が不足し
て所要の冷凍能力が発揮されなくなる。
Here, if the outside air temperature decreases at night, etc.,
Since the temperature of the air flowing through the condenser 12 is also lowered by the condensing fan 13, the refrigerant flowing into the condenser 12 is easily condensed. Therefore, since the liquid refrigerant accumulates inside the condenser 12, the refrigerant pressure inside the condensation unit 4, that is, the pressure increase on the high pressure side of the refrigeration cycle becomes insufficient, and the refrigerant circulation amount to the cooler 7 of the refrigeration cycle. Is insufficient and the required refrigerating capacity cannot be exerted.

【0014】マイクロコンピュータ28は係る外気温度
の低下を感知センサ29の出力により監視しており、凝
縮器12の吸込空気温度の低下によりステップS2で感
知センサ29からのセンサ感知温度Tが+15℃より低
くなるとステップS4に進む。ステップS4ではセンサ
感知温度Tが+5℃より低いか否か判断し、ここでは未
だ+5℃まで低下していないものとするとステップS5
に進み、リレー31のコイル33に通電(ON)し、リ
レー32のコイル34を非通電(OFF)としてリレー
31の接点を常開接点31Bに閉じ、リレー32の接点
は図3のままとする。これによって、電磁弁25は通電
されて開き、他の電磁弁24、26は閉じるので、図2
の冷媒回路では内径が中くらいのキャピラリチューブ2
2のみに冷媒が流通可能となる。これによって、キャピ
ラリチューブ21の場合よりも冷媒が流れ易くなり、前
述の如く高圧側の圧力が低下しても冷却器7への冷媒循
環量を確保できるようになる。
The microcomputer 28 monitors the decrease of the outside air temperature by the output of the detection sensor 29, and the decrease in the intake air temperature of the condenser 12 causes the sensor detection temperature T from the detection sensor 29 to be higher than + 15 ° C. in step S2. When it becomes lower, the process proceeds to step S4. In step S4, it is determined whether or not the sensor sensed temperature T is lower than + 5 ° C., and here it is assumed that the temperature has not fallen to + 5 ° C. step S5.
3, the coil 33 of the relay 31 is energized (ON), the coil 34 of the relay 32 is de-energized (OFF), the contact of the relay 31 is closed to the normally open contact 31B, and the contact of the relay 32 remains as in FIG. . As a result, the solenoid valve 25 is energized and opened, and the other solenoid valves 24 and 26 are closed.
Capillary tube 2 with medium inner diameter in the refrigerant circuit
Refrigerant can flow through only 2. As a result, the refrigerant flows more easily than in the case of the capillary tube 21, and as described above, the refrigerant circulation amount to the cooler 7 can be secured even if the pressure on the high pressure side decreases.

【0015】一方、冬季等に外気温度が更に低下する
と、コンデンシングファン13によって凝縮器12に流
通される空気温度も著しく低くなるため、凝縮器12に
流入した冷媒は活発に凝縮し、冷凍サイクルの高圧側の
圧力上昇は極めて不十分となる。マイクロコンピュータ
28は係る状況においてセンサ感知温度Tが+5℃より
低くなるとステップS4からステップS6に進む。ステ
ップS6ではリレー31及び32のコイル33及び34
に通電(ON)してリレー31、32の接点を常開接点
31B、32Bに閉じる。これによって、電磁弁26は
通電されて開き、他の電磁弁24、25は閉じるので、
図2の冷媒回路では内径が最も大きいキャピラリチュー
ブ23のみに冷媒が流通可能となる。これによって、キ
ャピラリチューブ22の場合よりも冷媒は更に流れ易く
なり、前述の如き高圧側の圧力の著しい低下によっても
冷却器7への冷媒循環量を確保できるようになる。
On the other hand, when the outside air temperature further decreases in winter or the like, the temperature of the air flowing to the condenser 12 by the condensing fan 13 also remarkably lowers, so that the refrigerant flowing into the condenser 12 is actively condensed and the refrigeration cycle is performed. The pressure increase on the high pressure side of is extremely insufficient. In such a situation, the microcomputer 28 proceeds from step S4 to step S6 when the sensor sensed temperature T becomes lower than + 5 ° C. In step S6, the coils 33 and 34 of the relays 31 and 32 are
Is energized (ON) to close the contacts of the relays 31, 32 to the normally open contacts 31B, 32B. As a result, the solenoid valve 26 is energized and opened, and the other solenoid valves 24 and 25 are closed.
In the refrigerant circuit of FIG. 2, the refrigerant can flow only in the capillary tube 23 having the largest inner diameter. As a result, the refrigerant flows more easily than in the case of the capillary tube 22, and the refrigerant circulation amount to the cooler 7 can be secured even if the pressure on the high-pressure side is significantly reduced as described above.

【0016】次に、図5は制御装置2の他の実施例を示
す。この場合マイクロコンピュータ28及び感知センサ
29は用いず、その代わりに凝縮器12の吸込空気温度
を感知する二個のバイメタルサーモ40、41を用い
る。バイメタルサーモ40は吸込空気温度が+15℃よ
り低い場合に接点を開き、バイメタルサーモ41は吸込
空気温度が+5℃より低い場合に接点を開くものであ
る。そして、リレー31のコイル33はバイメタルサー
モ40と直列に交流電源ACに接続され、リレー32の
コイル34はバイメタルサーモ41と直列に交流電源A
Cに接続されている。また、リレー31のコモン接点3
1Cは交流電源ACに接続され、リレー31の常開接点
31Bと交流電源AC間には電磁弁24が接続される。
リレー31の常閉接点31Aにはリレー32のコモン接
点32Cが接続され、リレー32の常開接点32Bと交
流電源AC間には電磁弁25が接続される。また、リレ
ー32の常閉接点32Aと交流電源AC間には電磁弁2
6が接続される。
Next, FIG. 5 shows another embodiment of the control device 2. In this case, the microcomputer 28 and the detection sensor 29 are not used, and instead, two bimetal thermos 40 and 41 that detect the temperature of the intake air of the condenser 12 are used. The bimetal thermo 40 opens the contact when the intake air temperature is lower than + 15 ° C, and the bimetal thermo 41 opens the contact when the intake air temperature is lower than + 5 ° C. The coil 33 of the relay 31 is connected to the AC power supply AC in series with the bimetal thermo 40, and the coil 34 of the relay 32 is connected to the AC power supply A in series with the bimetal thermo 41.
It is connected to C. Also, the common contact 3 of the relay 31
1C is connected to the AC power supply AC, and the solenoid valve 24 is connected between the normally open contact 31B of the relay 31 and the AC power supply AC.
The common contact 32C of the relay 32 is connected to the normally closed contact 31A of the relay 31, and the solenoid valve 25 is connected between the normally open contact 32B of the relay 32 and the AC power supply AC. Further, the solenoid valve 2 is provided between the normally closed contact 32A of the relay 32 and the AC power supply AC.
6 is connected.

【0017】以上の構成で電磁弁24、25、26の開
閉制御を説明する。外気温度が高く凝縮器12の吸込空
気温度が+15℃以上の場合はいずれのバイメタルサー
モ40、41も接点を閉じ、リレー31及び32のコイ
ル33及び34はいずれも通電される。それによってリ
レー31は常開接点31Bに閉じるので電磁弁24に通
電され、他の電磁弁25、26は非通電となる。これに
よって電磁弁24のみが開き、最も管内径の小さいキャ
ピラリチューブ21に冷媒が流れる状態となる。
The opening / closing control of the solenoid valves 24, 25, 26 having the above-mentioned configuration will be described. When the outside air temperature is high and the suction air temperature of the condenser 12 is + 15 ° C. or higher, the contacts of both bimetal thermos 40 and 41 are closed, and the coils 33 and 34 of the relays 31 and 32 are both energized. As a result, the relay 31 is closed to the normally open contact 31B, so that the solenoid valve 24 is energized and the other solenoid valves 25 and 26 are de-energized. As a result, only the solenoid valve 24 is opened, and the refrigerant flows into the capillary tube 21 having the smallest inner diameter.

【0018】次に、外気温度が低下して凝縮器12の吸
込空気温度が+15℃より低くなるとバイメタルサーモ
40は接点を開き、バイメタルサーモ41は接点を閉じ
ているのでリレー31のコイル33は非通電、リレー3
2のコイル34は通電となる。それによってリレー31
は常閉接点31Aに閉じ、リレー32は常開接点32B
に閉じているので電磁弁25に通電され、他の電磁弁2
4、26は非通電となる。これによって電磁弁25のみ
が開き、中くらいの管内径のキャピラリチューブ22に
冷媒が流れる状態となる。
Next, when the outside air temperature decreases and the suction air temperature of the condenser 12 becomes lower than + 15 ° C., the bimetal thermo 40 opens the contact and the bimetal thermo 41 closes the contact, so that the coil 33 of the relay 31 does not operate. Energization, relay 3
The second coil 34 is energized. Relay 31
Is normally closed contact 31A, relay 32 is normally open contact 32B
The solenoid valve 25 is energized and the other solenoid valve 2 is closed.
4, 26 are not energized. As a result, only the solenoid valve 25 is opened, and the refrigerant flows into the capillary tube 22 having a medium tube inner diameter.

【0019】そして、更に外気温度が低下して凝縮器1
2の吸込空気温度が+5℃より低くなるとバイメタルサ
ーモ40及び41がいずれも接点を開くのでリレー31
及び32のコイル33、34はいずれも非通電となる。
それによって図5の如くリレー31は常閉接点31Aに
閉じ、リレー32も常閉接点32Aに閉じているので電
磁弁26に通電され、他の電磁弁24、25は非通電と
なる。これによって電磁弁26のみが開き、最も管内径
の大きいキャピラリチューブ23に冷媒が流れる状態と
なる。
Then, the outside air temperature further lowers, and the condenser 1
When the intake air temperature of 2 becomes lower than + 5 ° C, the bimetal thermos 40 and 41 both open the contacts, so the relay 31
The coils 33 and 34 of 32 and 32 are both de-energized.
As a result, the relay 31 is closed to the normally closed contact 31A and the relay 32 is also closed to the normally closed contact 32A, so that the solenoid valve 26 is energized and the other solenoid valves 24, 25 are de-energized. As a result, only the solenoid valve 26 is opened, and the refrigerant flows into the capillary tube 23 having the largest inner diameter.

【0020】このように、図5の実施例によっても前述
同様に外気温度の変動に対して冷却器7への冷媒循環量
確保を実現することができるものである。尚、実施例で
は3本のキャピラリチューブを用いて冷媒循環量を制御
したが、それに限らず、更に多くのキャピラリチューブ
を用いて細かく制御しても良い。
As described above, according to the embodiment shown in FIG. 5, it is possible to secure the circulation amount of the refrigerant to the cooler 7 with respect to the fluctuation of the outside air temperature as described above. In addition, although the refrigerant circulation amount is controlled by using three capillary tubes in the embodiment, it is not limited to this, and more capillary tubes may be used for fine control.

【0021】[0021]

【発明の効果】以上詳述した如く、本発明によれば凝縮
器と冷却器の間の配管に冷媒流通抵抗値の異なる複数の
キャピラリチューブを並列に接続し、屋外の温度に応じ
て各キャピラリチューブへの冷媒流通を切り換え、屋外
の温度が低い場合には抵抗値の小さいキャピラリチュー
ブに冷媒を流通させるので、低外気温により高圧側の圧
力上昇が不足する場合にも冷凍サイクル内の冷媒循環量
を適正な値に維持することができ、それによって常に適
切な冷凍能力を維持することができるようになる。ま
た、このとき膨張弁を設ける必要がないので、コストの
上昇と冷蔵庫の物品収納能力の縮小も解消することがで
きるものである。
As described in detail above, according to the present invention, a plurality of capillary tubes having different refrigerant flow resistance values are connected in parallel to the pipe between the condenser and the cooler, and each capillary tube is connected according to the outdoor temperature. Refrigerant circulation in the refrigeration cycle is performed even when the pressure rise on the high pressure side is insufficient due to low outside temperature because the refrigerant flow is switched to the tube and the refrigerant flows through the capillary tube with low resistance when the outdoor temperature is low. The amount can be maintained at a proper value, so that a proper refrigerating capacity can always be maintained. Further, at this time, since it is not necessary to provide the expansion valve, it is possible to eliminate the cost increase and the reduction of the article storage capacity of the refrigerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷蔵庫の縦断側面図である。FIG. 1 is a vertical side view of a refrigerator of the present invention.

【図2】冷蔵庫の冷媒回路図である。FIG. 2 is a refrigerant circuit diagram of a refrigerator.

【図3】冷蔵庫の電磁弁を制御する制御装置の電気回路
図である。
FIG. 3 is an electric circuit diagram of a control device that controls an electromagnetic valve of a refrigerator.

【図4】マイクロコンピュータのプログラムを示すフロ
ーチャートである。
FIG. 4 is a flowchart showing a program of a microcomputer.

【図5】制御装置の他の実施例を示す電気回路図であ
る。
FIG. 5 is an electric circuit diagram showing another embodiment of the control device.

【符号の説明】[Explanation of symbols]

1 冷蔵庫 2 制御装置 3 断熱箱体 4 凝縮ユニット 6 冷却ユニット 7 冷却器 11 圧縮機 12 凝縮器 17 流路制御装置 21 キャピラリチューブ 22 キャピラリチューブ 23 キャピラリチューブ DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Control device 3 Insulation box body 4 Condensing unit 6 Cooling unit 7 Cooler 11 Compressor 12 Condenser 17 Flow path control device 21 Capillary tube 22 Capillary tube 23 Capillary tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却ユニットを具備した断熱箱体を屋内
に設け、前記冷却ユニットと共に冷凍サイクルを構成す
る凝縮ユニットを屋外に設けた冷蔵庫において、前記凝
縮ユニットを構成する圧縮機及び凝縮器と、前記冷却ユ
ニットを構成する冷却器と、前記凝縮器と冷却器の間の
配管に並列に接続され、相互に冷媒流通に対する抵抗値
の異なる複数のキャピラリチューブと、各キャピラリチ
ューブへの冷媒流通を切り換える流路制御装置と、直接
若しくは間接的に得られた前記屋外の温度に基づいて前
記流路制御装置を制御する制御装置とを具備し、該制御
装置は前記屋外の温度が低い場合は前記流路制御装置に
より抵抗値の小さい前記キャピラリチューブに冷媒を流
通させることを特徴とする冷蔵庫。
1. A refrigerator in which a heat insulating box having a cooling unit is provided indoors and a condensation unit that constitutes a refrigeration cycle together with the cooling unit is provided outdoors, and a compressor and a condenser that constitute the condensation unit, A cooler that constitutes the cooling unit, a plurality of capillary tubes that are connected in parallel to a pipe between the condenser and the cooler, and have mutually different resistance values for refrigerant flow, and switch the refrigerant flow to each capillary tube. A flow path control device, and a control device for controlling the flow path control device based on the outdoor temperature obtained directly or indirectly, wherein the control device performs the flow when the outdoor temperature is low. A refrigerator characterized in that a refrigerant is circulated through the capillary tube having a small resistance value by a path control device.
JP4205322A 1992-07-31 1992-07-31 Refrigerator Pending JPH0650646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205322A JPH0650646A (en) 1992-07-31 1992-07-31 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205322A JPH0650646A (en) 1992-07-31 1992-07-31 Refrigerator

Publications (1)

Publication Number Publication Date
JPH0650646A true JPH0650646A (en) 1994-02-25

Family

ID=16505025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205322A Pending JPH0650646A (en) 1992-07-31 1992-07-31 Refrigerator

Country Status (1)

Country Link
JP (1) JPH0650646A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143593B2 (en) * 2003-03-24 2006-12-05 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1923645A1 (en) * 2005-09-08 2008-05-21 Dairei Co., Ltd. Control system for refrigerating machine employing non-azeotropic refrigerant
WO2010000088A1 (en) 2008-06-30 2010-01-07 Carrier Corporation Remote refrigeration display case system
JP2010175119A (en) * 2009-01-28 2010-08-12 Fuji Electric Retail Systems Co Ltd Cooling and heating device
WO2012110294A3 (en) * 2011-02-15 2013-04-04 BSH Bosch und Siemens Hausgeräte GmbH Domestic refrigeration appliance having unregulated expansion valves

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143593B2 (en) * 2003-03-24 2006-12-05 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
EP1923645A1 (en) * 2005-09-08 2008-05-21 Dairei Co., Ltd. Control system for refrigerating machine employing non-azeotropic refrigerant
EP1923645A4 (en) * 2005-09-08 2009-02-18 Dairei Co Ltd Control system for refrigerating machine employing non-azeotropic refrigerant
WO2010000088A1 (en) 2008-06-30 2010-01-07 Carrier Corporation Remote refrigeration display case system
EP2310773A1 (en) * 2008-06-30 2011-04-20 Carrier Corporation Remote refrigeration display case system
EP2310773A4 (en) * 2008-06-30 2014-01-01 Carrier Corp Remote refrigeration display case system
JP2010175119A (en) * 2009-01-28 2010-08-12 Fuji Electric Retail Systems Co Ltd Cooling and heating device
WO2012110294A3 (en) * 2011-02-15 2013-04-04 BSH Bosch und Siemens Hausgeräte GmbH Domestic refrigeration appliance having unregulated expansion valves

Similar Documents

Publication Publication Date Title
US6938430B2 (en) Refrigerating device
JP5405076B2 (en) Air conditioning refrigeration system
KR20110028180A (en) Air conditioner and control method thereof
JP2996656B1 (en) Refrigeration cycle device for refrigerator
WO2021039087A1 (en) Heat source unit and refrigeration device
US7475557B2 (en) Refrigerator
JP4328892B2 (en) Temperature and humidity control device and environmental test device
JP4497915B2 (en) Cooling system
JP2009210213A (en) Air conditioner for railway vehicle
KR20060070885A (en) Air conditioner
JP2007309585A (en) Refrigerating device
JPH0650646A (en) Refrigerator
KR20110029447A (en) An air conditioner and control metohd the same
JP2000205672A (en) Refrigerating system
JPH04251164A (en) Freezing cycle device
JP3348465B2 (en) Binary refrigeration equipment
JP2000283626A (en) Refrigerator
JP3021987B2 (en) Refrigeration equipment
JPH085172A (en) Cooler for refrigerator with deep freezer
KR100370092B1 (en) control method for cooling system in the refrigerator
JP2500707B2 (en) Refrigeration system operation controller
JP2002195726A5 (en)
JP2002195668A (en) Refrigerator
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof
JP4613433B2 (en) Refrigeration equipment