JPH06501779A - Measurement and evaluation method of relay inductance - Google Patents

Measurement and evaluation method of relay inductance

Info

Publication number
JPH06501779A
JPH06501779A JP5503177A JP50317793A JPH06501779A JP H06501779 A JPH06501779 A JP H06501779A JP 5503177 A JP5503177 A JP 5503177A JP 50317793 A JP50317793 A JP 50317793A JP H06501779 A JPH06501779 A JP H06501779A
Authority
JP
Japan
Prior art keywords
value
inductance
relay
armature
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5503177A
Other languages
Japanese (ja)
Inventor
オローヴァ, ヨーゼフ
Original Assignee
ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング filed Critical ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
Publication of JPH06501779A publication Critical patent/JPH06501779A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 継電器のインダクタンスの測定及び評価方法本発明は請求の範囲第1項の上位概 念による、電磁形継電器のインダクタンスの1定及び評価方法に関する。[Detailed description of the invention] A method for measuring and evaluating inductance of a relay The present invention resides in the general outline of claim 1. This article relates to a constant value and evaluation method for the inductance of an electromagnetic relay.

電磁形継電器の製造の際、いわゆる継電器の応働電圧及び復帰電圧は、実質的に 磁気回路と、それに伴う当該磁気回路の製作事由に起因する許容偏差と、材料の ばらつきと、継電器接極子とコイル鉄心との間の調整可能な磁気作用エアギャッ プとに依存している。さらに継電器の応働電圧の測定の際には戻しばねの許容偏 差に伴う値もこれに加わるため、完成された継電器において、当該継電器の種々 異なるデータが許容され得る偏差範囲内に収まっているかどうかを確かめること は比較的手間がかかる。とりわけ二のことは継電器接点においての焼損余裕度の 測定に対しても当てはまる。この継電器接点は、いわゆるマイクロリレーにおい ては制限された特性のためにもはや非破壊的に測定することはできず、そのため 抜取り検査によってしか測定することができない。When manufacturing electromagnetic relays, the so-called response voltage and release voltage of the relay are essentially Magnetic circuits, tolerances due to manufacturing reasons for the magnetic circuits, and materials. variation and adjustable magnetic air gap between relay armature and coil core. It depends on the program. Furthermore, when measuring the response voltage of a relay, the permissible deviation of the return spring must be Since the values associated with the differences are also added to this, in the completed relay, the various values of the relay Checking whether different data are within acceptable deviation ranges is relatively time-consuming. The second thing in particular is the burnout margin at the relay contacts. This also applies to measurements. This relay contact is a so-called micro relay. can no longer be measured non-destructively due to their limited properties and therefore It can only be measured through random inspections.

本発明の手法によれば破壊を生ぜしのることのない継電器の新しい測定が可能に なる。これにより、製造に基づく励磁系のばらつき及び場合によって継電器の焼 損余裕度をめて所定の許容偏差と比較することができる。The method of the present invention enables new measurements of relays that do not cause damage. Become. This may result in variations in the excitation system due to manufacturing and possibly relay burn-out. The loss margin can be determined and compared with a predetermined tolerance.

発明の利点 本発明による、電磁形継電器のインダクタンスの測定及び評価方法は有利には次 のような認識に基づいている。すなわち当該部材の許容偏差範囲を所定のインダ クタンス限界値により設定されるように構成することによって、接極子が押しこ まれている際に、インダクタンスを測定することにより製造及び材料に起因する 許容偏差を検出することができるという認識に基づいている。検出されたインダ クタンス値を所定の限界値と比較することにより、唯一度の測定によって非常に 間車な形式で迅速に次のようなことが検出され得る。Advantages of invention The method for measuring and evaluating the inductance of an electromagnetic relay according to the invention is advantageously as follows: It is based on such recognition. In other words, the permissible deviation range of the part concerned is set to a specified inductor. By configuring the armature to be set by a Due to manufacturing and materials, by measuring the inductance when It is based on the recognition that tolerance deviations can be detected. Detected Inda By comparing the ctance value with predetermined limit values, a very unique measurement can be made. The following can be quickly detected in a casual manner:

選別しなければならないか否かということが検出され得る。本発明によって得ら れる別の利点は、破壊の心配がない間車で信頼性の高い当該測定及び検査方法を 用いることによって、従来のような個別の抜取り検査が行われるのではな(、完 成品全体が当該方法により全て測定されるようになることである。それにより品 買の確かさも向上する。It can be detected whether screening is required or not. obtained by the present invention Another advantage is that the measurement and testing method can be carried out reliably on the vehicle without the risk of damage. By using the The entire product can now be measured using this method. As a result, the quality It also improves the certainty of buying.

この方法は焼損余裕度の測定に対しても有効である。This method is also effective for measuring burnout margin.

この余裕度は本発明の従属請求項に記載された手段により、第2のインダクタン ス測定によってめることが可能である。この第2のインダクタンス測定は接極子 がひき外された際の継電器接点がちょうど開いた時点で行われなければならない 。この場合記憶された複数の特性曲線から、最初に検出されたインダクタンス値 と共にこの値に属する特性曲線を介して継電器の焼損に対する余裕度がめられ、 さらにその許容限界値と比較される。This margin can be achieved by the measures described in the dependent claims of the invention. It can be determined by measuring the This second inductance measurement is performed on the armature shall be carried out at the point when the relay contacts have just opened when the relay is tripped. . In this case, the first detected inductance value from multiple memorized characteristic curves. The margin for relay burnout is determined through the characteristic curve belonging to this value. Furthermore, it is compared with its permissible limit value.

図面 本発明の実施例は図面に示され、以下の明細書で詳細に説明される。drawing Embodiments of the invention are illustrated in the drawings and explained in detail in the following specification.

図1は、継電器のインダクタンスを測定及び評価のためのブロック回路図である 。Figure 1 is a block circuit diagram for measuring and evaluating the inductance of a relay. .

図2は、図1によるブロック回路の放電回路中の電圧経過を示した図である。FIG. 2 shows the voltage profile in the discharge circuit of the block circuit according to FIG. 1;

図3は、at器のインダクタンスの許容!i差フィールドを接極子の位iに依存 して示した図である。Figure 3 shows the allowable inductance of the AT device! i difference field depends on the position i of the armature FIG.

図1では電磁形継11E器のインダクタンスに対する測定回路の直流電圧源が符 号10で示されている。スイッチ11を介してコンデンサ12が直流電圧[10 に並列に接続されている。コンデンサ12に並列して、別のスイ、ノチ13を介 して電磁形継電器15の励磁コイル14が設けられている。この電磁形継電器1 5のコイル鉄心16は接極子17と共働する。この接極子17は、戻しばね18 によってその静止位置に維持される。接極子17に固定されている接点ばね19 は前方で継電器接点20を支持する。この継電器接点20は定置の接極子接点2 1と共働する。n定装置123の感知部22によって接極子17は、コイル鉄心 16に押しつけられるか又は連続的にコイル鉄心16から戻しばね18を用いて 引きはずされる。この場合測定装置23の測定回路24は、継電器接点の開閉を 検出するために継電器接点20.21に接続される。測定装置23の別の測定回 路25は、励磁コイル14に並列に接続される。スイッチ11及び13は、電気 的かつ機械的に次のように相互でインターロックされる。すなわち該スイッチ1 1及び13が図中破線で示されているように交互にのみ開かれたり閉じられたり するようにインターロック(連動)される。In Figure 1, the DC voltage source of the measurement circuit for the inductance of the electromagnetic coupling 11E is in agreement. It is indicated by No. 10. The capacitor 12 is connected to the DC voltage [10 are connected in parallel. In parallel with the capacitor 12, another switch is connected through the notch 13. An excitation coil 14 of an electromagnetic relay 15 is provided. This electromagnetic relay 1 The coil core 16 of No. 5 cooperates with the armature 17. This armature 17 has a return spring 18 is maintained in its rest position by. Contact spring 19 fixed to armature 17 supports the relay contacts 20 at the front. This relay contact 20 is a fixed armature contact 2 Work together with 1. The armature 17 is detected by the sensing unit 22 of the n-determining device 123 as the coil core 16 or continuously from the coil core 16 using a spring 18 It gets pulled off. In this case, the measuring circuit 24 of the measuring device 23 controls the opening and closing of the relay contacts. Connected to relay contacts 20.21 for detection. Another measurement run of the measuring device 23 The line 25 is connected in parallel to the excitation coil 14 . Switches 11 and 13 are electrical physically and mechanically interlocked with each other as follows: That is, the switch 1 1 and 13 are only opened and closed alternately as shown by the broken lines in the figure. are interlocked (interlocked) so that

次に図2、図3に基づき図1による測定及び検査回路の作用を説明する。Next, the operation of the measurement and inspection circuit according to FIG. 1 will be explained based on FIGS. 2 and 3.

スイッチ11が閉じられるとコンデンサ12は直流電圧1110によって充電さ れる。′lIA定装置23の感知部22により接極子17はコイル鉄心16に押 しつけられる。この場合継電器接点20.21は閉じられる。When switch 11 is closed, capacitor 12 is charged by DC voltage 1110. It will be done. The armature 17 is pressed against the coil core 16 by the sensing part 22 of the IA constant device 23. Disciplined. In this case relay contacts 20.21 are closed.

この状態でスイッチ11及び13は切換られる。それによりコンデンサ12は継 電器15の励磁コイル14を介して放電される。図2にはその際の励磁コイル1 4に生じた電圧経過が示されている。この場合コンデンサ12と励磁コイル14 は振動回路を形成する。この振動回路はオーム抵抗によって減衰され、急激に弱 まっていく。測定装置23では測定電流回路25を介して励磁コイル14におけ る最初の完全な電圧振動が検出され、以下の2つの式、すなわち に従って、継電器15の励磁系に対する最初のインダクタンスfiM1がめられ る。このインダクタンス値Mlは図3に示されている。Lmin及びLmaxか らなる許容限界値は、測定装置123のメモリ23a内の特性曲線と(。7てテ ーブルの形で含まれている。前記許容限界値は接極子10が当接した場合の距離 S=0毎にメモリ23aから取り出され、測定装置23の検査回路23b内で、 当該検出されたインダクタンス値Mlと比較される9図3に示されているように 請求められた継電器15のインダクタンス#IM1は、2つの所定の値M m  a xとMminとの間にある。従って継電器15の応動電圧及び復帰電圧に関 して磁気的許容偏差範囲内にある。In this state, switches 11 and 13 are switched. This causes the capacitor 12 to It is discharged through the excitation coil 14 of the electric appliance 15. Figure 2 shows the excitation coil 1 at that time. 4 is shown. In this case, the capacitor 12 and the excitation coil 14 forms an oscillating circuit. This oscillating circuit is damped by an ohmic resistor and suddenly weakens. I'm waiting. In the measuring device 23, a current is generated in the exciting coil 14 via the measuring current circuit 25. The first complete voltage oscillation is detected and the following two equations, i.e. Accordingly, the initial inductance fiM1 for the excitation system of the relay 15 is determined. Ru. This inductance value Ml is shown in FIG. Lmin and Lmax? The permissible limit values are based on the characteristic curve in the memory 23a of the measuring device 123 and (. included in the form of a cable. The allowable limit value is the distance when the armature 10 contacts It is taken out from the memory 23a every time S=0, and in the test circuit 23b of the measuring device 23, 9 is compared with the detected inductance value Ml, as shown in Figure 3. The requested inductance #IM1 of the relay 15 has two predetermined values M m It is between a x and Mmin. Therefore, regarding the response voltage and release voltage of the relay 15, and is within the magnetic tolerance range.

さらに図3からは次のようなことがわかる。すなわち継電器のインダクタンスL が、距離Sに依存して実質的にat器の作用エアギヤツブに依存する特性曲線に 従って降下していることがわかる。前記路1IISは、接極子17の引きはずし により当該継電器接点20が定置接点21から離れていく距離のことである。2 つの限界値−特性曲線Lmax及びLminの他にもメモリ23aには多数の別 の特性曲線がファイルされている。これらの特性曲線は、特性曲線LmaxとL minとの間に均一に分布している。それにより請求められたインダクタンス値 Mlは、開かれた接極子17の移動距離に依存した当該特性曲線Kに割り当てら れる。Furthermore, the following can be seen from FIG. In other words, the inductance L of the relay However, depending on the distance S, the characteristic curve substantially depends on the working air gear of the AT device. Therefore, it can be seen that it is descending. Said path 1IIS is the tripping of the armature 17. This is the distance that the relay contact 20 is away from the stationary contact 21. 2 In addition to the two limit value-characteristic curves Lmax and Lmin, the memory 23a also contains a number of Characteristic curves are filed. These characteristic curves are the characteristic curves Lmax and L It is uniformly distributed between min. The resulting inductance value Ml is assigned to the characteristic curve K in question depending on the travel distance of the opened armature 17. It will be done.

非破壊的に、図1による回路を用いて継電器15の焼損に対する余裕度をめるこ とも可能である。この目的のためにスイッチ11と13は新たに切換られ、コン デンサ12が新たに直流電圧源IOによって充電される。その後継電器接点20 .21を有している測定電流回路24を介して測定電流が印加され、感知部22 が当該接点20.21が開かれるまでキャンセルされる。継電器15のこの状態 において、スイッチ11と13の新たな切換によりコンデンサ12が励磁コイル 14を介して新たに放電され、同じように測定装置23により第2のインダクタ ンス値M2が測定装置23においてめられる。この測定値は特性曲線に上にある ので、図3のようにメモリ23aにファイルされたテーブルから距離S2が、焼 損に対する余裕度として得られる。この値S2は、メモリ23aにファイルされ た上側及び下側の限界値Smax、Sm1nとの比較によって定められる。焼損 に対する余裕度としてめられた値S2が2つの限界値の間にあると、測定装置2 3は良好−表示信号を出力する。前記値s2が2つの限界値の外側にあると、測 定装置23は不良FIG 1Non-destructively, the circuit shown in FIG. 1 can be used to increase the margin for burnout of the relay 15. Both are possible. For this purpose, switches 11 and 13 are newly switched and the Capacitor 12 is newly charged by DC voltage source IO. Its successor electrical contact 20 .. A measuring current is applied via a measuring current circuit 24 having a sensor 22 . is canceled until the corresponding contact 20.21 is opened. This state of relay 15 , new switching of switches 11 and 13 causes capacitor 12 to switch to the excitation coil. 14 and is similarly discharged by the measuring device 23 into the second inductor. A value M2 is measured in the measuring device 23. This measurement is above the characteristic curve Therefore, the distance S2 from the table filed in the memory 23a as shown in FIG. It is obtained as a margin against losses. This value S2 is filed in the memory 23a. It is determined by comparison with the upper and lower limit values Smax and Sm1n. Burnt out If the value S2 determined as the margin for is between the two limit values, the measuring device 2 3 is good - outputs a display signal. If the value s2 is outside the two limits, the measurement The fixed device 23 is defective FIG. 1

Claims (3)

【特許請求の範囲】[Claims] 1.電磁形継電器のインダクタンスを当該構成要素の許容偏差範囲に対する所定 の値との比較により測定及び評価する方法であって、当該継電器は励磁コイルと コイル鉄心と継電器接点の操作のための接極子とを有している、電磁形継電器の インダクタンスの測定及び評価方法において、 接極子(17)が当該装置(23)を用いて継電器(15)のコイル鉄心(16 )に押しつけられ、コンデンサ(12)が励磁コイル(14)を介して放電され 、 この場合に放電電流回路中に生じた電圧振動(UL)から、測定装置(23)に より該電圧振動(UL)の周波数ないし周期期間(f;T)を測定し、当該測定 値から第1のインダクタンス値(M1)を検出し、 所定の限界値(MmaX,Mmin)と比較し、前記求められたインダクタンス 値(M1)が当該限界値によって定められた所定の許容偏差範囲外にある場合に は、当該測定装置(23)によって信号を出力することを特徴とする、電磁形継 電器のインダクタンスの測定及び評価方法。1. The inductance of the electromagnetic relay is set to a specified value within the permissible deviation range of the relevant component. A method of measuring and evaluating by comparing the value of the relay with the excitation coil. An electromagnetic relay having a coil core and an armature for operating the relay contacts. In the inductance measurement and evaluation method, The armature (17) uses the device (23) to connect the coil core (16) of the relay (15). ), and the capacitor (12) is discharged via the excitation coil (14). , In this case, the voltage oscillation (UL) generated in the discharge current circuit causes the measuring device (23) to The frequency or period period (f; T) of the voltage oscillation (UL) is measured from detecting a first inductance value (M1) from the value; The obtained inductance is compared with predetermined limit values (MmaX, Mmin). If the value (M1) is outside the predetermined tolerance deviation range defined by the limit value, is an electromagnetic coupling characterized in that the measuring device (23) outputs a signal. Method for measuring and evaluating inductance of electrical appliances. 2.前記2つの限界値(Mmax,Mmin)の間にある第1のインダクタンス 値(M1)のそれぞれに、開放された接極子(17)の移動距離(S)に依存す る特性曲線(K)を割付け、 継電器接点(20,21)が開かれている場合に第2のインダクタンス値(M2 )を同様に測定装置(23)によって求め、 前記特性曲線(K)を介して、引きはずされた接極子の移動距離に比例する、当 該継電器接極子(20,21)の焼損余裕度(S2)を求める、請求の範囲第1 項記載の方法。2. a first inductance between the two limit values (Mmax, Mmin); For each value (M1), depending on the distance traveled (S) of the open armature (17), Assign the characteristic curve (K) to The second inductance value (M2 ) is similarly determined by the measuring device (23), Via said characteristic curve (K), a corresponding force proportional to the travel distance of the tripped armature is Claim 1 for determining the burnout margin (S2) of the relay armature (20, 21) The method described in section. 3.前記の求められた焼損余裕度の値(S2)を所定の上側及び下側の限界値( Smax,Smin)と比較し、 当該比較に依存して測定装置(23)により、良好/不良−表示信号を出力する 、請求の範囲第2項記載の方法。3. The above-determined burnout margin value (S2) is set to the predetermined upper and lower limit values ( Smax, Smin), Depending on the comparison, the measuring device (23) outputs a good/bad indication signal. , the method according to claim 2.
JP5503177A 1991-08-10 1992-07-29 Measurement and evaluation method of relay inductance Pending JPH06501779A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19914126534 DE4126534A1 (en) 1991-08-10 1991-08-10 METHOD FOR MEASURING AND EVALUATING THE INDUCTIVITY OF A RELAY
DE4126534.3 1991-08-10
PCT/DE1992/000620 WO1993003386A1 (en) 1991-08-10 1992-07-29 Process for measuring and evaluating the inductance of a relay

Publications (1)

Publication Number Publication Date
JPH06501779A true JPH06501779A (en) 1994-02-24

Family

ID=6438090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5503177A Pending JPH06501779A (en) 1991-08-10 1992-07-29 Measurement and evaluation method of relay inductance

Country Status (3)

Country Link
JP (1) JPH06501779A (en)
DE (1) DE4126534A1 (en)
WO (1) WO1993003386A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501505A (en) * 2005-07-13 2009-01-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for drive control of electromagnetic actuator and first inductance inspection method of electromagnetic actuator
CN102419419A (en) * 2010-09-27 2012-04-18 西门子公司 Method for testing the functionality of the electromagnetic tripping of a switch, in particular of a circuitbreaker for low voltages
JP2017167144A (en) * 2016-03-16 2017-09-21 致茂電子股▲分▼有限公司Chroma Ate Inc. Device and method for inspecting wound component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014215260A1 (en) * 2014-08-04 2016-02-04 Robert Bosch Gmbh Method for testing the function of a switching device
CN113138311B (en) * 2021-04-01 2022-08-23 浙江方圆电气设备检测有限公司 Method for measuring maximum inductance at power-off instant of high-voltage direct-current relay coil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2609419A (en) * 1948-05-20 1952-09-02 Western Electric Co Impedance testing apparatus
DE947918C (en) * 1954-10-12 1956-08-23 Licentia Gmbh Method and arrangement for measuring the self-inductance of capacitors
DE2021029C3 (en) * 1970-04-24 1974-01-10 Askania Gmbh, 1000 Berlin Method for measuring the inductance of electrical coils with an iron core and device for carrying out this method
DE2037039A1 (en) * 1970-07-25 1972-02-03 Meier O Test device for inductances, in particular cell transformers, transformers for high voltage generation, line deflection coils and image deflection coils in televisions
US4481473A (en) * 1981-11-13 1984-11-06 International Business Machines Corporation Electromagnet drop time detection method
DE3151757A1 (en) * 1981-12-29 1983-07-07 Siemens AG, 1000 Berlin und 8000 München Method for testing an electromagnetic action device, particularly a relay with contact armatures encapsulated in an opaque housing, by representing and/or evaluating their armature movement and arrangement for carrying out the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501505A (en) * 2005-07-13 2009-01-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for drive control of electromagnetic actuator and first inductance inspection method of electromagnetic actuator
CN102419419A (en) * 2010-09-27 2012-04-18 西门子公司 Method for testing the functionality of the electromagnetic tripping of a switch, in particular of a circuitbreaker for low voltages
US8866484B2 (en) 2010-09-27 2014-10-21 Siemens Aktiengesellschaft Method for testing the functionality of the electromagnetic tripping of a switch, in particular of a circuitbreaker for low voltages
JP2017167144A (en) * 2016-03-16 2017-09-21 致茂電子股▲分▼有限公司Chroma Ate Inc. Device and method for inspecting wound component

Also Published As

Publication number Publication date
DE4126534A1 (en) 1993-02-11
WO1993003386A1 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
US5256977A (en) High frequency surge tester methods and apparatus
US5204633A (en) Electromagnetic contactor with closure fault indicator
JPH06501779A (en) Measurement and evaluation method of relay inductance
CN106872739A (en) Ammeter, the method for the disconnection and/or closure of the cutting member of control ammeter
KR20050114580A (en) An apparatus for detecting defect at an interconnect in a circuit pattern and a defect detecting system therewith
JP6005490B2 (en) Method for evaluating temperature of magnetic contactor and contactor for implementing the method
KR20210033954A (en) Monitoring of the contact area of the plug device
JP3725073B2 (en) Device for monitoring and predicting failure probability of inductive proximity sensors
JP2610640B2 (en) Apparatus for checking at least two electrical loads on a motor vehicle
US3855527A (en) Method and system for determining the resistance of the dielectric in a capacitor
JP3675678B2 (en) Probe contact state detection method and probe contact state detection device
US11969817B2 (en) Device for determining a status of an ultrasonic welding process
JP2992955B2 (en) Sensor device and operating method thereof
Gockenbach et al. Monitoring and diagnostic systems for dry type transformers
CN208520921U (en) Temperature rise test winding resistance value automatic detection device
JPS62187258A (en) Inspecting method for circuit board
Hammarstroem Evaluation of different approaches to measure partial discharge characteristics within electric motor insulation
JP7286724B2 (en) Switching assembly and method for measuring the position of the contact bridge of the switching assembly
JP2512101Y2 (en) High frequency contact open / close state detection device
SU1775745A1 (en) Electromagnetic relay rejection method
JPH0992100A (en) Dc high-speed vacuum breaker
JP3446680B2 (en) Insulation resistance measuring device for capacitive electronic components
EP3806126A1 (en) Assembly for and method of monitoring the status of a relay
KR20190037656A (en) Apparatus and method for diagnosis relay welding
JPS5851127Y2 (en) Direction determination device for stick-shaped articles