JPH0650091B2 - Fuel injection control method for a burning engine - Google Patents

Fuel injection control method for a burning engine

Info

Publication number
JPH0650091B2
JPH0650091B2 JP58146731A JP14673183A JPH0650091B2 JP H0650091 B2 JPH0650091 B2 JP H0650091B2 JP 58146731 A JP58146731 A JP 58146731A JP 14673183 A JP14673183 A JP 14673183A JP H0650091 B2 JPH0650091 B2 JP H0650091B2
Authority
JP
Japan
Prior art keywords
fuel
amount
fuel amount
frequency
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58146731A
Other languages
Japanese (ja)
Other versions
JPS6040777A (en
Inventor
猪頭  敏彦
太郎 田中
康行 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58146731A priority Critical patent/JPH0650091B2/en
Priority to US06/544,417 priority patent/US4499878A/en
Priority to DE19833338741 priority patent/DE3338741A1/en
Priority to US06/598,436 priority patent/US4535743A/en
Priority to DE3448579A priority patent/DE3448579C2/en
Priority to DE3414378A priority patent/DE3414378C2/en
Publication of JPS6040777A publication Critical patent/JPS6040777A/en
Publication of JPH0650091B2 publication Critical patent/JPH0650091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/12Monitoring commutation; Providing indication of commutation failure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/06Other fuel injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/027Injectors structurally combined with fuel-injection pumps characterised by the pump drive electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は燃料噴射弁により噴射燃料量の制御を行う内燃
機関の燃料噴射制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a fuel injection control method for an internal combustion engine, which controls an amount of fuel injected by a fuel injection valve.

従来技術 自動車用内燃機関の場合、必要とされる燃料量の制御範
囲は最小量の約50倍までの範囲である。したがって、
燃料の計量を駆動周波数によって行う燃料噴射弁を用い
て上記の燃料量の制御を行う場合、その駆動周波数の最
大周波数は最小周波数の約50倍が必要である。
In the case of internal combustion engines for motor vehicles, the control range of the required fuel quantity is up to about 50 times the minimum quantity. Therefore,
When the above fuel amount control is performed by using the fuel injection valve that measures the fuel by the drive frequency, the maximum frequency of the drive frequency needs to be about 50 times the minimum frequency.

一方、上記の最小周波数は内燃機関の最大回転数におけ
る吸気周波数よりも大きいことが必要であり、例えば4
サイクル内燃機関と最大回転数6000rpmに対してそ
の最小周波数は50Hz以上となる。よって最小周波数を
50Hzとしたとき、燃料噴射弁の駆動周波数は50Hzか
ら2500Hzまでの制御範囲が要求される。
On the other hand, the above minimum frequency needs to be higher than the intake frequency at the maximum rotation speed of the internal combustion engine, for example, 4
The minimum frequency is 50 Hz or higher for a cycle internal combustion engine and a maximum rotation speed of 6000 rpm. Therefore, when the minimum frequency is 50 Hz, the drive frequency of the fuel injection valve is required to have a control range of 50 Hz to 2500 Hz.

しかし、燃料噴射弁は本出願で開示されるような高速応
答性のものであっても、燃料吸入時の応答遅れ、消費電
力、耐久性等の理由によりその最大周波数が1000Hz
程度に制限される。それゆえ、噴射燃料量の制御範囲を
充分に広くとって効果的な燃料噴射制御を行えないとい
う問題点がある。
However, even if the fuel injection valve has a high-speed response as disclosed in the present application, its maximum frequency is 1000 Hz due to reasons such as a response delay during fuel intake, power consumption, and durability.
Limited to the extent. Therefore, there is a problem that the control range of the injected fuel amount cannot be set sufficiently wide and effective fuel injection control cannot be performed.

発明の目的 本発明の目的は、燃料噴射弁の燃料調量の制御因子とし
て駆動周波数の他にもう1つの因子を用い、この両方の
因子を同格にかつ連続的に変化させて調量を行うという
構想に基づき、比較的低い駆動周波数による駆動を可能
にし、消費電力の低減および耐久性の向上を可能にし、
かつ燃料調量特性の直線性を確保することにある。
Object of the Invention An object of the present invention is to use another factor in addition to the drive frequency as a control factor for fuel metering of a fuel injection valve, and to perform metering by changing both of these factors equally and continuously. Based on this concept, it is possible to drive at a relatively low drive frequency, reduce power consumption and improve durability,
And it is to secure the linearity of the fuel metering characteristic.

発明の構成 本発明においては、内燃機関の吸入空気量を検出し、こ
の検出された吸入空気量の増加に対応して増加するよう
に必要な燃料量を演算し、 この演算された燃料量の増加に応じて増加する周波数の
電気信号によって燃料噴射弁のアクチュエータを駆動し
て、単位時間当たりの噴射回数を増加しつつ、前記演算
された燃料量または前記周波数の増加に応じて前記電気
信号の駆動電圧値と駆動電圧印加時間との一方を増加し
て、前記燃料噴射弁での噴射1回当たりの噴射量を増加
させて前記必要な燃料量を噴射する内燃機関の燃料噴射
制御方法が提供される。また、前記周波数を横軸とし、
パラメータを前記駆動電圧値または駆動電圧印加時間と
して、縦軸を前記必要な燃料量としたとき、前記周波数
と燃料量の相関が、前記必要な燃料量の最小燃料量と最
大燃料量の2点を結ぶ直線を上弦とする円弧となるよう
に、前記各周波数に対応する前記駆動電圧値または駆動
電圧印加時間が決定するようにしてもよい。
According to the present invention, the intake air amount of the internal combustion engine is detected, the fuel amount required to increase in accordance with the increase in the detected intake air amount is calculated, and the calculated fuel amount The actuator of the fuel injection valve is driven by an electric signal having a frequency that increases in accordance with the increase, and while increasing the number of injections per unit time, the electric signal of the electric signal changes in accordance with the calculated fuel amount or the frequency. Provided is a fuel injection control method for an internal combustion engine, which increases one of a drive voltage value and a drive voltage application time to increase an injection amount per injection in the fuel injection valve to inject the required fuel amount. To be done. In addition, the frequency is the horizontal axis,
When the parameter is the drive voltage value or the drive voltage application time and the vertical axis is the required fuel amount, the correlation between the frequency and the fuel amount is two points, that is, the minimum fuel amount and the maximum fuel amount of the required fuel amount. The drive voltage value or the drive voltage application time corresponding to each of the frequencies may be determined so as to form an arc having a straight line connecting the two as the upper chord.

実施例 本発明の一実施例としての内燃機関の燃料噴射制御方法
を行う装置が第1図に示される。第1図において、Eは
内燃機関であって、シリンダブロック10、ピストン1
1、点火プラグ12、吸気弁13、排気弁14、吸気管
15、排気管16等により構成されている。吸気管15
の内部にはスロットル弁17が設けられ、また、吸気管
15の管壁には燃料噴射弁2が設けられている。なお、
燃料噴射弁2としては、後述するごとく、応答性の早い
電歪式アクチュエータを有するものを用いる。
Embodiment FIG. 1 shows an apparatus for carrying out a fuel injection control method for an internal combustion engine as an embodiment of the present invention. In FIG. 1, E is an internal combustion engine, which includes a cylinder block 10 and a piston 1.
1, a spark plug 12, an intake valve 13, an exhaust valve 14, an intake pipe 15, an exhaust pipe 16 and the like. Intake pipe 15
A throttle valve 17 is provided inside the fuel cell 1, and a fuel injection valve 2 is provided on the wall of the intake pipe 15. In addition,
As the fuel injection valve 2, as will be described later, a fuel injection valve having an electrostrictive actuator with a quick response is used.

また、吸気管15はエアクリーナ18を介して大気と導
通しており、このエアクリーナ18の下流には吸入空気
量を測定するためのエアフローメータ31が設けられて
いる。エアフローメータとしては、たとえば風速すなわ
ち吸入空気量に比例したアナログ電圧を発生する熱線風
速計形のものを用いる。
The intake pipe 15 is connected to the atmosphere via an air cleaner 18, and an air flow meter 31 for measuring the amount of intake air is provided downstream of the air cleaner 18. As the air flow meter, for example, a hot wire anemometer type that generates an analog voltage proportional to the wind speed, that is, the intake air amount is used.

燃料噴射弁2にはフィードポンプ41,フィルタ42を
介して燃料タンク43により燃料が供給される。このと
きの燃料フィード圧はプレッシャレギュレータ44によ
って一定たとえば3kg/cm2に保持される。なお、プレッ
シャレギュレータ44から吐出された燃料は燃料タンク
43に戻る。
Fuel is supplied to the fuel injection valve 2 from a fuel tank 43 via a feed pump 41 and a filter 42. The fuel feed pressure at this time is kept constant by the pressure regulator 44, for example, at 3 kg / cm 2 . The fuel discharged from the pressure regulator 44 returns to the fuel tank 43.

シリンダブロック10のウォータジャケット19にはそ
の冷却水温度を検出するための水温センサ32が設けら
れている。水温センサ32はたとえばサーミスタにより
構成され冷却水の温度に応じたアナログ電圧を発生す
る。
The water jacket 19 of the cylinder block 10 is provided with a water temperature sensor 32 for detecting the temperature of the cooling water. The water temperature sensor 32 is composed of, for example, a thermistor, and generates an analog voltage according to the temperature of the cooling water.

排気管16には排気ガス中の酸素成分濃度に応じた電気
信号を発生するO2センサ33が設けられている。すなわ
ち、O2センサ33は空燃比が理論空燃比に対してリーン
側かリッチ側かに応じて異なる2値の出力電圧を発生す
る。
The exhaust pipe 16 is provided with an O 2 sensor 33 that generates an electric signal according to the concentration of oxygen components in the exhaust gas. That is, the O 2 sensor 33 generates a binary output voltage that differs depending on whether the air-fuel ratio is leaner or richer than the stoichiometric air-fuel ratio.

なお、51はバッテリ,52はイグニッションスイッチ
を示す。
In addition, 51 is a battery and 52 is an ignition switch.

制御回路6は、エアフローメータ31,水温センサ3
2,O2センサ33等の各出力信号を処理して燃料噴射弁
2の制御等を行うものであり、たとえばマイクロコンピ
ュータにより構成される。
The control circuit 6 includes an air flow meter 31, a water temperature sensor 3
2, the output signals of the O 2 sensor 33 and the like are processed to control the fuel injection valve 2 and the like, and is composed of, for example, a microcomputer.

第1図装置における燃料噴射弁2の側断面図が第2図に
示される。この燃料噴射弁2は一般にユニットインジェ
クタと呼ばれるものであり、電歪式アクチュエータ20
1の伸縮によってポンプ作用を行い、燃料を噴射供給す
るものである。
A side sectional view of the fuel injection valve 2 in the apparatus of FIG. 1 is shown in FIG. This fuel injection valve 2 is generally called a unit injector, and the electrostrictive actuator 20
The expansion and contraction of No. 1 causes a pump action to inject and supply fuel.

電歪式アクチュエータ201は電歪効果を有する薄い円
盤状の素子を円柱状に積層したものであり、各々の素子
はその厚み方向に500Vを印加すると約0.5μm伸
長し、逆に−500Vを印加すると約0.5μm収縮す
る。よってこの素子を100枚積層すればその100倍
の伸縮が得られる。この電歪式アクチュエータ201に
電圧の印加を行うためにリード線202を用いており、
このリード線はグロメット203を介してケーシングア
ッパ204を貫通して外部に取り出されており、制御回
路6に接続される。
The electrostrictive actuator 201 is formed by stacking thin disk-shaped elements having an electrostrictive effect in a cylindrical shape, and each element extends about 0.5 μm when 500 V is applied in its thickness direction, and conversely, −500 V is applied. When applied, it contracts by about 0.5 μm. Therefore, if 100 sheets of this element are laminated, the expansion and contraction of 100 times can be obtained. A lead wire 202 is used to apply a voltage to the electrostrictive actuator 201,
This lead wire penetrates the casing upper 204 via the grommet 203 and is taken out to the outside, and is connected to the control circuit 6.

電歪式アクチュエータ201の伸縮動作はピストン20
5に直接伝達され、これを往復動させる。ピストン20
5はケーシングアッパ204に形成したシリンダ204a内
を摺動し、ポンプ室206の容積を拡大および縮少して
ポンプ仕事を行う。ポンプ室206内には皿バネ207
が設けてあり、電歪式アクチュエータ201の収縮方向
にピストン205を付勢している。ポンプ室206が縮
少するとき、ポンプ室206内の燃料は高圧となって噴
射弁208に供給され、その噴口209aから噴出する。
The expansion and contraction operation of the electrostrictive actuator 201 is performed by the piston 20.
5, which is directly transmitted to and reciprocates. Piston 20
5 slides in the cylinder 204a formed in the casing upper 204, and expands and contracts the volume of the pump chamber 206 to perform pump work. A disc spring 207 is provided in the pump chamber 206.
Are provided to urge the piston 205 in the contraction direction of the electrostrictive actuator 201. When the pump chamber 206 shrinks, the fuel in the pump chamber 206 becomes a high pressure, is supplied to the injection valve 208, and ejects from the injection port 209a.

噴出弁208はノズルボディ209とニードル210と
によりなり、ニードル210は大小の径を持つ段付き
で、その小径部210aがノズルボディ209に設けた噴口
209aを開閉する。ニードル210の大径部210bの端面に
はフィードポンプ41から供給される燃料圧が作用して
おり、ニードル210が噴口209aが閉じるように働いて
いる。この燃料はフィードポンプ41からケーシングア
パ204に設けた燃料入口204dよりケーシングアッパ2
04を構成する壁内に設けた燃料通路204bを経て、さら
にディスタンスピース211に設けた燃料通路211aを経
て、ノズルボディ209に設けた背圧室209bに至ってい
る。
The jet valve 208 is composed of a nozzle body 209 and a needle 210. The needle 210 has a step with large and small diameters, and a small diameter portion 210a is provided in the nozzle body 209.
Open and close 209a. The fuel pressure supplied from the feed pump 41 acts on the end surface of the large diameter portion 210b of the needle 210, and the needle 210 works so as to close the injection port 209a. This fuel is supplied from the feed pump 41 to the casing upper 2 through a fuel inlet 204d provided in the casing upper 204.
04, the fuel passage 204b provided in the wall, and further, the fuel passage 211a provided in the distance piece 211, to the back pressure chamber 209b provided in the nozzle body 209.

ディスタンスピース211はポンプ室206と噴射弁2
08とを隔離しているが、ポンプ室206と燃料だまり
209cとを結ぶ燃料通路211bを備えている。燃料だまり20
9cはノズルボディ209内に設けてあって、ニードル2
10の段部210cにその燃料圧がニードル210によって
噴口209aを開けるように作用している。自然状態ではニ
ードル210が噴口209aを閉じようとする力が勝ってい
るが、ポンプ室206が縮少したときのみニードル21
0は噴口209aを燃料だまり209cに開放することができ
る。
The distance piece 211 includes the pump chamber 206 and the injection valve 2.
08 is isolated, but pump chamber 206 and fuel pool
A fuel passage 211b connecting to 209c is provided. Fuel puddle 20
9c is provided in the nozzle body 209, and the needle 2
The fuel pressure acts on the stepped portion 210c of the nozzle 10 by the needle 210 so as to open the injection port 209a. In the natural state, the force with which the needle 210 tries to close the injection port 209a is predominant, but only when the pump chamber 206 contracts
No. 0 can open the injection port 209a to the fuel pool 209c.

ポンプ室206が拡大するとき、逆止弁212を介して
燃料通路211aからポンプ室206内に燃料を吸入する。
この逆止弁212はディスタンスピース211に設けら
れており、弁体である鋼球212aがポンプ室206内に脱
落しないように、ピストン205に設けた突起205aがス
トッパーの役割を担っている。
When the pump chamber 206 expands, fuel is sucked into the pump chamber 206 from the fuel passage 211a via the check valve 212.
The check valve 212 is provided on the distance piece 211, and the projection 205a provided on the piston 205 plays a role of a stopper so that the steel ball 212a, which is the valve body, does not drop into the pump chamber 206.

ケーシングアップ204とディスタンスピース211と
ノズルボディ209とは同径であって、その順序に積み
重ねられ、袋ナット状のケーシングロア213によって
軸方向に押圧され固定される。このためにケーシングロ
ア213のメネジ213aとケーシングアッパ204のオネ
ジ204cとがネジ結合されている。なお、214はOリン
グ、215はノックピンである。
The casing up 204, the distance piece 211, and the nozzle body 209 have the same diameter, are stacked in that order, and are pressed and fixed in the axial direction by a casing nut-shaped casing lower 213. Therefore, the female screw 213a of the casing lower 213 and the male screw 204c of the casing upper 204 are screwed together. In addition, 214 is an O-ring and 215 is a knock pin.

この燃料噴射弁2の1回の動作あたりの吐出燃料量は電
歪式アクチュエータ201のストロークによって決ま
り、該ストロークは印加される駆動電圧によって決ま
る。1回の動作あたりの吐出燃料量qと駆動電圧Vとは
ほぼリニアな関係にあり、その特性が第3図に示され
る。
The amount of fuel discharged per operation of the fuel injection valve 2 is determined by the stroke of the electrostrictive actuator 201, and the stroke is determined by the applied drive voltage. The discharge fuel amount q per operation and the drive voltage V have a substantially linear relationship, and the characteristic thereof is shown in FIG.

第3図において、横軸は駆動電圧(V)、縦軸は吐出燃料
量(mg/st)であり、駆動電圧が約300V以上でリニ
アな特性となる。駆動電圧が300Vを下回るとその吐
出燃料量が不安定になり、また500Vを越えると電歪
素子の厚み方向にフラッシュオーバを起こす危険がある
ので、駆動電圧は300Vから500Vの範囲が望まし
い。
In FIG. 3, the horizontal axis represents the driving voltage (V) and the vertical axis represents the discharged fuel amount (mg / st), which has a linear characteristic when the driving voltage is approximately 300 V or more. When the drive voltage is lower than 300V, the discharged fuel amount becomes unstable, and when it exceeds 500V, there is a risk of flashover in the thickness direction of the electrostrictive element. Therefore, the drive voltage is preferably in the range of 300V to 500V.

燃料噴射弁2の単位時間あたりの供給燃料量Qとその駆
動周波数つまりアクチェータの振動回数との関係が第4
図に示される。第4図において、横軸は駆動周波数(H
z)、縦軸は供給燃料量(g/sec)をあらわす。供給燃
料量は燃料噴射弁2の1回の動作あたりの吐出燃料量に
駆動周波数をかけたものであり、駆動電圧を300V,
400V,500Vとしたときにはそれぞれ第4図中に
点線で示すような特性となる。
The relationship between the amount Q of fuel supplied per unit time of the fuel injection valve 2 and its drive frequency, that is, the number of vibrations of the actuator is the fourth.
As shown in the figure. In Fig. 4, the horizontal axis is the drive frequency (H
z), the vertical axis represents the supplied fuel amount (g / sec). The amount of fuel supplied is the amount of fuel discharged per operation of the fuel injection valve 2 multiplied by the driving frequency, and the driving voltage is 300 V,
When set to 400 V and 500 V, the characteristics shown by the dotted lines in FIG. 4 are obtained.

次に第1図装置における動作を説明する。内燃機関Eを
排気量2の4サイクル・ガソリンエンジンとする。そ
の要求供給燃料量は運転条件によって異なる。エアフロ
ーメータ31,水温センサ32,O2センサ33からの信
号を受けた制御回路6は必要な供給燃料量を決定し、そ
の供給燃料量に対応した駆動信号を燃料噴射弁2に供給
し、燃料噴射弁2から該供給燃料量を噴射供給する。供
給燃料量は最少量で0.2g/sec、最大量で10g/s
ecであり、燃料噴射弁2はこの範囲の燃料量を精密に供
給できなくてはならない。
Next, the operation of the apparatus shown in FIG. 1 will be described. The internal combustion engine E is a 4-cycle gasoline engine with a displacement of 2. The required supply fuel amount depends on operating conditions. The control circuit 6 which receives signals from the air flow meter 31, the water temperature sensor 32, and the O 2 sensor 33 determines the required fuel supply amount, supplies a drive signal corresponding to the fuel supply amount to the fuel injection valve 2, and The injection fuel is injected and supplied from the injection valve 2. The minimum amount of fuel supplied is 0.2 g / sec, and the maximum amount is 10 g / s.
ec, and the fuel injection valve 2 must be able to accurately supply the fuel amount in this range.

4サイクル内燃機関はその最高回転速度を6000rpm
としたとき、その吸入行程は50Hzとなる。この50Hz
よりも小さい周波数での燃料噴射はサイクル間の供給燃
料量変動を生じさせる恐れがあって望ましくないので、
燃料噴射弁2の駆動周波数は50Hz以上とする必要があ
る。一方、燃料噴射弁2の最大駆動周波数は、消費電力
の増大、ポンプ室203内におけるキャビテーションの
発生、燃料噴射弁の耐久性などにより制限され、100
0Hz程度である。
A 4-cycle internal combustion engine has a maximum rotation speed of 6000 rpm
Then, the inhalation stroke becomes 50 Hz. This 50Hz
Fuel injection at a lower frequency is undesirable because it may cause fluctuations in the supplied fuel amount between cycles.
The drive frequency of the fuel injection valve 2 must be 50 Hz or higher. On the other hand, the maximum drive frequency of the fuel injection valve 2 is limited by an increase in power consumption, occurrence of cavitation in the pump chamber 203, durability of the fuel injection valve, etc.
It is about 0 Hz.

第4図において、燃料噴射弁2の駆動電圧を500Vと
すると、最大供給燃料量10g/secを得る駆動周波数
は1000Hzとなり好適であるが、最少供給燃料量0.
2g/secを得るには駆動周波数が20Hzとなり、上記
の50Hz以下となって望ましくない。そこで駆動電圧を
300Vとすると、最小供給燃料量0.2g/secを得
るための駆動周波数は50Hzとなって望ましいが、最大
供給燃料量10g/secを得るには駆動周波数として上
記の1000Hzをはるかに越える2500Hz程度の高周
波数が必要とされる。
In FIG. 4, when the drive voltage of the fuel injection valve 2 is 500 V, the drive frequency for obtaining the maximum supply fuel amount 10 g / sec is 1000 Hz, which is preferable, but the minimum supply fuel amount 0.
In order to obtain 2 g / sec, the driving frequency is 20 Hz, which is less than the above 50 Hz, which is not desirable. Therefore, if the drive voltage is set to 300 V, the drive frequency for obtaining the minimum supply fuel amount of 0.2 g / sec is 50 Hz, which is desirable, but in order to obtain the maximum supply fuel amount of 10 g / sec, the drive frequency above 1000 Hz is far exceeded. A high frequency of about 2500 Hz, which exceeds the above, is required.

そこで駆動周波数を50Hz〜1000Hzに維持するた
め、供給燃料量が少量のときには低電圧駆動として駆動
周波数を50Hz以上とし、多量のときには駆動電圧をス
テップ状に高電圧駆動に変更して駆動周波数を1000
Hz以下にする方法が考えられる。この方法の一例につい
ては本出願人による昭和58年7月2日出願の特許願
「内燃機関の燃料噴射方法および装置」で詳しく述べら
れている。この方法では、駆動電圧の切替え時に供給燃
料量の変化にやや滑らかさを欠く危険があり、この方法
を乗用車用内燃機関に用いたときには若干ドライバビリ
ティを損なうおそれがある。
Therefore, in order to maintain the driving frequency at 50 Hz to 1000 Hz, when the supplied fuel amount is small, the driving frequency is set to 50 Hz or higher as low voltage driving, and when the supplied fuel amount is large, the driving voltage is changed stepwise to the high voltage driving so that the driving frequency is 1000 Hz.
A method below Hz is possible. An example of this method is described in detail in the patent application “Fuel injection method and apparatus for internal combustion engine” filed on July 2, 1983 by the present applicant. In this method, there is a risk that the change in the supplied fuel amount may be slightly smooth when the drive voltage is switched, and when this method is applied to an internal combustion engine for passenger cars, drivability may be slightly impaired.

この問題点を解決するために、駆動周波数と駆動電圧を
供給燃料量に応じて連続的に変化させる本発明方法が提
供される。この場合の最も簡単な実施例方法は、第4図
において、駆動電圧300V、駆動周波数50Hz、供給
燃料量0.2g/secのA点と、駆動電圧500V、駆
動周波数1000Hz、供給燃料量10g/secのB点と
を直線で結び、供給燃料量の増加に合わせて該直線によ
って決まる駆動用周波数と駆動電圧とをともに連続的に
大きくしていく方法である。この方法により供給燃料量
の変化は滑らかなものとなり、ドライバビリティが損な
われるおそれもなくなる。
In order to solve this problem, the method of the present invention is provided in which the driving frequency and the driving voltage are continuously changed according to the supplied fuel amount. The simplest embodiment method in this case is, in FIG. 4, a point A at a drive voltage of 300 V, a drive frequency of 50 Hz, and a supply fuel amount of 0.2 g / sec, and a drive voltage of 500 V, a drive frequency of 1000 Hz, and a supply fuel amount of 10 g / sec. This is a method of connecting the point B of sec with a straight line and continuously increasing the drive frequency and the drive voltage determined by the straight line as the supplied fuel amount increases. By this method, the change in the supplied fuel amount becomes smooth, and there is no fear that the drivability will be impaired.

他の実施例方法として、第4図におけるA点とB点とを
結ぶ直線を上弦とする円弧を適当に選んで、この円弧に
沿って駆動電圧および駆動周波数を制御することもでき
る。上記の直線に沿って制御する方法では、供給燃料量
の増加に伴う駆動周波数の増加は直線状のリニアなもの
となる反面、供給燃料量の増加に伴う駆動電圧の増加は
供給燃料量の少量域でその変化率が過大となる急峻な曲
線となる。このため少量域での駆動電圧の制御は容易で
はない。
As another embodiment method, an arc having the upper chord as the straight line connecting the points A and B in FIG. 4 can be appropriately selected, and the drive voltage and the drive frequency can be controlled along this arc. In the method of controlling along the above straight line, the increase of the drive frequency with the increase of the supplied fuel amount becomes linear, but the increase of the drive voltage with the increase of the supplied fuel amount is the small amount of the supplied fuel amount. It becomes a steep curve whose rate of change becomes excessive in the region. Therefore, it is not easy to control the drive voltage in the small amount range.

この問題を解決して供給燃料量の変化に伴い駆動周波数
と駆動電圧とを平等に変化させるためには、両者ともに
供給燃料量の変化量の1/2乗の割合で変化させればよ
い。しかし、そこまで厳密に行わなくとも、A点とB点
とを結ぶ直線を上弦とする円弧を適当に選んで、供給燃
料量の変化に対する駆動周波数および駆動電圧の変化が
ともに無理な曲線とならないようにすればよいのであ
る。
In order to solve this problem and change the drive frequency and the drive voltage evenly with the change in the supplied fuel amount, both may be changed at the ratio of 1/2 of the change amount of the supplied fuel amount. However, even if it is not done so strictly, an arc having the upper chord as the straight line connecting the points A and B is appropriately selected, and changes in the driving frequency and the driving voltage with respect to changes in the supplied fuel amount are not unreasonable curves. You can do it like this.

例えば、第4図におけるA点とB点を結ぶ円弧状の実線
を採用した場合、供給燃料量に対する駆動電圧の関係は
第5図に示すようになり、また供給燃料量に対する駆動
周波数の関係は第6図に示すようになる。第5図におい
て横軸は供給燃料量(g/sec)、縦軸は駆動電圧(V)
を、第6図において横軸は供給燃料量(g/sec)、縦
軸は駆動周波数(Hz) をそれぞれあらわす。第5図,第
6図に示されるように、供給燃料量の変化に対して駆動
周波数と駆動電圧とは対等に無理なく変化しており、こ
のような制御は容易に行える。
For example, when an arc-shaped solid line connecting points A and B in FIG. 4 is adopted, the relationship between the drive voltage and the supply fuel amount is as shown in FIG. 5, and the relationship between the drive frequency and the drive frequency is as shown in FIG. As shown in FIG. In Fig. 5, the horizontal axis is the supplied fuel amount (g / sec), and the vertical axis is the drive voltage (V).
In FIG. 6, the horizontal axis represents the supplied fuel amount (g / sec) and the vertical axis represents the driving frequency (Hz). As shown in FIG. 5 and FIG. 6, the drive frequency and the drive voltage change reasonably with respect to the change in the supplied fuel amount, and such control can be easily performed.

なお、このような燃料噴射弁2の制御は制御回路6によ
って行われる。制御回路6は各センサ31,32,33からの
信号を受けて必要な供給燃料量を決定し、予め記憶して
おいた第5図,第6図の特性図から駆動電圧と駆動周波
数とを選び、それにより燃料噴射弁2を駆動する。
The control of the fuel injection valve 2 is performed by the control circuit 6. The control circuit 6 receives the signals from the sensors 31, 32, 33 to determine the required fuel supply amount, and determines the drive voltage and the drive frequency from the previously stored characteristic diagrams of FIG. 5 and FIG. The fuel injection valve 2 is driven accordingly.

本発明の実施にあたっては種々の変形形態が可能であ
る。例えば前述の実施例では燃料噴射弁としてポンプ機
能を有する一般にユニットインジェクタと呼ばれるもの
を用い、その制御因子として駆動周波数と駆動電圧とを
対等に用いたが、これに限らず、他の実施例として燃料
噴射弁にユニットインジェクタではない通常の機能を有
するものを使い、その制御因子として駆動周波数と開弁
時間との2つを対等に用いるようにすることもできる。
Various modifications are possible in carrying out the present invention. For example, in the above-described embodiment, a fuel injection valve having a pump function, which is generally called a unit injector, is used, and the driving frequency and the driving voltage are used as the control factors on an equal basis. It is also possible to use a fuel injector having a normal function instead of the unit injector, and use the drive frequency and the valve opening time as equal control factors.

第7図はこのような他の実施例に用いる燃料噴射弁7の
側断面図であり、この燃料噴射弁7は第1図装置におけ
る燃料噴射弁2の位置に取り付けられる。
FIG. 7 is a side sectional view of a fuel injection valve 7 used in such another embodiment, and the fuel injection valve 7 is attached to the position of the fuel injection valve 2 in the apparatus of FIG.

第7図において、電歪式アクチュエータ701は第2図
装置における電歪式アクチュエータ201と同じもので
ある。
In FIG. 7, an electrostrictive actuator 701 is the same as the electrostrictive actuator 201 in the apparatus shown in FIG.

電歪式アクチュエータ701の各圧電素子の両面には銀
電極が形成されており、その1つはリード線702に接
続され、他の1つは接地されている。リード線702は
グロメット703を介してケーシングアッパ704を貫
通して外部へ取り出されて制御回路6に接続されてい
る。電歪式アクチュエータ701の伸縮動作はピストン
705に直接伝達され、この結果、ピストン705は上
下往復運動を行う。
Silver electrodes are formed on both surfaces of each piezoelectric element of the electrostrictive actuator 701, one of which is connected to the lead wire 702 and the other of which is grounded. The lead wire 702 penetrates the casing upper 704 via the grommet 703, is taken out to the outside, and is connected to the control circuit 6. The expansion / contraction motion of the electrostrictive actuator 701 is directly transmitted to the piston 705, and as a result, the piston 705 reciprocates vertically.

ピストン705はケーシングアッパ704内のシリンダ
704a内を摺動し、ポンプ室706の容積を拡大および縮
少してポンプの作用を行う。ポンプ室706内には電歪
式アクチュエータ701の収縮方向にピストン705を
付勢する皿ばね707が設けられている。これにより、
電歪式アクチュエータ701の伸長力に比べて弱い収縮
力を補っている。
The piston 705 is a cylinder in the casing upper 704.
Sliding in 704a, the volume of the pump chamber 706 is expanded and contracted to operate as a pump. A disc spring 707 that biases the piston 705 in the contraction direction of the electrostrictive actuator 701 is provided in the pump chamber 706. This allows
The weak contraction force is compensated for as compared with the extension force of the electrostrictive actuator 701.

ポンプ室706は円盤状のディスタンスピース711を
介してノズルボディ709のニードルシリンダ709a内に
導通している。ニードルシリンダ709a内にはノズルニー
ドル710が摺動可能に収容されており、このノズルニ
ードル710の上端面にポンプ室706の圧力が作用す
る。ノズルニードル710の上端部の外周にはリング状
のくぼみ710aが形成され、このくぼみ710aにはディスタ
ンスピース711の下端面を支点としてノズルニードル
710を下方に付勢するための皿ばね716がはめ込ま
れている。
The pump chamber 706 is electrically connected to the inside of the needle cylinder 709a of the nozzle body 709 via the disc-shaped distance piece 711. A nozzle needle 710 is slidably accommodated in the needle cylinder 709a, and the pressure of the pump chamber 706 acts on the upper end surface of the nozzle needle 710. A ring-shaped recess 710a is formed on the outer periphery of the upper end portion of the nozzle needle 710, and a disc spring 716 for biasing the nozzle needle 710 downward is fitted into the recess 710a with the lower end surface of the distance piece 711 as a fulcrum. ing.

また、ディスタンスピース711の軸方向には複数の導
通孔711aが設けられており、これにより、ポンプ室70
6とニードルシリンダ709aとが導通している。なお、導
通孔711aはノズルニードル710のくぼみ710aに対向し
てニードルシリンダ709a内に開口している。
Further, a plurality of conduction holes 711a are provided in the axial direction of the distance piece 711, whereby the pump chamber 70
6 and the needle cylinder 709a are electrically connected. The communication hole 711a faces the recess 710a of the nozzle needle 710 and opens in the needle cylinder 709a.

ノズルニードル710の下端部の外周部にはリング状の
くぼみ710bが設けられ、また、中心部には突起710cが設
けられている。そして、710dはノズルニードル710の
下端部のフラット面を示している。ニードルシリンダ70
9aの中央部にはノズルニードル710の突起710cを貫通
するための噴口709bが設けられている。なお、ノズルニ
ードル710のフラット面710dとニードルシリンダ709a
の下端部とは密着可能であり、この結果、密着していれ
ば噴口709bは閉じられ、密着していなければ噴口709bが
開かれることになる。
A ring-shaped recess 710b is provided on the outer peripheral portion of the lower end portion of the nozzle needle 710, and a protrusion 710c is provided on the central portion. 710d indicates the flat surface of the lower end of the nozzle needle 710. Needle cylinder 70
An injection port 709b for penetrating the projection 710c of the nozzle needle 710 is provided at the center of 9a. The flat surface 710d of the nozzle needle 710 and the needle cylinder 709a
The nozzle 709b can be in close contact with the lower end of the nozzle, and as a result, the nozzle 709b will be closed if it is in contact, and the nozzle 709b will be opened if it is not in contact.

ニードルシリンダ709aの下端部にはリング状に拡大した
燃料だまり709cが設けられており、この燃料だまり709c
は燃料通路704bに導通している。燃料通路704bには、ノ
ズルボディ709,ディスタンスピース711およびケ
ーシングアッパ704を貫通している。さらに、ノズル
ニードル710内には燃料だまり709cと導通する通路71
0eが設けられ、その上端部に開口710fが形成されてい
る。この開口710fはノズルニードル710の上端面がデ
ィスタンスピース711の下端面に密着しているときに
閉じられる。
At the lower end of the needle cylinder 709a, a ring-shaped enlarged fuel reservoir 709c is provided.
Is connected to the fuel passage 704b. The nozzle body 709, the distance piece 711, and the casing upper 704 pass through the fuel passage 704b. Further, in the nozzle needle 710, a passage 71 communicating with the fuel pool 709c is formed.
0e is provided, and an opening 710f is formed at the upper end thereof. The opening 710f is closed when the upper end surface of the nozzle needle 710 is in close contact with the lower end surface of the distance piece 711.

上述のケーシングアッパ704,ディスタンスピース7
11およびノズルボディ709は同径であって、この順
序で積み重ねられ、そして、袋状のケーシングロア71
3によって軸方向に押圧されて固定される。このとき、
ケーシングロア713の雌ねじはケーシングアッパ70
4の雄ねじにねじ込まれる。また、ケーシングロア71
3の下端部の開口において、突起710cおよび噴口709bが
露出している。さらに、ケーシングロア713の外周に
雄ねじ713aが形成されており、これにより、機関の吸気
管(第1図)に固定することができる。
The casing upper 704 and the distance piece 7 described above.
11 and the nozzle body 709 have the same diameter, are stacked in this order, and have a bag-like casing lower 71.
It is pressed and fixed in the axial direction by 3. At this time,
The female screw of the casing lower 713 is the casing upper 70.
It is screwed into the 4 male screw. In addition, the casing lower 71
The protrusion 710c and the injection port 709b are exposed at the opening at the lower end of the nozzle 3. Further, a male screw 713a is formed on the outer periphery of the casing lower 713, so that it can be fixed to the intake pipe (Fig. 1) of the engine.

なお、714はOリング,715はノックピン,704cは
ケーシングアッパ704に設けられた燃料入口である。
714 is an O-ring, 715 is a knock pin, and 704c is a fuel inlet provided in the casing upper 704.

次に、第7図の燃料噴射弁の動作を説明する。始めに、
電歪式アクチュエータ701に+500Vを印加する
と、電歪式アクチュエータ701は伸長し、従って、ポ
ンプ室706の容積は縮少してこの中の燃料圧は高くな
る。この高圧はノズルニードル710の上端面に作用し
てノズルニードル710をニードルシリンダ709aの下端
面に押圧させる。この結果、噴口709bは閉じて燃料噴射
は行われない。このとき、燃料だまり709cには燃料通路
704bを介してフィードポンプ41によって3kg/cm2の燃
料が供給されており、この燃料圧はノズルニードル71
0の通路710eを介してノズルニードル710の上端面全
体に作用するので、ノズルニードル710の下のフラッ
ト面710dはニードルシリンダ709aの下端面に密着し続け
る。
Next, the operation of the fuel injection valve shown in FIG. 7 will be described. At the beginning,
When + 500V is applied to the electrostrictive actuator 701, the electrostrictive actuator 701 expands, so that the volume of the pump chamber 706 decreases and the fuel pressure therein increases. This high pressure acts on the upper end surface of the nozzle needle 710 to press the nozzle needle 710 against the lower end surface of the needle cylinder 709a. As a result, the injection port 709b is closed and fuel injection is not performed. At this time, the fuel passage is in the fuel pool 709c.
Fuel of 3 kg / cm 2 is supplied by the feed pump 41 via 704b, and this fuel pressure is the nozzle needle 71.
Since it acts on the entire upper end surface of the nozzle needle 710 via the passage 710e of 0, the flat surface 710d below the nozzle needle 710 continues to be in close contact with the lower end surface of the needle cylinder 709a.

上述の状態において、電歪式アクチュエータ701に−
500Vの電圧を印加すると、電歪式アクチュエータ7
01は収縮し、従って、ポンプ室706の容積が拡大す
る。この結果、ノズルニードル710は上方に吸い上げ
られる。このとき、ノズルニードル710の通路710eを
介して燃料だまり709cの燃料も吸引されるが、ノズルニ
ードル710がニードルシリンダ709aの下端に密着して
いるときのノズルニードル710の上端とディスタンス
ピース711の下端との距離は大体0.2mmであり且つ
通路710eの直径も0.5mm程度であるので、通路710eを
介して吸引される燃料量は無視できる。さらに、このと
き、ノズルニードル710の上端面がディスタンスピー
ス711の下端面に密着すれば、通路710eの開口710fが
閉じられる。従って、この状態では、ノズルニードル7
10の下面全体に3kg/cm2の燃料圧が作用するので、ノ
ズルニードル710の上端面はディスタンスピース71
1の下端面に密着し続け、この間、噴口709bから燃料噴
射が行われる。なお、燃料噴射時において、突起710cは
燃料噴射角を調整すると共に噴口709bの目詰りを防止す
るものである。
In the above state, the electrostrictive actuator 701 is
When a voltage of 500 V is applied, the electrostrictive actuator 7
01 contracts, thus increasing the volume of the pump chamber 706. As a result, the nozzle needle 710 is sucked upward. At this time, although the fuel in the fuel pool 709c is also sucked through the passage 710e of the nozzle needle 710, the upper end of the nozzle needle 710 and the lower end of the distance piece 711 when the nozzle needle 710 is in close contact with the lower end of the needle cylinder 709a. Since the distance between and is approximately 0.2 mm and the diameter of the passage 710e is approximately 0.5 mm, the amount of fuel sucked through the passage 710e can be ignored. Further, at this time, if the upper end surface of the nozzle needle 710 comes into close contact with the lower end surface of the distance piece 711, the opening 710f of the passage 710e is closed. Therefore, in this state, the nozzle needle 7
Since a fuel pressure of 3 kg / cm 2 acts on the entire lower surface of the nozzle 10, the upper end surface of the nozzle needle 710 is located at the distance piece 71.
1, the fuel is continuously injected from the injection port 709b. It should be noted that the projection 710c serves to adjust the fuel injection angle and prevent clogging of the injection port 709b during fuel injection.

第7図の燃料噴射弁の1回の動作あたりの吐出燃料量は
その開弁時間とほぼリニアな関係にあり、開弁時間な電
歪式アクチュエータへの負電圧印加時間で制御される。
負電圧印加時間と1回あたりの吐出燃料量との関係が第
8図に示される。第8図において横軸な負電圧印加時間
(m sec)、縦軸は吐出燃料量(mg/st)をあわす。第
8図に示すように、負電圧印加時間が0.2m sec以下
では吐出燃料量が不安定となる。0.2m sec〜1.0
m secではほぼリニアであるが、1.0msec を越える
と駆動周波数を大きくとれなくなる。
The amount of fuel discharged per operation of the fuel injection valve shown in FIG. 7 has a substantially linear relationship with the valve opening time, and is controlled by the negative voltage application time to the electrostrictive actuator during the valve opening time.
FIG. 8 shows the relationship between the negative voltage application time and the amount of discharged fuel per time. In FIG. 8, the horizontal axis represents the negative voltage application time (m sec), and the vertical axis represents the discharged fuel amount (mg / st). As shown in FIG. 8, when the negative voltage application time is 0.2 msec or less, the discharged fuel amount becomes unstable. 0.2msec-1.0
Although it is almost linear in m sec, if it exceeds 1.0 msec, the driving frequency cannot be made large.

負電圧印加時間をそれぞれ0.2m sec,0.6m se
c,1.0m secとしたときの駆動周波数に対する単位
時間あたりと供給燃料量と関係が第9図に点線で示され
る。第9図において、横軸は駆動周波数(Hz)、縦軸は供
給燃料量(g/sec)をあらわす。
Negative voltage application time is 0.2msec and 0.6m se respectively
The relationship between the unit frequency and the supplied fuel amount with respect to the drive frequency when c and 1.0 msec are shown by the dotted line in FIG. In FIG. 9, the horizontal axis represents the driving frequency (Hz) and the vertical axis represents the supplied fuel amount (g / sec).

供給燃料量の変化に対して駆動周波数と印加時間とを連
続的に変化させる1つの実施例としては、第9図におい
て、印加時間0.2m sec、供給燃料量0.2g/se
c、駆動周波数50HzのA点と、印加時間1.0m se
c、供給燃料量10g/sec、駆動周波数800HzのB点
とを直線で結び、この直線に沿って印加時間および駆動
周波数の制御を行えばよい。しかし、この場合、前述し
たように、供給燃料量の少量域での印加時間の変化が急
峻であって、その制御は容易ではない。
As one embodiment in which the drive frequency and the application time are continuously changed with respect to the change in the supplied fuel amount, in FIG. 9, the applied time is 0.2 msec and the supplied fuel amount is 0.2 g / se.
c, point A with a driving frequency of 50 Hz and application time of 1.0 m se
It is only necessary to connect a point c of the supplied fuel amount of 10 g / sec and the driving frequency of 800 Hz with a straight line and control the application time and the driving frequency along this straight line. However, in this case, as described above, the application time changes sharply in the small amount range of the supplied fuel amount, and its control is not easy.

前述と同様に、他の実施例として第9図に実線で示され
る。A点とB点とを結ぶ直線を上弦とする円弧を適当に
選び、この円弧に沿って制御を行うことにより無理のな
い制御が可能である。この場合における供給燃料量に対
する負電圧印加時間の関係が第10図に、また供給燃料
量に対する駆動周波数と関係が第11図に示される。第
10図において横軸は供給燃料量(g/sec)、縦軸は
負電圧印加時間(m sec)、第11図において横軸は供
給燃料量(g/sec)、縦軸は駆動周波数(Hz) をあらわ
す。
Similar to the above, another embodiment is shown by a solid line in FIG. It is possible to perform reasonable control by appropriately selecting an arc whose upper chord is the straight line connecting the points A and B and performing control along this arc. In this case, the relationship between the supplied fuel amount and the negative voltage application time is shown in FIG. 10, and the relationship between the supplied fuel amount and the driving frequency is shown in FIG. In FIG. 10, the horizontal axis represents the supplied fuel amount (g / sec), the vertical axis represents the negative voltage application time (m sec), the horizontal axis represents the supplied fuel amount (g / sec), and the vertical axis represents the drive frequency (g / sec). Hz).

第10図,第11図に示されるように、供給燃料量の変
化に対して駆動周波数と負電圧印加時間は対等に無理な
く連続に変化しており、制御回路による燃料噴射弁の制
御が容易となる。
As shown in FIG. 10 and FIG. 11, the drive frequency and the negative voltage application time change equally and continuously with respect to the change of the supplied fuel amount, and the control of the fuel injection valve by the control circuit is easy. Becomes

発明の効果 以上述べたように本発明によれば、単一の燃料噴射弁を
用いた構成でありながら比較的低い駆動周波数による燃
料噴射弁の駆動が可能となり、消費電力の低減および耐
久性の向上が可能となり、かつ、製作誤差や経時変化に
より特性も変化が生じても燃料調量特性と直線性を確保
することができて、内燃機関をスムーズに運転すること
ができるという優れた効果がある。
EFFECTS OF THE INVENTION As described above, according to the present invention, it is possible to drive the fuel injection valve at a relatively low drive frequency even though the configuration is such that a single fuel injection valve is used, which reduces power consumption and durability. It is possible to improve, and it is possible to secure the fuel metering characteristics and linearity even if the characteristics change due to manufacturing errors or changes over time, and it is possible to operate the internal combustion engine smoothly. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例としての内燃機関の燃料噴射
制御方法を行う装置を示す図、第2図は第1図装置にお
ける燃料噴射弁の側断面図、第3図は第2図の燃料噴射
弁の吐出燃料量と駆動電圧の特性図、第4図は第2図の
燃料噴射弁の供給燃料量と駆動周波数の特性図、第5
図,第6図は第2図の燃料噴射弁を第4図に実線で示す
円弧に沿って制御したときの特性図であってそれぞれ第
5図は供給燃料量と駆動電圧と特性図、第6図は供給燃
料量と駆動周波数の特性図、第7図は本発明方法を行う
他の実施例としての燃料噴射弁の側断面図、第8図は第
7図の燃料噴射弁の吐出燃料量と負電圧印加時間の特性
図、第9図は第7図の燃料噴射弁の供給燃料量と駆動周
波数の特性図、第10図、第11図は第7図の燃料噴射
弁を第9図に実線で示す円弧に沿って制御したときの特
性図であってそれぞれ第10図は供給燃料量と負電圧印
加時間の特性図、第11図は供給燃料量と駆動周波数の
特性図である。 10……シリンダブロック、11……ピストン、31…
…エアフロメータ、32……水温センサ、33……O2
ンサ、41……フィードポンプ、42……フィルタ、4
4……プレッシャ・レギュレータ、6……制御回路、
2,7……燃料噴射弁、201,701……電歪式アクチュエ
ータ、204,704……ケーシングアッパ、205,705……ピス
トン、206,706……ポンプ室、209,709……ノズルボデ
ィ、210,710……ニードル、211,711……ディスタンスピ
ース。
FIG. 1 is a diagram showing an apparatus for performing a fuel injection control method for an internal combustion engine as an embodiment of the present invention, FIG. 2 is a side sectional view of a fuel injection valve in the apparatus of FIG. 1, and FIG. 3 is FIG. FIG. 4 is a characteristic diagram of discharge fuel amount and drive voltage of the fuel injection valve of FIG. 4, FIG.
FIGS. 6 and 6 are characteristic diagrams when the fuel injection valve of FIG. 2 is controlled along the arc shown by the solid line in FIG. 4, and FIG. 5 is a characteristic diagram of the supplied fuel amount, the drive voltage and the characteristic diagram, respectively. FIG. 6 is a characteristic diagram of the supplied fuel amount and the driving frequency, FIG. 7 is a side sectional view of a fuel injection valve as another embodiment for carrying out the method of the present invention, and FIG. 8 is a discharge fuel of the fuel injection valve of FIG. FIG. 9 is a characteristic diagram of the fuel injection amount and drive frequency of the fuel injection valve of FIG. 7, FIG. 10 and FIG. 11 are the characteristic diagrams of the fuel injection valve of FIG. FIG. 10 is a characteristic diagram when controlled along an arc shown by a solid line in the figure. FIG. 10 is a characteristic diagram of the supplied fuel amount and the negative voltage application time, and FIG. 11 is a characteristic diagram of the supplied fuel amount and the driving frequency. . 10 ... Cylinder block, 11 ... Piston, 31 ...
... Air flow meter, 32 ... Water temperature sensor, 33 ... O 2 sensor, 41 ... Feed pump, 42 ... Filter, 4
4 ... Pressure regulator, 6 ... Control circuit,
2,7 ... Fuel injection valve, 201,701 ... Electrostrictive actuator, 204,704 ... Casing upper, 205,705 ... Piston, 206,706 ... Pump chamber, 209,709 ... Nozzle body, 210,710 ... Needle, 211,711 ... Distance piece .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榊原 康行 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (56)参考文献 特開 昭55−5448(JP,A) 特開 昭56−54956(JP,A) 特公 昭49−6043(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuyuki Sakakibara 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute, Inc. (56) Reference JP-A-55-5448 (JP, A) Sho 56-54956 (JP, A) Japanese Patent Sho 49-6043 (JP, B1)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の吸入空気量を検出し、 この検出された吸入空気量の増加に対応して増加するよ
うに必要な燃料量を演算し、 この演算された燃料量の増加に応じて増加する周波数の
電気信号によって燃料噴射弁のアクチュエータを駆動し
て、単位時間当たりの噴射回数を増加しつつ、 前記演算された燃料量または前記周波数の増加に応じて
前記電気信号の駆動電圧値と駆動電圧印加時間との一方
を増加して、前記燃料噴射弁での噴射1回当たりの噴射
量を増加させて前記必要な燃料量を噴射する内燃機関の
燃料噴射制御方法。
1. An intake air amount of an internal combustion engine is detected, a fuel amount necessary to increase in response to the detected increase in the intake air amount is calculated, and the calculated fuel amount is increased. Driving the actuator of the fuel injection valve by an electric signal of increasing frequency, increasing the number of injections per unit time, and driving voltage value of the electric signal according to the calculated fuel amount or the increase of the frequency. And a drive voltage application time are increased to increase the injection amount per injection in the fuel injection valve to inject the required fuel amount.
【請求項2】前記周波数を横軸とし、パラメータを前記
駆動電圧値または駆動電圧印加時間として、縦軸を前記
必要な燃料量としたとき、前記周波数と燃料量の相関
が、前記必要な燃料量の最小燃料量と最大燃料量の2点
を結ぶ直線を上弦とする円弧となるように、前記各周波
数に対応する前記駆動電圧値または駆動電圧印加時間が
決定されることを特徴とする請求項1記載の内燃機関の
燃料噴射制御方法。
2. When the frequency is the horizontal axis, the parameter is the drive voltage value or drive voltage application time, and the vertical axis is the required fuel amount, the correlation between the frequency and the fuel amount is the required fuel amount. The drive voltage value or the drive voltage application time corresponding to each of the frequencies is determined so as to form an arc whose upper chord is a straight line connecting two points of the minimum fuel amount and the maximum fuel amount. Item 2. A fuel injection control method for an internal combustion engine according to Item 1.
JP58146731A 1982-10-25 1983-08-12 Fuel injection control method for a burning engine Expired - Lifetime JPH0650091B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58146731A JPH0650091B2 (en) 1983-08-12 1983-08-12 Fuel injection control method for a burning engine
US06/544,417 US4499878A (en) 1982-10-25 1983-10-21 Fuel injection system for an internal combustion engine
DE19833338741 DE3338741A1 (en) 1982-10-25 1983-10-25 Fuel injection system for an internal combustion engine
US06/598,436 US4535743A (en) 1983-04-15 1984-04-09 Fuel injection apparatus for an internal combustion engine
DE3448579A DE3448579C2 (en) 1983-04-15 1984-04-16 Electronically controlled fuel-injection unit for combustion engine
DE3414378A DE3414378C2 (en) 1983-04-15 1984-04-16 Fuel injection nozzle for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146731A JPH0650091B2 (en) 1983-08-12 1983-08-12 Fuel injection control method for a burning engine

Publications (2)

Publication Number Publication Date
JPS6040777A JPS6040777A (en) 1985-03-04
JPH0650091B2 true JPH0650091B2 (en) 1994-06-29

Family

ID=15414302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146731A Expired - Lifetime JPH0650091B2 (en) 1982-10-25 1983-08-12 Fuel injection control method for a burning engine

Country Status (1)

Country Link
JP (1) JPH0650091B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121652B2 (en) * 1986-03-31 1995-12-25 小島プレス工業株式会社 Air conditioning register-
EP2032809B1 (en) * 2006-05-31 2013-08-21 Tenneco Automotive Operating Company Inc. Method and apparatus for reducing emissions in diesel engines
US9683472B2 (en) 2010-02-10 2017-06-20 Tenneco Automotive Operating Company Inc. Electromagnetically controlled injector having flux bridge and flux break
US8740113B2 (en) 2010-02-10 2014-06-03 Tenneco Automotive Operating Company, Inc. Pressure swirl flow injector with reduced flow variability and return flow
SG183207A1 (en) 2010-02-10 2012-09-27 Tenneco Automotive Operating Pressure swirl flow injector with reduced flow variability and return flow
US8973895B2 (en) 2010-02-10 2015-03-10 Tenneco Automotive Operating Company Inc. Electromagnetically controlled injector having flux bridge and flux break
US8978364B2 (en) 2012-05-07 2015-03-17 Tenneco Automotive Operating Company Inc. Reagent injector
US8910884B2 (en) 2012-05-10 2014-12-16 Tenneco Automotive Operating Company Inc. Coaxial flow injector
US10704444B2 (en) 2018-08-21 2020-07-07 Tenneco Automotive Operating Company Inc. Injector fluid filter with upper and lower lip seal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060052B (en) * 1979-10-05 1983-02-02 Lucas Industries Ltd Fuel system for engines

Also Published As

Publication number Publication date
JPS6040777A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
US4649886A (en) Fuel injection system for an internal combustion engine
US4732129A (en) Control apparatus for electroexpansive actuator enabling variation of stroke
US4499878A (en) Fuel injection system for an internal combustion engine
JPH0541829B2 (en)
JP2708529B2 (en) Fuel injection control method and device
JPH06272631A (en) Fuel pump manifold
JP2696446B2 (en) In-cylinder direct injection type injection valve assist air supply device
JPH10213041A (en) Liquid injector for internal combustion engine
JPH0650091B2 (en) Fuel injection control method for a burning engine
JPH07145750A (en) Fuel injection control device
JP2623537B2 (en) Fuel injection control device for internal combustion engine
US5372101A (en) Fuel feeding device for internal combustion engine
JP3750754B2 (en) Fuel supply device for internal combustion engine
US4694797A (en) Fuel supply system for internal combustion engine
JP2590499B2 (en) Fuel injection device for internal combustion engine
JPH0457857B2 (en)
JP3444120B2 (en) Fuel injection device
JP2848316B2 (en) Fuel supply device for internal combustion engine
JP2748322B2 (en) Engine fuel injection device
JPH0842400A (en) Gas engine control device
WO1987000578A1 (en) Direct fuel injection by compressed gas
JP2845005B2 (en) Fuel pump control device
JPH0413545B2 (en)
JP2961971B2 (en) Fuel injection amount control device for internal combustion engine
JP2791432B2 (en) Engine fuel supply