JPH0649876B2 - Integrated desulfurization equipment - Google Patents

Integrated desulfurization equipment

Info

Publication number
JPH0649876B2
JPH0649876B2 JP60002104A JP210485A JPH0649876B2 JP H0649876 B2 JPH0649876 B2 JP H0649876B2 JP 60002104 A JP60002104 A JP 60002104A JP 210485 A JP210485 A JP 210485A JP H0649876 B2 JPH0649876 B2 JP H0649876B2
Authority
JP
Japan
Prior art keywords
raw material
gas
heat exchanger
material gas
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60002104A
Other languages
Japanese (ja)
Other versions
JPS61163568A (en
Inventor
健一 久松
長生 久留
昇 松村
真一 野村
篤典 国貞
秀紹 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60002104A priority Critical patent/JPH0649876B2/en
Publication of JPS61163568A publication Critical patent/JPS61163568A/en
Publication of JPH0649876B2 publication Critical patent/JPH0649876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は硫黄含有原料ガス中の硫黄を除去するための装
置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for removing sulfur in a sulfur-containing feed gas.

(従来の技術) 燃料電池発電プラントでは、原料ガス(例えば、メタ
ン、プロパン、ブタン、ナフサ等)の改質用触媒の被毒
防止のため、原料ガス中の硫黄分を0.1ppm以下に低
減するための脱硫装置が必要である。
(Prior Art) In a fuel cell power plant, the sulfur content in the raw material gas is reduced to 0.1 ppm or less to prevent poisoning of the reforming catalyst for the raw material gas (eg, methane, propane, butane, naphtha, etc.). Desulfurization equipment is required to do so.

第2図に従来の脱硫装置を示す。第2図において、原料
ガス(S分大)1は硫黄水添反応用の水素と混合(一般
にH2vol/原料vol=0.1〜0.2の割合で)後、脱硫
触媒所用温度まで原料加熱器3で加熱される。この加熱
は、後述する改質炉から改質ガス9を熱源として約83
〜100℃/Hrの昇温速度で間接加熱により行われ、
熱回収された改質ガス10は系外へ抜出される。次に、
反応塔5で水添反応により硫黄は硫化水素(H2S)へ還
元される(H2+S→H2S)。該反応塔5は、一般に、NiO-
M0O3等の触媒が用いられ、入口温度範囲は230℃以上
で原料が分解しない450℃以下に保持される。
FIG. 2 shows a conventional desulfurization device. In FIG. 2, the raw material gas (large amount of S) 1 is mixed with hydrogen for the sulfur hydrogenation reaction (generally at a ratio of H 2 vol / raw material vol = 0.1 to 0.2), and then to the temperature required for the desulfurization catalyst. It is heated by the raw material heater 3. This heating is performed using the reformed gas 9 as a heat source from the reforming furnace described later for about 83
By indirect heating at a heating rate of ~ 100 ° C / Hr,
The reformed gas 10 from which the heat has been recovered is extracted from the system. next,
Sulfur is reduced to hydrogen sulfide (H 2 S) by the hydrogenation reaction in the reaction tower 5 (H 2 + S → H 2 S). The reaction tower 5 is generally made of NiO-
A catalyst such as M 0 O 3 is used, and the inlet temperature range is maintained at 230 ° C. or higher and 450 ° C. or lower at which the raw material does not decompose.

該反応塔5を出た硫化水素を含む原料ガス6は吸着塔7
へ送られる。この吸着塔7は、一般に、ZnO等の触媒
(吸着剤)が使用され、入口温度範囲は205〜425
℃程度に保持される。該吸着塔7で原料ガス中の硫化水
素が、例えばH2S+ZnO→ZnS+H2Oの反応を生起し、ZnS
の形で吸着剤ZnO中へ吸着され、原料ガス中の硫黄分が
除去される。
The raw material gas 6 containing hydrogen sulfide that has exited the reaction tower 5 is an adsorption tower 7
Sent to. This adsorption tower 7 generally uses a catalyst (adsorbent) such as ZnO and has an inlet temperature range of 205 to 425.
It is kept at about ℃. In the adsorption tower 7, hydrogen sulfide in the raw material gas causes a reaction of, for example, H 2 S + ZnO → ZnS + H 2 O, and ZnS
Is adsorbed in the adsorbent ZnO in the form of, and the sulfur content in the source gas is removed.

以上のようにして硫黄分が除去された原料ガス8は改質
炉(図示省略)へ送られ、燃料電池発電用に用いられ、
得られた改質ガス9は上述のように原料ガス1の加熱源
として加熱器3へ送られる。
The raw material gas 8 from which the sulfur content has been removed as described above is sent to a reforming furnace (not shown) and used for fuel cell power generation,
The obtained reformed gas 9 is sent to the heater 3 as a heating source of the raw material gas 1 as described above.

(発明が解決しようとする問題点) しかしながら、発電出力400kW程度の小規模燃料電池
発電プラントでは、上述の脱硫装置の機器からの放散熱
量がプラント効率に及ぼす影響が大きく、かつ該装置の
配置の点からも過大なスペースを必要とする等の欠点が
ある。
(Problems to be Solved by the Invention) However, in a small-scale fuel cell power generation plant with a power generation output of about 400 kW, the amount of heat dissipated from the desulfurization device described above has a large effect on plant efficiency, and the arrangement of the device is From the point of view, there is a drawback that it requires an excessive space.

本発明は、上述の3種類の機器から構成されていた従来
の脱硫装置を一体化し、放散熱量を低減し、かつ装置全
体をコンパクト化することを目的としてなされたもので
ある。
The present invention has been made for the purpose of integrating a conventional desulfurization device, which is composed of the above-mentioned three types of equipment, to reduce the amount of heat dissipated and to make the entire device compact.

(問題点を解決するための手段) 本発明は、上記問題点を、脱硫触媒の所用温度に昇温す
る原料加熱器と、脱硫装置を一体化し、この一体化装置
の中央部に熱交換器を設置することにより解決するもの
である。
(Means for Solving Problems) The present invention solves the above problems by integrating a desulfurization apparatus with a raw material heater that raises the temperature to a required temperature of a desulfurization catalyst, and a heat exchanger at the center of the integrated apparatus. The solution is to install.

すなわち本発明は、加熱ガスを流通する外管と原料ガス
及び水素を流通する内管よりなる熱交換器、該熱交換器
の上部周囲に設けられかつ加熱された原料ガス及び水素
と連通する反応器、及び前記熱交換器の下部周囲に設け
られかつ反応器からの流出する反応ガスと連通する吸着
器よりなることを特徴とする一体型脱硫装置に関するも
のである。
That is, the present invention is a heat exchanger comprising an outer tube for flowing a heating gas and an inner tube for flowing a raw material gas and hydrogen, a reaction provided around the upper portion of the heat exchanger and communicating with the heated raw material gas and hydrogen. The present invention relates to an integrated desulfurization device comprising a reactor and an adsorber provided around the lower part of the heat exchanger and communicating with a reaction gas flowing out from the reactor.

本発明装置によれば、放散熱量が低減し、かつ触媒の取
り替えのためのメインテナンススペースを減少できるた
め作業を容易にすることができる。
According to the device of the present invention, the amount of heat dissipated can be reduced and the maintenance space for replacing the catalyst can be reduced, so that the work can be facilitated.

第1図は本発明装置の一実施態様例を示す図である。第
1図中、第2図と同一符号は第1図と同一部を示す。
FIG. 1 is a diagram showing an embodiment of the device of the present invention. In FIG. 1, the same reference numerals as those in FIG. 2 indicate the same parts as those in FIG.

第1図において、硫黄分を多く含む原料ガス(以下、生
原料と呼ぶ)1は、水添用の水素2と混合(混合割合
は、前述の従来のものと同じ)後、脱硫装置中央部に設
置された原料加熱器3で、脱硫触媒の活性温度域(35
0〜400℃)まで昇温される。
In FIG. 1, a raw material gas (hereinafter referred to as a raw material) 1 containing a large amount of sulfur is mixed with hydrogen 2 for hydrogenation (the mixing ratio is the same as the above-mentioned conventional one), and then the central portion of the desulfurization apparatus. In the raw material heater 3 installed in the
The temperature is raised to 0 to 400 ° C.

昇温された生原料4は、脱硫装置環状部の上側にある反
応器5に至り、ここで該原料4中の硫黄が水素と水添反
応を起こし、硫化水素に還元される。この硫化水素を含
む原料6は吸着器7に至り、硫化水素が吸着される。こ
のようにして硫黄分が除去された原料(S分0.1vol
ppm以下、dry base)8は改質炉(図示省略)へ送られ
る。
The heated raw material 4 reaches the reactor 5 above the annular portion of the desulfurization device, where the sulfur in the raw material 4 undergoes a hydrogenation reaction with hydrogen and is reduced to hydrogen sulfide. The raw material 6 containing this hydrogen sulfide reaches the adsorber 7 where hydrogen sulfide is adsorbed. Raw materials from which sulfur was removed in this way (S content 0.1 vol
Below ppm, dry base 8 is sent to a reforming furnace (not shown).

なお、反応器5の触媒、吸着器7の触媒(吸着剤)は、
前述の従来のものと同様のものが使用される。
The catalyst of the reactor 5 and the catalyst (adsorbent) of the adsorber 7 are
The same as the above-mentioned conventional one is used.

(発明の効果) (1) 小規模脱硫装置の構成機器数を削減(3台→1
台)することができ、この結果、装置スペースをも低減
することができる。
(Effect of the invention) (1) Reduce the number of components of small-scale desulfurization equipment (3 units → 1
Therefore, the device space can be reduced as a result.

(2) 加熱器3が装置の中心にあり、しかも機器を一体
化して表面積を減少し得たために、脱硫装置からの放散
熱量を低減することができる。
(2) Since the heater 3 is located at the center of the device and the device can be integrated to reduce the surface area, the amount of heat dissipated from the desulfurization device can be reduced.

(3) 反応器5、吸着器7の触媒は寿命(2年程度)が
限られており、取替えが必要であるが、本発明では触媒
取替えが1ケ所ででき、そのためのメイテナンススペー
スが少なくて済み、作業が容易になる。
(3) The catalysts in the reactor 5 and the adsorber 7 have a limited life (about 2 years) and need to be replaced. However, in the present invention, the catalyst can be replaced in one place, which reduces the maintenance space. And work becomes easier.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置の一実施態様例を示す図、第2図は
従来装置を示す図である。
FIG. 1 is a diagram showing an embodiment of the device of the present invention, and FIG. 2 is a diagram showing a conventional device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 真一 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 国貞 篤典 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 西川 秀紹 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shinichi Nomura 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Atsunori Kunisada 1-1, Atsunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industry Co., Ltd. Nagasaki Shipyard (72) Inventor Hidesho Nishikawa 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加熱ガスを流通する外管と原料ガス及び水
素を流通する内管よりなる熱交換器、該熱交換器の上部
周囲に設けられかつ加熱された原料ガス及び水素と連通
する反応器、及び前記熱交換器の下部周囲に設けられか
つ反応器からの流出する反応ガスと連通する吸着器より
なることを特徴とする一体型脱硫装置。
1. A heat exchanger comprising an outer tube through which a heating gas flows and an inner tube through which a raw material gas and hydrogen flow, and a reaction provided around the upper portion of the heat exchanger and communicating with the heated raw material gas and hydrogen. An integrated desulfurization device comprising a reactor and an adsorber provided around the lower portion of the heat exchanger and communicating with a reaction gas flowing out from the reactor.
JP60002104A 1985-01-11 1985-01-11 Integrated desulfurization equipment Expired - Fee Related JPH0649876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002104A JPH0649876B2 (en) 1985-01-11 1985-01-11 Integrated desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002104A JPH0649876B2 (en) 1985-01-11 1985-01-11 Integrated desulfurization equipment

Publications (2)

Publication Number Publication Date
JPS61163568A JPS61163568A (en) 1986-07-24
JPH0649876B2 true JPH0649876B2 (en) 1994-06-29

Family

ID=11520034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002104A Expired - Fee Related JPH0649876B2 (en) 1985-01-11 1985-01-11 Integrated desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH0649876B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812486B2 (en) * 1989-05-15 1998-10-22 大阪瓦斯株式会社 Hydrocarbon steam reforming method
JP2993507B2 (en) * 1989-05-17 1999-12-20 大阪瓦斯株式会社 Fuel cell power generation system
JP2765950B2 (en) * 1989-05-16 1998-06-18 大阪瓦斯株式会社 Fuel cell power generation system
JP4862449B2 (en) * 2006-03-27 2012-01-25 株式会社Ihi Desulfurizer
JP5782400B2 (en) * 2012-03-28 2015-09-24 Jx日鉱日石エネルギー株式会社 Desulfurization system, hydrogen production system, fuel cell system, fuel desulfurization method, and hydrogen production method

Also Published As

Publication number Publication date
JPS61163568A (en) 1986-07-24

Similar Documents

Publication Publication Date Title
JP3742657B2 (en) Fuel gas desulfurization method and apparatus
JP6956665B2 (en) Method of methaneization of carbon dioxide in combustion exhaust gas and methane production equipment
KR890001963B1 (en) Apparatus and method for reforming hydrocarbons
CN1910113A (en) Two-stage catalytic process for recovering sulfur from an h2s containing gas stream
EP3720812A1 (en) A plant and process for producing synthesis gas
KR20080009700A (en) Process and apparatus for thermally integrated hydrogen generation system
CO4870701A1 (en) PROCESS AND PLANT TO REFORM CARGO MATERIALS CONTAINING HYDROCARBONS
CN1909950A (en) Process for the catalytic partial oxidation of h2s using staged addition of oxygen
JP4800923B2 (en) Hydrogen generator for hydrodesulfurization of hydrocarbon feed
EP3931148A1 (en) Synthesis gas production by steam methane reforming
JP2000178003A (en) Liquid treating device
CN110937574A (en) Methanol reforming hydrogen production equipment and hydrogen production system comprising same
JPH0649876B2 (en) Integrated desulfurization equipment
CN111748383B (en) Blast furnace gas deoxidation and desulfurization method and system
US20040178124A1 (en) Hydrogen desulfurizer for hydrocarbon feeds with separated adsorption and catalyst material
US7332003B1 (en) Hydrocarbon fuel processing for hydrogen generation
US20230294984A1 (en) Methane Reformer for the Production of Hydrogen and a Hydrocarbon Fuel
CN213895742U (en) Shaft furnace reducing gas preparation and desorption gas self-heating system
JPH0517163B2 (en)
JP2004292240A (en) Method for reducing carbon-dioxide emission in hydrogen production equipment
JP2007131500A (en) Hydrogen production apparatus
JP2016184549A (en) Gas production device
EA043398B1 (en) FURNACE AND METHOD FOR PRODUCING SYNTHESIS GAS
Vicari et al. Energy Requirements for Shell FGD Process
JPS5936523A (en) Separation of carbon monoxide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees