JPH0648858A - 無機層状多孔体の製造方法 - Google Patents

無機層状多孔体の製造方法

Info

Publication number
JPH0648858A
JPH0648858A JP19882192A JP19882192A JPH0648858A JP H0648858 A JPH0648858 A JP H0648858A JP 19882192 A JP19882192 A JP 19882192A JP 19882192 A JP19882192 A JP 19882192A JP H0648858 A JPH0648858 A JP H0648858A
Authority
JP
Japan
Prior art keywords
porous body
drying
inorganic
pillars
inorg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19882192A
Other languages
English (en)
Inventor
Koichi Takahama
孝一 高濱
Masaru Yokoyama
勝 横山
Toshiji Sako
利治 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP19882192A priority Critical patent/JPH0648858A/ja
Publication of JPH0648858A publication Critical patent/JPH0648858A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Polymers (AREA)

Abstract

(57)【要約】 【目的】 膨潤状態にある膨潤性層状化合物1の層間に
無機ピラー3を挿入して乾燥を行う無機層状多孔体の製
造方法において、挿入するゾルを大きく、しかも球状に
近い形状で合成することにより空隙2を大きくし、層間
およびピラーの機能が発揮されやすい無機層状多孔体を
得るようにする。 【構成】 前記無機ピラー3の少なくとも一部として、
金属アルコキシドを塩基性触媒で処理したものを用い
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、無機層状多孔体(ま
たは無機多孔体)の製造方法に関する。
【0002】
【従来の技術】従来、空隙を有する無機層状化合物、す
なわち無機層状多孔体として、膨潤性層状化合物の層間
に水酸化物等の異種物質を挿入反応させたインタカレー
ション物質がある(たとえば、特開昭54−5884号
公報および特開昭54−16386号公報参照)。
【0003】
【発明が解決しようとする課題】しかしながら、前記無
機層状多孔体は、挿入するゾルの大きさや形状、乾燥過
程での凝縮により、層間が小さく、層間およびピラーで
ある異種物質の機能を十分引き出すことができない。発
明者らの研究によれば、従来のインタカレーション物質
は、たとえば、図2にみるように、層間の間隔に比べて
非常に広い横幅を有する無機ピラー材13が膨潤性層状
化合物1の層間に挿入されていたので、空隙12が小さ
いことがわかった。
【0004】この発明は、挿入するゾルを大きく、しか
も球状に近い形状で合成することにより層間およびピラ
ーの機能が発揮されやすい無機層状多孔体の製造方法を
提供することを課題とする。この発明は、また、挿入す
るゾルを大きく、しかも球状に近い形状で合成し、しか
も、乾燥過程での凝縮を極端に小さくすることにより層
間およびピラーの機能を十分に引き出す無機層状多孔体
の製造方法を提供することを課題とする。
【0005】
【課題を解決するための手段】この発明は、上記課題を
解決するために、膨潤状態にある膨潤性層状化合物の層
間に無機ピラーを挿入して乾燥を行う無機層状多孔体の
製造方法において、前記無機ピラーの少なくとも一部
が、金属アルコキシドを塩基性触媒で処理したものであ
ることを特徴とする無機層状多孔体の製造方法を提供す
る。
【0006】この発明では、また、上記無機ピラーとし
て、金属アルコキシドを塩基性触媒で処理したものを、
陽イオン性無機化合物および/または酸触媒で処理され
た金属アルコキシドとともに用いることができる。この
発明によれば、図1にみるように、膨潤性層状化合物1
の層間に金属アルコキシドを塩基性触媒で処理したもの
(以下、「処理物」と言うことがある)を挿入し、乾燥
するが、この処理物は、球状重合物ピラーである無機ピ
ラー材3であり、上記従来の無機ピラー材13に比べて
横幅の小さいものである。このため、空隙2は、図2に
示すものに比べると大きくなっている。
【0007】この発明では、上記乾燥を、好ましくは超
臨界乾燥(超臨界状態でなされる乾燥)あるいは液体状
態の二酸化炭素によって行い、無機層状多孔体を得るこ
とができる。この発明に用いる膨潤性無機層状化合物と
しては、具体的につぎのようなものが挙げられる。Na
モンモリロナイト、Caモンモリロナイト、酸性白土、
合成スメクタイト、Naテニオライト、Liテニオライ
ト、Naヘクトライト、Liヘクトライトおよび合成雲
母などであるが、膨潤性層状化合物でありさえすれば、
これらに限られるものではない。金属アルコキシドは、
たとえば、Si (OR)4、Ti (OR)4、Zr (O
R)4、Ge (OR)4、Al (OR)3、B (OR)3、PO
(OR)3およびGa (OR)3のうちの少なくとも1種類
であるが、これらに限られるものではない。ここでR
は、たとえばアルキル基である。また、陽イオン性無機
化合物としては、チタン系化合物、ジルコニウム系化合
物、ハフニウム系化合物、アルミニウム系化合物、ガリ
ウム系化合物、ニッケル系化合物、鉄系化合物、コバル
ト系化合物、銅系化合物、亜鉛系化合物などが挙げられ
るが、これらに限られるものではない。
【0008】つづいて、この発明の無機層状多孔体の製
造方法をより具体的に工程を追って説明する。まず、主
材たる膨潤性層状化合物(または膨潤性無機層状化合
物)を水等の溶媒に分散させる。このとき、膨潤性層状
化合物の膨潤が起こる。使用する溶媒としては、たとえ
ば、水、エタノール、メタノール、DMF(ジメチルホ
ルムアミド)、DMSO(ジメチルスルホキシド)、ア
セトンなどを単独でまたは2種以上混合して用いる。
【0009】ついで、層間に挿入するピラー化合物を合
成する。金属アルコキシドをアルコールなどで希釈し、
ついで、塩基性触媒を添加する。塩基性触媒としては、
アンモニア水、ピペリジン、水酸化ナトリウム水溶液な
どが挙げられるが、これらに限られるわけではない。塩
基性触媒を添加し、十分に反応させた溶液をそのまま、
あるいはさらに酸触媒を添加した後、溶媒に分散してい
た膨潤性層状化合物に添加し、インタカレーション反応
させる。反応温度、時間は特に限定されないが、1例を
挙げると、好ましくは、60℃、1.5時間である。
【0010】このようにして得られた層間挿入された無
機層状化合物を固液分離し、乾燥を行う。乾燥法は、通
常の加熱乾燥、凍結乾燥でもよいし、好ましくは超臨界
乾燥、液体炭酸抽出乾燥をもちいることができる。ただ
し、ここで言う超臨界乾燥とは、ちょうど臨界点におけ
る乾燥も含む。超臨界状態で乾燥させる場合には、たと
えば、次のようにする。層間に含有されている水等、無
機層状化合物が保持含有する溶媒を直接、加熱、加圧し
て、その臨界点以上の状態に到達させ、溶媒を除去乾燥
させるという方法がある。ただし、この場合、水のよう
に極めて高い臨界点(水の臨界温度:374.2℃、臨
界圧:217.6atm)を持つ溶媒を用いると特殊な
オートクレーブなどを用いなければならない。これをさ
けるため、たとえば、無機層状化合物が含有する溶媒を
臨界点の低い溶媒に置換した後、超臨界乾燥する。たと
えば、無機層状化合物が水を含有している場合、エタノ
ールで置換した後、エタノールの超臨界条件下で超臨界
乾燥したり、水をエタノールで置換した後、さらに二酸
化炭素を加えて行き、徐々にエタノールを二酸化炭素に
置換しながら二酸化炭素とエタノールの2成分系の臨界
点以上の温度、圧力に加熱加圧して、超臨界状態を実現
すればよい。エタノールが抽出除去された後、常温常圧
に戻せば乾燥工程は終了する。エタノールを二酸化炭素
で置換する場合、臨界点以上の二酸化炭素を系に送り込
んで置換させるようにすることもできる。なお、溶媒と
して利用可能な流体は、上記のものに限らない。実用範
囲で超臨界流体化することが可能なものは、種々あるが
たとえば、エタノール、メタノール、二酸化炭素、ジク
ロロジフルオロメタン、エチレンなどが挙げられる。参
考のため主要な流体について臨界条件を表1に示した。
【0011】
【表1】
【0012】液体炭酸で抽出乾燥する場合も工程的に同
様の方法で行う。たとえば、液体状態の二酸化炭素を被
乾燥物と接触させ、被乾燥物に含まれる溶媒を抽出乾燥
する。ただし、図3にみるように、温度圧力が超臨界状
態より低い状態で乾燥できる。図3中、Qは二酸化炭素
の気体域、右上がりの斜線を付した領域R(沸騰線、三
重点および溶融線を含む)は二酸化炭素の液体域、左上
がりの斜線を付した領域Sは二酸化炭素の超臨界状態域
(臨界点CPを含む)である。
【0013】このようにして、得られた無機層状多孔体
は、熱風乾燥や凍結乾燥した場合でも、従来の多孔体に
比べ、層間および細孔が大きく、層間およびピラーの機
能が十分発揮できる形の構造になっている。この発明で
は、超臨界乾燥および液体炭酸抽出乾燥した場合には、
さらに機能性が活かしやすい構造になっている。
【0014】
【作用】この発明では、膨潤性層状化合物の層間に球状
ピラーを挿入することにより、層間が大きく、また、細
孔の容積も大きくなる。また、乾燥を超臨界乾燥あるい
は液体炭酸抽出乾燥で行うことにより、乾燥過程での凝
縮が小さくなり、さらに、層間が大きく、細孔も大きい
多孔体が得られ、層間や、ピラーの機能を十分発揮でき
る形で無機層状多孔体が得られる。
【0015】
【実施例】以下に、この発明の具体的な実施例および比
較例を示すが、この発明は下記実施例に限定されない。 (実施例1)膨潤性層状化合物として、Naモンモリロ
ナイト(クニミネ工業(株)製クニピアF)を用い、こ
れを水で膨潤させた。つぎに、金属アルコキシドである
チタン酸テトライソプロピル(ナカライテスク製試薬)
にエタノール、2Mアンモニア水溶液を添加し加水分
解、重合反応を行った。反応後、さらに2M塩酸水溶液
を添加し、さきに水に分散しておいたNaモンモリロナ
イトに添加し、インタカレーション反応を行った。Na
モンモリロナイトとチタニアの配合比率は、重量比で
1:0.6であった。また、反応温度は、インタカレー
ション反応は、60℃で行い、それ以外は室温で行っ
た。反応後の液を固液分離し、ついで、エタノールで洗
浄を繰り返し行った。エタノール洗浄後、比較的臨界点
の低い二酸化炭素(CO2 )を添加しながら、40℃、
80気圧で8時間かけて超臨界乾燥を行った。乾燥後、
400℃で焼成し、無機層状多孔体を得た。
【0016】(実施例2)実施例1において乾燥を熱風
乾燥(80℃、5時間)で行った以外は、実施例1と同
様にして無機層状多孔体を得た。 (実施例3)実施例1において、チタン酸テトライソプ
ロピルの代わりにジルコン酸テトライソプロピル(ナカ
ライテスク製試薬)を用いたこと以外は実施例1と同様
にして無機層状多孔体を得た。
【0017】(実施例4)膨潤性層状化合物として、N
aモンモリロナイト(クニミネ工業(株)製クニピア
F)を用い、これを水で膨潤させた。つぎに、オルトケ
イ酸テトラエチル(ナカライテスク製試薬)に2Mアン
モニア水、エタノールを添加し加水分解、重合反応を行
った。ついで、この溶液に、2M塩酸水溶液を添加し、
pHを1程度に下げた。ついで、チタン酸テトライソプ
ロピルに2M塩酸水溶液を添加し、加水分解、解膠反応
を行ったものを添加し、シリカ−チタニアゾルを合成し
た。このシリカ−チタニアゾル溶液を、さきに水に分散
しておいたNaモンモリロナイト水溶液に添加し、イン
タカレーション反応を行った。Naモンモリロナイト、
シリカ、チタニアのそれぞれの比率は、重量比で1:
0.6:0.06であった。反応温度は、オルトケイ酸
テトラエチルの加水分解、重合反応およびインタカレー
ション反応は60℃で、それ以外は室温下で行った。反
応後、この溶液を固液分離し、数回、エタノール洗浄を
行ったのち、比較的臨界点の低い二酸化炭素を添加しな
がら、40℃、80気圧で8時間かけて超臨界乾燥を行
った。乾燥後、400℃で焼成し、無機層状多孔体を得
た。
【0018】(実施例5)実施例4において、乾燥を超
臨界乾燥の代わりに液体炭酸抽出乾燥(5℃、60気圧
で抽出)を用いたこと以外は実施例4と同様にして無機
層状多孔体を得た。 (実施例6)膨潤性層状化合物として、Naモンモリロ
ナイト(クニミネ工業(株)製クニピアF)を用い、こ
れを水で膨潤させた。つぎに、オルトケイ酸テトラエチ
ル(ナカライテスク製試薬)に2Mアンモニア水、エタ
ノールを添加し加水分解、重合反応を行った。ついで、
この溶液に、2M塩酸水溶液を添加し、pHを1程度に
下げた。ついで、四塩化チタンに2M塩酸水溶液を添加
し、加水分解、解膠反応を行ったものを添加し、シリカ
−チタニアゾルを合成した。このシリカ−チタニアゾル
溶液を、さきに水に分散しておいたNaモンモリロナイ
ト水溶液に添加し、インタカレーション反応を行った。
Naモンモリロナイト、シリカ、チタニアのそれぞれの
比率は、重量比で1:0.6:0.06であった。反応
温度は、オルトケイ酸テトラエチルの加水分解、重合反
応およびインタカレーション反応は60℃で、それ以外
は室温下で行った。反応後、この溶液を固液分離し、数
回、エタノール洗浄を行ったのち、比較的臨界点の低い
二酸化炭素を添加しながら、40℃、80気圧で8時間
かけて超臨界乾燥を行った。乾燥後、400℃で焼成
し、無機層状多孔体を得た。
【0019】(比較例1)実施例1において、塩基性触
媒を用いないこと以外は、実施例1と同様にして無機層
状多孔体を得た。実施例1〜6および比較例1の無機層
状多孔体の比表面積、細孔容積を測定した。比表面積と
細孔容積は窒素吸着法で測定した。測定結果を表2に示
した。
【0020】
【表2】
【0021】表2にみるように、実施例1〜6の無機層
状多孔体は、比較例1のものに比べ、比表面積および細
孔容積ともに大きく、乾燥の際の凝縮が小さく、機能性
を発揮しやすい構造になっている。
【0022】
【発明の効果】この発明の無機層状多孔体の製造方法
は、層間に挿入するゾルを球状に近い形で合成すること
により、層間間隔、細孔容積の大きな多孔体を得ること
ができ、得られた多孔体は層間およびピラーの機能が発
揮しやすい構造になっている。また、さらに超臨界乾
燥、液体炭酸抽出乾燥法を用いることにより、乾燥時に
おける凝縮を小さくし、より理想的な構造体の無機層状
多孔体を得ることができる。
【図面の簡単な説明】
【図1】この発明の製造方法により得られた無機層状多
孔体の模式的説明図である。
【図2】比較例で示した方法により得られた無機層状多
孔体の模式的説明図である。
【図3】この発明の製造方法で用いるCO2 の状態図で
ある。
【符号の説明】
1 膨潤性層状化合物 2 空隙 3 無機ピラー材

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 膨潤状態にある膨潤性層状化合物の層間
    に無機ピラーを挿入して乾燥を行う無機層状多孔体の製
    造方法において、前記無機ピラーの少なくとも一部が、
    金属アルコキシドを塩基性触媒で処理したものであるこ
    とを特徴とする無機層状多孔体の製造方法。
  2. 【請求項2】 無機ピラーとして、金属アルコキシドを
    塩基性触媒で処理したものを、陽イオン性無機化合物お
    よび/または酸触媒で処理された金属アルコキシドとと
    もに用いる請求項1記載の無機層状多孔体の製造方法。
  3. 【請求項3】 乾燥が超臨界状態で行われるか、また
    は、液体炭酸で行われる請求項1または2記載の無機層
    状多孔体の製造方法。
  4. 【請求項4】 金属アルコキシドが、Si (OR)4、T
    i (OR)4、Zr (OR)4、Ge (OR)4、Al (O
    R)3、B (OR)3、PO (OR)3およびGa (OR)3
    うちの少なくとも1種類を用いる請求項1から3までの
    いずれかに記載の無機層状多孔体の製造方法。
JP19882192A 1992-07-24 1992-07-24 無機層状多孔体の製造方法 Pending JPH0648858A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19882192A JPH0648858A (ja) 1992-07-24 1992-07-24 無機層状多孔体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19882192A JPH0648858A (ja) 1992-07-24 1992-07-24 無機層状多孔体の製造方法

Publications (1)

Publication Number Publication Date
JPH0648858A true JPH0648858A (ja) 1994-02-22

Family

ID=16397477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19882192A Pending JPH0648858A (ja) 1992-07-24 1992-07-24 無機層状多孔体の製造方法

Country Status (1)

Country Link
JP (1) JPH0648858A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989292A (zh) * 2017-12-29 2020-11-24 伊梅斯切公司 制备合成页硅酸盐的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111989292A (zh) * 2017-12-29 2020-11-24 伊梅斯切公司 制备合成页硅酸盐的方法

Similar Documents

Publication Publication Date Title
KR100848856B1 (ko) 영구적 소수성을 갖는 에어로겔의 제조 방법 및 이로부터제조된 영구적 소수성을 갖는 에어로겔
Ohtsuka Preparation and properties of two-dimensional microporous pillared interlayered solids
KR101006273B1 (ko) 메조공성 또는 메조공성/미세공성 혼합 무기 산화물의제조방법
CA1240900A (en) Inorganic oxide aerogels and their preparation
CA1257522A (en) Non-aged inorganic oxide-containing aerogels and their preparation
KR20010006213A (ko) 저밀도 겔 조성물의 제조 방법
JP2006290680A (ja) ナノ球状粒子多孔体及びその合成方法
US5599759A (en) Process for producing porous silicon oxide material
US5425934A (en) Dealumination and selective removal of organic material from zeolites
US20150141532A1 (en) Solvent-Substitution Solvent Used in Aerogel Production, and Hydrophobised Aerogel Production Method Using Same
JP2507903B2 (ja) 任意の層間隔を有する層間架橋粘土の製造法
JPS6043173B2 (ja) オレフインの水和法及びその触媒
CN111924852B (zh) 一种钛硅分子筛的制备方法
JP3274867B2 (ja) メソ多孔性結晶性物質の調製方法
WO2016026960A1 (de) Zeolithische materialien mit ausgeprägter makroporosität im einzelkristall und verfahren zu deren herstellung
JPH0648858A (ja) 無機層状多孔体の製造方法
CN1738774A (zh) 用于制备玻璃制品的溶胶-凝胶方法
CN104556961A (zh) 一种高岭土制备硅铝气凝胶的方法
KR101603610B1 (ko) 2,5-디메틸퓨란과 에틸렌으로부터 파라자일렌의 합성공정에 사용되는 나노기공성 스폰지 또는 시트 형태의 제올라이트 촉매
JP4176282B2 (ja) メソポーラス無機多孔質材の製造方法
JP3524681B2 (ja) メソポーラスシリケートの調製方法
RU2614146C1 (ru) Способ получения нанопористого материала для чувствительных элементов газовых сенсоров и нанопористый материал, полученный этим способом
US5149513A (en) Method of preparing inorganic porous member
US20030133868A1 (en) Mesostructured metal or non-metal oxides and method for making same
Hou et al. Preparation of silica-pillared layered tetratitanate with a high surface area