JPH0648647B2 - Electromagnetic actuator - Google Patents

Electromagnetic actuator

Info

Publication number
JPH0648647B2
JPH0648647B2 JP61171267A JP17126786A JPH0648647B2 JP H0648647 B2 JPH0648647 B2 JP H0648647B2 JP 61171267 A JP61171267 A JP 61171267A JP 17126786 A JP17126786 A JP 17126786A JP H0648647 B2 JPH0648647 B2 JP H0648647B2
Authority
JP
Japan
Prior art keywords
iron core
magnetic circuit
adjusting
magnetic
movable iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61171267A
Other languages
Japanese (ja)
Other versions
JPS6328004A (en
Inventor
正幸 岡本
芳雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61171267A priority Critical patent/JPH0648647B2/en
Publication of JPS6328004A publication Critical patent/JPS6328004A/en
Publication of JPH0648647B2 publication Critical patent/JPH0648647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は永久磁石を磁気回路中に有し、作動すべき時に
外部からの電源から通電して駆動させる電磁アクチェー
タに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic actuator which has a permanent magnet in a magnetic circuit and is energized and driven by an external power source when it should be operated.

従来の技術 従来より電磁コイルの発熱をさけたり、駆動回路側の省
電力化をはかるため、永久磁石を使用し電磁コイルは瞬
間励磁だけに利用して、状態の保持は永久磁石により行
なう形式の自己保持型の電磁アクチェータが使われてい
る。特に近年、家庭用電気器具に組み込む電磁ソレノイ
ドの省電力化や、ガス器具の火力調節を電池を用いて電
気的に行なうガス制御弁としての用途に自己保持型電磁
アクチェータの必要性が高まってきた。
Conventional technology Conventionally, in order to avoid heat generation in the electromagnetic coil and to save power on the drive circuit side, a permanent magnet is used, the electromagnetic coil is used only for momentary excitation, and the state is maintained by the permanent magnet. A self-holding electromagnetic actuator is used. In particular, in recent years, the need for self-holding electromagnetic actuators has increased for power saving of electromagnetic solenoids incorporated in household appliances and for use as gas control valves that electrically control the heat of gas appliances using batteries. .

この様な用途に対して、一般に自己保持型電磁アクチェ
ータは、第6図の従来例に示す様な構造になっている。
永久磁石1,磁性材料製の可動鉄芯2,第1固定継鉄3
a,第2固定継鉄3b,第3固定継鉄3cを配置して環
状の磁気回路4を形成し、吸着面5で可動鉄芯2と第3
固定継鉄3cを吸着保持している。
For such applications, a self-holding electromagnetic actuator generally has a structure as shown in the conventional example of FIG.
Permanent magnet 1, Movable iron core made of magnetic material 2, First fixed yoke 3
a, the second fixed yoke 3b, and the third fixed yoke 3c are arranged to form an annular magnetic circuit 4, and the attracting surface 5 forms the movable iron core 2 and the third fixed yoke 3c.
The fixed yoke 3c is adsorbed and held.

電磁コイル6は、その中央部を可動鉄芯2が摺動する様
に案内するとともに、前記磁気回路4を励磁する様にな
っている。可動鉄芯2の先端にはバネ受け7を装着し、
第1固定継鉄3aとの間に圧縮バネ8を設けている。以
上説明した第6図は可動鉄芯2が吸着保持されている状
態を示している。その作動原理は、外部からの駆動電源
により電磁コイル6に、前述の磁気回路4の磁界方向と
は逆方向の磁界が発生する様に電圧を瞬間的に印加する
ことにより、吸着面5での可動鉄芯2と第3固定継鉄3
cとの吸着保持力が弱まり、この吸着力をうわまわる圧
縮バネ8の反撥力により、吸着面5より離間し可動鉄芯
2を押し上げる様になっている。又、電磁コイル6に永
久磁石1と同方向の磁界を生じる電圧を印加することに
より圧縮バネ8の反撥力に打勝って再び可動鉄芯2を吸
着位置に保持することが出来る。
The electromagnetic coil 6 guides the center of the electromagnetic coil 6 so that the movable iron core 2 slides and excites the magnetic circuit 4. A spring support 7 is attached to the tip of the movable iron core 2,
A compression spring 8 is provided between the compression spring 8 and the first fixed yoke 3a. FIG. 6 described above shows a state in which the movable iron core 2 is adsorbed and held. The operating principle is that a voltage is momentarily applied to the electromagnetic coil 6 by a driving power source from the outside so that a magnetic field in a direction opposite to the magnetic field direction of the magnetic circuit 4 described above is generated. Movable iron core 2 and 3rd fixed yoke 3
The attracting / holding force with respect to c is weakened, and the repulsive force of the compression spring 8 which prevails this attracting force pushes the movable iron core 2 apart from the attracting surface 5. Further, by applying a voltage that generates a magnetic field in the same direction as the permanent magnet 1 to the electromagnetic coil 6, it is possible to overcome the repulsive force of the compression spring 8 and hold the movable iron core 2 again in the attracting position.

ここで、前述の可動鉄芯2と第3固定継鉄3cとの間の
吸着保持状態での吸着保持力をF、圧縮バネ8の反撥力
をfとし、可動鉄芯2を押し上げる、すなわち作動させ
る時に必要な電磁コイル6への印加電圧を作動電圧Vと
すると、作動電圧Vの値は作動原理からも理解できる様
に(F−f)値に依存し、決定される。
Here, the suction holding force in the suction holding state between the movable iron core 2 and the third fixed yoke 3c is F, and the repulsive force of the compression spring 8 is f, so that the movable iron core 2 is pushed up, that is, operated. Assuming that the applied voltage to the electromagnetic coil 6 required for the operation is the operating voltage V, the value of the operating voltage V is determined depending on the (F−f) value as can be understood from the operating principle.

すなわち、吸着保持力Fが大、又は反撥力fが小の場合
は作動電圧Vが大に、逆に吸着保持力Fが小又は反撥力
fが大の場合は作動電圧Vが小となる。又、可動鉄芯2
が吸着面から離れている状態では、圧縮バネの反撥力が
大きい程、再吸着するための作動電圧は高くなる。従っ
て、圧縮バネの強さは離反する時と吸着する時で作動電
圧には逆に作用するものであった。
That is, when the suction holding force F is large or the repulsion force f is small, the operating voltage V is large, and conversely, when the suction holding force F is small or the repulsion force f is large, the operating voltage V is small. Also, the movable iron core 2
In the state where is separated from the attracting surface, the greater the repulsive force of the compression spring, the higher the operating voltage for re-adsorbing. Therefore, the strength of the compression spring has an opposite effect on the operating voltage when it is separated and when it is adsorbed.

発明が解決しようとする問題点 ところが、この様な構造の場合、磁気回路4を通る永久
磁石1による磁束Φは、磁気回路4を構成する磁性材料
製の可動鉄芯2,第1固定継鉄3a,第2固定継鉄3b,
第3固定継鉄3c等の透磁率、すなわち磁気特性や、吸
着面の表面粗度及び永久磁石1そのものの磁気特性のバ
ラツキの影響を大きく受ける。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the case of such a structure, the magnetic flux Φ due to the permanent magnet 1 passing through the magnetic circuit 4 causes the movable iron core 2 and the first fixed yoke made of a magnetic material forming the magnetic circuit 4 to move. 3a, second fixed yoke 3b,
The magnetic permeability of the third fixed yoke 3c or the like, that is, the magnetic characteristics, the surface roughness of the attracting surface, and the variations in the magnetic characteristics of the permanent magnet 1 itself are greatly affected.

このことは、吸着保持力Fが、構成部品の磁性材料の磁
気特性のバラツキによって大きく変化することを示して
いる。すなわち、自己保持型ソレノイドを同様な構造で
組み立て製造を行なっても、磁気特性のバラツキのため
吸着保持力Fが、各々個別の物毎に異なりバラツクこと
になってくる。したがって、圧縮バネ8の反撥力fが仮
に、個別の物毎に一定としても(F−f)の差力がバラ
ツクことになるので結果として、、作動電圧Vが個別の
電磁アクチェータ毎に変化し、バラツクことになる。
This indicates that the suction holding force F greatly changes due to variations in the magnetic characteristics of the magnetic materials of the constituent parts. That is, even if the self-holding solenoid is assembled and manufactured with the same structure, the attracting and holding force F varies depending on each individual item due to variations in magnetic characteristics. Therefore, even if the repulsive force f of the compression spring 8 is constant for each individual object, the differential force of (F−f) varies, and as a result, the operating voltage V changes for each individual electromagnetic actuator. , It will vary.

この様に作動電圧Vがバラツク場合、外部駆動電源から
の印加電圧が限られたり、特に電源として例えば乾電池
の様に限られた電圧しか印加されないものとすると、作
動電圧Vを電源に対応した一定の制限範囲内に収める必
要が発生する。この対応方法として、従来は圧縮バネ8
の反撥力fを調整し(F−f)の差力を一定幅に収める
ことが採用されている。
When the operating voltage V varies in this way, if the applied voltage from the external drive power source is limited, or if only a limited voltage such as a dry battery is applied as the power source, the operating voltage V is a constant value corresponding to the power source. It is necessary to fit within the limit range of. As a method for dealing with this, the compression spring 8 is conventionally used.
It is adopted that the repulsive force f of is adjusted so that the differential force of (F−f) is kept within a certain range.

具体的には、反撥力fを変えた圧縮バネ8を何種類か準
備しておき、個別の電磁アクチェータ毎に圧縮バネ8を
変えて組みたて、作動電圧Vが所定の制限範囲に収まる
かを確認しながら、その特定の電磁アクチェータに使用
する圧縮バネを決定している。
Specifically, several kinds of compression springs 8 having different repulsive forces f are prepared, and the compression springs 8 are changed for each individual electromagnetic actuator so that the operating voltage V falls within a predetermined limit range. While deciding, the compression spring used for the specific electromagnetic actuator is determined.

この様に従来の自己保持型電磁アクチェータでは、作動
電圧Vがバラツクことにより、制限範囲内に収める必要
がある時、個別の電磁アクチェータでみた場合には不必
要になる圧縮バネ8を余分に用意しておき、しかも使用
圧縮バネ8を決定するには、そのつど作動電圧Vを測定
していかなければならなく、余計な組立工数,検査工
数,費用が掛かり、しかも作動電圧Vの調整がしにくい
との問題がある。更に、離反させる時の電圧と、再吸着
させる電圧の両方を、限られた乾電池電圧で得られる値
にするために圧縮バネ強度を強くする方向での調整には
限度があり、このことがより調整作業の困難さをもたら
していた。
As described above, in the conventional self-holding type electromagnetic actuator, when the operating voltage V needs to be kept within the limit range due to the variation, the extra compression spring 8 which is unnecessary when viewed from an individual electromagnetic actuator is prepared. In addition, in order to determine the compression spring 8 to be used, it is necessary to measure the operating voltage V each time, which requires extra assembly man-hours, inspection man-hours, cost, and adjustment of the operating voltage V. There is a problem with difficulty. Furthermore, there is a limit to the adjustment in the direction of increasing the compression spring strength in order to make both the voltage for separating and the voltage for re-adsorbing a value that can be obtained with a limited dry cell voltage, and this is more important. It caused difficulty in adjustment work.

問題点を解決するための手段 本発明の電極アクチェータは、永久磁石,可動鉄芯,固
定継鉄とで形成した磁気回路と、この磁気回路を励磁す
る電磁コイルと、前記可動鉄芯を含まない前記永久磁石
の調整磁気回路を形成する調整鉄芯を備えたものであ
る。
Means for Solving the Problems The electrode actuator of the present invention does not include a magnetic circuit formed by a permanent magnet, a movable iron core, and a fixed yoke, an electromagnetic coil for exciting the magnetic circuit, and the movable iron core. An adjusting iron core that forms an adjusting magnetic circuit of the permanent magnet is provided.

作 用 本発明の電磁アクチェータは、可動鉄芯を含む磁気回路
に対して可動鉄芯を含まない調整磁気回路を設けるとと
もにその磁気抵抗を可変できる様にすることにより、可
動鉄芯を含む磁気回路を通る磁束を調整することがで
き、可動鉄芯と固定継鉄間の吸着力を調整することによ
り、作動すべき時に必要な電磁コイルへの印加電圧を容
易に調整可能とするものである。
Operation The electromagnetic actuator of the present invention is provided with a magnetic circuit including a movable iron core by providing an adjusting magnetic circuit not including the movable iron core with respect to a magnetic circuit including the movable iron core and making the magnetic resistance variable. It is possible to adjust the magnetic flux passing through, and by adjusting the attraction force between the movable iron core and the fixed yoke, it is possible to easily adjust the voltage applied to the electromagnetic coil when it should be activated.

実施例 以下、本発明の一実施例の自己保持型電磁アクチェータ
を図面を参照して説明する。第1図において永久磁石1
は厚み方向に着磁しており、そして、この永久磁石1,
磁性材料製の可動鉄芯2,第1固定継鉄3a,第2固定
継鉄3b,第3固定継鉄3cを環状に配置して磁気回路
4を形成し、吸着面5で可動鉄芯2と第3固定継鉄3c
を吸着保持している。電磁コイル6はその中央部を可動
鉄芯2が上下に摺動する様に案内するとともに、前記磁
気回路4を励磁する様になっている。第2固定継鉄3b
には、磁性体製の調整鉄芯9bを装着した調整固定用ネ
ジ9aを備えている。第3固定継鉄3cと永久磁石1,
第2固定継鉄3b,調整鉄芯9b間で調整磁気回路10
を形成する様にしており、磁気回路4に対して可動鉄芯
2を含まない形で並列磁気回路となっている。
Embodiment A self-holding electromagnetic actuator according to an embodiment of the present invention will be described below with reference to the drawings. Permanent magnet 1 in FIG.
Is magnetized in the thickness direction, and this permanent magnet 1,
The movable iron core 2, the first fixed yoke 3a, the second fixed yoke 3b, and the third fixed yoke 3c made of a magnetic material are annularly arranged to form a magnetic circuit 4, and the movable iron core 2 is attracted by the attracting surface 5. And 3rd fixed yoke 3c
Is held by adsorption. The electromagnetic coil 6 guides the central part of the movable iron core 2 so that the movable iron core 2 slides up and down, and excites the magnetic circuit 4. Second fixed yoke 3b
Is equipped with an adjusting and fixing screw 9a to which an adjusting iron core 9b made of a magnetic material is attached. Third fixed yoke 3c and permanent magnet 1,
Adjusting magnetic circuit 10 between second fixed yoke 3b and adjusting iron core 9b
Are formed, and the parallel magnetic circuit is formed without including the movable iron core 2 with respect to the magnetic circuit 4.

また、調整鉄芯9bと第3固定継鉄3cとの隙間lは調
整固定用ネジ9aのネジ部を回転することにより変化さ
せることができ、かつ隙間lは磁気ギャップとなるの
で、調整磁気回路10の磁気抵抗を可変できる構造とな
っている。
Further, the gap 1 between the adjusting iron core 9b and the third fixed yoke 3c can be changed by rotating the screw portion of the adjusting and fixing screw 9a, and the gap 1 becomes a magnetic gap, so that the adjusting magnetic circuit The magnetic resistance of 10 is variable.

可動鉄芯2の先端にはバネ受け7が装着されており、第
1固定継鉄3aとの間に圧縮バネ8を設けている。
A spring receiver 7 is attached to the tip of the movable iron core 2, and a compression spring 8 is provided between the movable iron core 2 and the first fixed yoke 3a.

さて、以上のような構成において、その作動原理は基本
的には従来例で述べた内容と同一であるので省略する
が、従来例と異なるのは、可動鉄芯2と第3固定継鉄3
cとの吸着保持力Fが可変できると云う点である。すな
わち、前述の様に調整鉄芯9bと第3固定継鉄3cとの
隙間lを小にすると調整磁気回路10の磁気抵抗が小さ
くなり、永久磁石1によるトータルの磁束Φが磁気回路
4と調整磁気回路10に分散して流れることにより、調
整磁気回路10を流れる磁束Φが大きくなり逆に磁気
回路4を流れる磁束Φが小さくなり吸着保持力Fが小
さくなる。一方、逆に隙間lを大にすると調整磁気回路
10の磁気抵抗が大きくなるので、調整磁気回路10を
流れる磁束Φが小さくなり、逆に磁気回路4を流れる
磁束Φが大きくなり、吸着力Fが大きくなる。
Now, in the configuration as described above, the operating principle is basically the same as the contents described in the conventional example, and therefore the description thereof will be omitted. However, the difference from the conventional example is that the movable iron core 2 and the third fixed yoke 3
The point is that the suction retention force F with c can be varied. That is, as described above, when the gap 1 between the adjusting iron core 9b and the third fixed yoke 3c is reduced, the magnetic resistance of the adjusting magnetic circuit 10 decreases, and the total magnetic flux Φ by the permanent magnet 1 adjusts with the magnetic circuit 4. By being dispersed and flowing in the magnetic circuit 10, the magnetic flux Φ 1 flowing in the adjusting magnetic circuit 10 is increased, conversely the magnetic flux Φ 2 flowing in the magnetic circuit 4 is decreased, and the adsorption holding force F is decreased. On the other hand, conversely, if the gap 1 is increased, the magnetic resistance of the adjusting magnetic circuit 10 increases, so that the magnetic flux Φ 1 flowing in the adjusting magnetic circuit 10 decreases, and conversely the magnetic flux Φ 2 flowing in the magnetic circuit 4 increases, so that the adsorption. The force F increases.

この様に吸着力Fの調整ができることは、圧縮バネ8の
反撥力fとの差(F−f)を調整できることを意味して
いる。したがって、従来例で述べた作動原理からも理解
できる様に、可動鉄芯2を押し上げる、すなわち作動さ
せる時に必要な電磁コイル6への印加電圧、つまり作動
電圧Vの調整が可能なことを示している。
The fact that the attraction force F can be adjusted in this way means that the difference (F−f) from the repulsion force f of the compression spring 8 can be adjusted. Therefore, as can be understood from the operating principle described in the conventional example, it is shown that it is possible to adjust the applied voltage to the electromagnetic coil 6, that is, the operating voltage V required when the movable iron core 2 is pushed up, that is, operated. There is.

従来例では(F−f)の調整方法として圧縮バネ8の反
撥力fを何種類か準備することで対応したが、本発明で
は圧縮バネ8の反撥力fを変化させないで、調整固定用
ネジ9a,調整鉄芯9bで吸着保持力Fを調整すること
になり、圧縮バネ8の反撥力を何種類も用意する必要が
ない。しかも、所定の必要とする作動電圧Vを印加しつ
つ、前述の調整鉄芯9bと第3固定継鉄3cとの隙間l
を当初大きめから徐々に狭くしていき可動鉄芯2が作動
したポイントで隙間lを固定すると云う方法で、調整が
容易に可能となる。
In the conventional example, as a method of adjusting (F−f), it was dealt with by preparing several kinds of repulsion force f of the compression spring 8, but in the present invention, the repulsion force f of the compression spring 8 is not changed, and the adjustment fixing screw is used. 9a and the adjusting iron core 9b adjust the suction holding force F, so that it is not necessary to prepare many kinds of repulsive force of the compression spring 8. Moreover, the gap l between the adjusting iron core 9b and the third fixed yoke 3c is applied while applying a predetermined required operating voltage V.
The adjustment can be easily performed by the method of fixing the gap 1 at a point where the movable iron core 2 is activated by gradually narrowing from the initial value.

なお、本実施例の調整鉄芯9bの上方からの断面を示す
図を第2図に示しているが調整鉄芯9bの取付け位置や
その形状は、極端な表現をすれば永久磁石し、第3固定
継鉄3c,第2固定継鉄3b,調整鉄芯9b間に調整磁気
回路10が形成され、かつその磁気回路内に磁気抵抗と
なる隙間が設けられるならば任意となる。
It should be noted that FIG. 2 is a view showing a cross section of the adjusting iron core 9b of the present embodiment from above, but the attaching position and the shape of the adjusting iron core 9b are, in extreme terms, permanent magnets and It is optional as long as the adjusting magnetic circuit 10 is formed between the third fixed yoke 3c, the second fixed yoke 3b, and the adjusting iron core 9b, and a gap serving as a magnetic resistance is provided in the magnetic circuit.

また、調整用固定ネジ9aは、非磁性体製でも磁性体製
でもどちらでもよく、作動電圧V調整の効果は変わらな
い。また、仮に非磁性体製としても、第2固定継鉄3b
に対してビス孔部分だけの面積が減少するだけであり、
磁気回路4に影響を及ぼすまでに到らない。
The adjusting fixing screw 9a may be made of a non-magnetic material or a magnetic material, and the effect of adjusting the operating voltage V does not change. Even if it is made of a non-magnetic material, the second fixed yoke 3b
On the other hand, only the area of screw holes is reduced,
The magnetic circuit 4 is not affected.

次に本発明のもう一つの実施例の自己保持型電磁アクチ
ェータを説明する。第3図において永久磁石1は厚み方
向に着磁しており、その中央に貫通孔1aが形成されて
いる。第2固定継鉄3bにはネジ穴を設け、外周にネジ
部を有した調整鉄芯9を前記ネジ穴に装着しており、し
かもその位置は調整鉄芯9が、永久磁石1の貫通孔1a
を貫通する様に設置している。
Next, a self-holding type electromagnetic actuator according to another embodiment of the present invention will be described. In FIG. 3, the permanent magnet 1 is magnetized in the thickness direction, and a through hole 1a is formed in the center thereof. A screw hole is provided in the second fixed yoke 3b, and an adjusting iron core 9 having a screw portion on the outer periphery is attached to the screw hole. Moreover, the adjusting iron core 9 is located at the through hole of the permanent magnet 1. 1a
It is installed so that it penetrates.

可動鉄芯2,第1固定継鉄3a,第2固定継鉄3b,第
3固定継鉄3c,永久磁石1で磁気回路4を形成すると
ともに、第3固定継鉄3cと永久磁石1,第2固定継鉄
3b,調整鉄芯9とで調整磁気回路10を形成し、磁気
回路4とは並列関係になっている。
The movable iron core 2, the first fixed yoke 3a, the second fixed yoke 3b, the third fixed yoke 3c, and the permanent magnet 1 form a magnetic circuit 4, and the third fixed yoke 3c and the permanent magnets 1, An adjusting magnetic circuit 10 is formed by the two fixed yokes 3b and the adjusting iron core 9 and is in parallel with the magnetic circuit 4.

本構成においても、第一の実施例と同様、調整鉄芯9の
ネジ込みを変化させることにより、第3固定継鉄3cと
の隙間lを調整でき、磁気回路4の磁束を可変すること
ができるので結果として作動電圧Vの調整が可能とな
る。なお、この実施例は、前述の実施例に比べ調整鉄芯
9bと調整固定ネジ9bを兼ねており、部品点数も少な
くてすみ構造が簡単となる。
Also in this configuration, as in the first embodiment, by changing the screwing of the adjusting iron core 9, the gap 1 with the third fixed yoke 3c can be adjusted, and the magnetic flux of the magnetic circuit 4 can be varied. As a result, the operating voltage V can be adjusted as a result. In this embodiment, the adjusting iron core 9b and the adjusting fixing screw 9b are also used as compared with the above-mentioned embodiments, the number of parts is small and the corner structure is simple.

なお、本実施例での隙間lと作動電圧Vとの関係の概略
を第4図に示す。
Note that FIG. 4 shows an outline of the relationship between the gap 1 and the operating voltage V in this embodiment.

第4図において、縦軸は作動電圧Vを、横軸は隙間lを
示しており、隙間lが大きくなると、吸着保持力Fが大
きくなり、作動電圧Vが大きくなっていることが分る。
In FIG. 4, the vertical axis shows the operating voltage V, and the horizontal axis shows the gap 1. It can be seen that when the gap 1 becomes large, the adsorption holding force F becomes large and the operating voltage V becomes large.

ここで例えば所定の必要な作動電圧Vを印加しながら
隙間lを大きな方から順々に小さくしていき、電磁アク
チェータが動作するポイントの隙間lで固定すれば、
その電磁アクチェータは作動電圧Vで作動するもので
あると決定される。
Here, for example, if the gap l is gradually reduced from the larger one while applying a predetermined required operating voltage V 1 , and fixed at the gap l 1 at the point where the electromagnetic actuator operates,
The electromagnetic actuator is determined to operate at the operating voltage V 1 .

第5図に本発明の電磁アクチェータをガス制御弁に用い
てガス調理器に応用した例を示した。ガス流入口11か
ら流入したガスは図示していない熱電対の出力で開弁状
態を維持する安全弁12と対応した元弁座13を通過
し、本発明による電磁アクチェータで構成した制御弁1
4で開閉される制御弁座15及び前記制御弁座15と並
列のオリフィス16を経てノズル17から噴出してバー
ナ18で燃焼をする。ボタン19は点火時には前記安全
弁12を押圧させると共に図示していない点火器を作動
させるもので、消火時には安全弁12への熱電対の出力
を断つためのスイッチ20を作動させる。この部分の構
成は公知の内容であるので詳細な説明は省略している。
次にボタン21は押し操作した時だけスイッチ22をオ
ンするもので、ボタン23とスイッチ24の関係も同様
である。そして、スイッチ22がオンした時は制御弁1
4の電磁コイルには永久磁石磁界と同方向の磁界を生じ
る方向に電圧が印加され、スイッチ24がオンした時は
逆方向磁界を生じる方向に電圧が印加される構成であ
る。これらへの電圧は電池から供給されるものであるが
図では省略した。
FIG. 5 shows an example in which the electromagnetic actuator of the present invention is used as a gas control valve and applied to a gas cooker. The gas flowing in from the gas inlet 11 passes through the main valve seat 13 corresponding to the safety valve 12 which maintains the open state by the output of the thermocouple (not shown), and the control valve 1 constituted by the electromagnetic actuator according to the present invention.
The fuel is ejected from the nozzle 17 through the control valve seat 15 opened / closed by 4 and the orifice 16 arranged in parallel with the control valve seat 15 and burned by the burner 18. The button 19 presses the safety valve 12 at the time of ignition and operates an igniter (not shown), and operates a switch 20 for cutting off the output of the thermocouple to the safety valve 12 at the time of extinguishing the fire. Since the structure of this portion is known, detailed description thereof is omitted.
Next, the button 21 turns on the switch 22 only when it is pushed, and the relationship between the button 23 and the switch 24 is the same. When the switch 22 is turned on, the control valve 1
A voltage is applied to the electromagnetic coil of No. 4 in a direction in which a magnetic field in the same direction as the permanent magnet magnetic field is generated, and when the switch 24 is turned on, a voltage is applied in a direction in which a reverse magnetic field is generated. The voltage to these is supplied from the battery, but is omitted in the figure.

以上の構成であるからスイッチ22がオンされると制御
弁座15は開放されスイッチ24がオンされると制御弁
座15は閉塞される。従って、オリフィス16でガス量
が制限される小発熱量の場合と制御弁座15をも通って
ガス量が制限されない大発熱量の場合がボタン21又は
23の押し操作のみで使い分けることが出来る。
With the above configuration, when the switch 22 is turned on, the control valve seat 15 is opened, and when the switch 24 is turned on, the control valve seat 15 is closed. Therefore, the case of a small heat generation amount in which the gas amount is limited by the orifice 16 and the case of a large heat generation amount in which the gas amount is not limited even through the control valve seat 15 can be selectively used only by pressing the button 21 or 23.

この結果、従来のガスコックを回して火力を絞る操作に
比べて操作が簡単であるばかりでなく絞りすぎて失火す
る恐れもないガス調理器を得ることが出来るものであ
る。
As a result, it is possible to obtain a gas cooker that is not only easy to operate as compared with the conventional operation of turning the gas cock to reduce the heating power, but also has no fear of misfiring due to over-squeezing.

発明の効果 以上の様に本発明の電磁アクチェータは、可動鉄芯を含
む磁気回路と並列に可動鉄芯を含まない調整用の磁気回
路を設け、しかもその磁気抵抗を可変することで、可動
鉄芯を通る磁束を変化さすことができ、可動鉄芯の吸着
保持力を変化させて、アクチェータの作動する電圧を調
整することができる。
EFFECTS OF THE INVENTION As described above, the electromagnetic actuator of the present invention is provided with a magnetic circuit for adjustment that does not include a movable iron core in parallel with a magnetic circuit that includes the movable iron core, and furthermore, by varying the magnetic resistance of the movable iron core, The magnetic flux passing through the core can be changed, and the suction holding force of the movable iron core can be changed to adjust the voltage at which the actuator operates.

その結果、構成部品材料の磁気特性のバラツキによる作
動電圧のバラツキも容易に吸収調整することができ、し
かも従来の様に余分な圧縮バネを用意する必要もない。
As a result, variations in operating voltage due to variations in magnetic properties of component materials can be easily absorbed and adjusted, and there is no need to prepare an extra compression spring as in the conventional case.

よって、電磁アクチェータを組立製造する時、従来の様
な余計な組立工数,検査工数,費用が不必要となり、し
かも作動電圧特性が安定したアクチェータを提供するこ
とができる。
Therefore, when assembling and manufacturing the electromagnetic actuator, extra assembly man-hours, inspection man-hours, and costs as in the conventional case are unnecessary, and an actuator having stable operating voltage characteristics can be provided.

すなわち低コストで品質の安定した、しかも駆動電源側
の制限条件にいかようにも対応できる電磁アクチェータ
が実に容易に組立可能となるものである。
That is, it is possible to easily assemble an electromagnetic actuator that is low in cost, stable in quality, and capable of complying with the limiting conditions on the drive power source side.

また、調整鉄芯は電磁コイルの磁気回路で見ると、永久
磁石とは並列に挿入されているから、電磁コイルの磁束
が流れ易くなる位置にある。従って、同じ電圧を印加し
ても電磁コイルによる磁束量は調整鉄芯がない場合に比
べると多く得られるから、離反させる場合の永久磁石磁
束に対する低減効果も高く、吸着させる場合の磁束増加
効果も高い。このことは、単に永久磁石の磁束量が調整
鉄芯によって減少した効果以上に低い電圧で離反させる
ことが可能であり、再吸着の場合も永久磁石と電磁コイ
ルの両方を合わせた磁束量増加が図れて、低電圧動作が
可能になるという効果をもたらすものである。
In addition, when viewed from the magnetic circuit of the electromagnetic coil, the adjusting iron core is inserted in parallel with the permanent magnet, so that the magnetic flux of the electromagnetic coil is easily flowed. Therefore, even if the same voltage is applied, the amount of magnetic flux generated by the electromagnetic coil is larger than that without the adjustment iron core. high. This means that the magnetic flux amount of the permanent magnet can be separated at a lower voltage than the effect reduced by the adjustment iron core, and even in the case of re-adsorption, the increase in the magnetic flux amount of both the permanent magnet and the electromagnetic coil is increased. This brings about an effect that low voltage operation becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電磁アクチェータの一実施例を示す縦
断面図、第2図は同調整鉄芯部分の横断面図、第3図は
同他の実施例の縦断面図、第4図は同作動電圧Vと隙間
lの関係を示す特性図、第5図は本発明の電磁アクチェ
ータを採用したガス調理器の要部断面の構成図、第6図
は従来例の電磁アクチェータの縦断面図である。 1……永久磁石、2……可動鉄芯、3……固定継鉄、4
……磁気回路、6……電磁コイル、7……調整鉄芯、8
……磁気回路、9……圧縮バネ。
FIG. 1 is a vertical sectional view showing an embodiment of an electromagnetic actuator of the present invention, FIG. 2 is a horizontal sectional view of the adjusting iron core portion, and FIG. 3 is a vertical sectional view of the other embodiment. Is a characteristic diagram showing the relationship between the operating voltage V and the gap l, FIG. 5 is a sectional view of a main portion of a gas cooker adopting the electromagnetic actuator of the present invention, and FIG. 6 is a vertical sectional view of a conventional electromagnetic actuator. It is a figure. 1 ... Permanent magnet, 2 ... Movable iron core, 3 ... Fixed yoke, 4
...... Magnetic circuit, 6 ... Electromagnetic coil, 7 ... Adjusting iron core, 8
...... Magnetic circuit, 9 ...... Compression spring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】永久磁石,可動鉄芯,固定継鉄とで形成し
た磁気回路と、この磁気回路を励磁する電磁コイルと、
前記可動鉄芯を含まない前記永久磁石の調整磁気回路を
形成する調整鉄芯とを備えた電磁アクチェータ。
1. A magnetic circuit formed of a permanent magnet, a movable iron core, and a fixed yoke, and an electromagnetic coil for exciting the magnetic circuit.
An electromagnetic actuator including an adjusting iron core that forms an adjusting magnetic circuit of the permanent magnet that does not include the movable iron core.
【請求項2】永久磁石は着磁方向に貫通孔が形成され、
調整鉄芯は前記永久磁石を貫通する位置に設けられた特
許請求の範囲第1項記載の電磁アクチェータ。
2. A through hole is formed in the permanent magnet in the magnetizing direction,
The electromagnetic actuator according to claim 1, wherein the adjusting iron core is provided at a position penetrating the permanent magnet.
JP61171267A 1986-07-21 1986-07-21 Electromagnetic actuator Expired - Lifetime JPH0648647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171267A JPH0648647B2 (en) 1986-07-21 1986-07-21 Electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171267A JPH0648647B2 (en) 1986-07-21 1986-07-21 Electromagnetic actuator

Publications (2)

Publication Number Publication Date
JPS6328004A JPS6328004A (en) 1988-02-05
JPH0648647B2 true JPH0648647B2 (en) 1994-06-22

Family

ID=15920157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171267A Expired - Lifetime JPH0648647B2 (en) 1986-07-21 1986-07-21 Electromagnetic actuator

Country Status (1)

Country Link
JP (1) JPH0648647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07243546A (en) * 1994-03-01 1995-09-19 Nippon Spindle Mfg Co Ltd Solenoid-operated high speed response valve
JP4627417B2 (en) * 2004-07-09 2011-02-09 株式会社日本Aeパワーシステムズ Power circuit breaker
JP5734513B2 (en) * 2012-05-21 2015-06-17 三菱電機株式会社 Electromagnet device and switchgear using the electromagnet device

Also Published As

Publication number Publication date
JPS6328004A (en) 1988-02-05

Similar Documents

Publication Publication Date Title
JP5979790B2 (en) Pilot operated solenoid valve
WO1990001780A1 (en) Plunger type electromagnet
KR19990063951A (en) Method and apparatus for manufacturing intake valve of plate type
US4673163A (en) Electromagnetic actuators
JPH0648647B2 (en) Electromagnetic actuator
JP3822937B2 (en) Small solenoid valve
CA1151229A (en) Solenoid having a multi-piece armature
JPH10122414A (en) Solenoid valve sealing structure
JP2000050606A (en) Electromagnetic actuator
JPH11513536A (en) Electromagnetic linear actuator with movable plate and valve liquid regulator controlled by electromagnetic linear actuator
JP3058192B2 (en) Valve device
JPS6355770B2 (en)
JP2999721B2 (en) electromagnet
JP2006042508A (en) Linear actuator
JP3251085B2 (en) solenoid valve
JPS6334245Y2 (en)
JPS63186082A (en) Self-sustaining type solenoid
JPH02212685A (en) 2-position solenoid valve
JPS599283Y2 (en) control valve
JPH07113432B2 (en) Proportional control valve for gas
JPH05313740A (en) Electropneumatic transducer
JPS5918215Y2 (en) solenoid valve
JPH0727821B2 (en) Electromagnetic actuator
JPH0587267A (en) Self-holding valve
JPH0648648B2 (en) Electromagnetic actuator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term