JPH064503B2 - Method for manufacturing ceramics sintered body - Google Patents

Method for manufacturing ceramics sintered body

Info

Publication number
JPH064503B2
JPH064503B2 JP63325577A JP32557788A JPH064503B2 JP H064503 B2 JPH064503 B2 JP H064503B2 JP 63325577 A JP63325577 A JP 63325577A JP 32557788 A JP32557788 A JP 32557788A JP H064503 B2 JPH064503 B2 JP H064503B2
Authority
JP
Japan
Prior art keywords
degreasing
pressure
rate
molded body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63325577A
Other languages
Japanese (ja)
Other versions
JPH02172853A (en
Inventor
茂樹 加藤
勝弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63325577A priority Critical patent/JPH064503B2/en
Publication of JPH02172853A publication Critical patent/JPH02172853A/en
Publication of JPH064503B2 publication Critical patent/JPH064503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス焼結体の製造方法に係り、さらに
詳しくは、加圧脱脂における減圧速度を制御することに
より脱脂に際して成形体の割れ等を防止したセラミック
ス焼結体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a ceramics sintered body, and more specifically, by controlling the depressurization rate in pressure degreasing, cracking of the molded body during degreasing can be prevented. The present invention relates to a method for manufacturing a ceramic sintered body that has been prevented.

[従来の技術] 従来より比較的複雑な形状を有するセラミック成形体の
成形方法の一つとして、射出成形方法が知られている。
これは、セラミック粉末とポリエチレン、ポリスチレン
等の樹脂及びワックスから成る有機バインダーを混合
し、この混合原料を金型内に充填して成形することによ
り成形体を得るものである。そして、得られた成形体
は、引続き脱脂され、次いで焼成され、焼結体が製造さ
れている。
[Prior Art] Conventionally, an injection molding method is known as one of molding methods for a ceramic molded body having a relatively complicated shape.
In this method, a ceramic powder, a resin such as polyethylene or polystyrene, and an organic binder composed of a wax are mixed, and the mixed raw material is filled in a mold to form a molded body. Then, the obtained molded body is continuously degreased and then fired to produce a sintered body.

上記において成形体から有機バインダーを除去する脱脂
手段として、従来より成形体を加熱する方法が一般的に
行なわれている。しかし、この加熱脱脂方法の場合、加
熱によりバインダーが分解されてガスが発生し、このガ
ス圧力で成形体体積が膨張して成形体にクラックが入る
という問題があった。
In the above, as a degreasing means for removing the organic binder from the molded body, a method of heating the molded body has been generally performed conventionally. However, in the case of this heating degreasing method, there is a problem that the binder is decomposed by heating and gas is generated, and the volume of the molded body expands due to this gas pressure, causing cracks in the molded body.

そこで、この問題の解決のため、成形体を加圧下に加熱
する加圧脱脂方法(特開昭60−118675号公報な
ど参照)が提案されている。この方法によれば、発生す
る分解ガスの体積を小さくすることができ、上記問題が
防止できる。
Therefore, in order to solve this problem, a pressure degreasing method of heating the molded body under pressure has been proposed (see Japanese Patent Laid-Open No. 60-118675). According to this method, the volume of the generated decomposition gas can be reduced, and the above problems can be prevented.

[発明が解決しようとする課題] しかしながら、この加圧脱脂方法においては、加圧しつ
つ加熱して有機バインダーを除去した後減圧することが
必要であるが、この減圧の際に成形体にクラックが入
り、成形体の割れを発生したりするという新たな欠点が
生じてきた。
[Problems to be Solved by the Invention] However, in this pressure degreasing method, it is necessary to heat while applying pressure to remove the organic binder and then to reduce the pressure. There has been a new defect that the particles enter and crack the molded body.

本発明者は、加圧脱脂方法における減圧方法を工夫する
ことにより上記欠点を解決できることを見出し、本発明
に到達したものである。
The present inventors have found that the above-mentioned drawbacks can be solved by devising a depressurizing method in the pressure degreasing method, and arrived at the present invention.

[課題を解決するための手段] 即ち、本発明によれば、10atm、400℃で脱脂率が
90重量%以上である、セラミック粉末とパラフィンワ
ックスを主成分とする有機バインダーからなる成形体を
加圧脱脂後焼成することにより焼結体を得るセラミック
ス焼結体の製造方法において、該成形体を粉末中に埋設
し、かつ脱脂率80重量%以降の減圧速度を20atm/hr
以下として前記加圧脱脂を行なうことを特徴とするセラ
ミックス焼結体の製造方法が提供される。
[Means for Solving the Problem] That is, according to the present invention, a molded article having a degreasing rate of 90 wt% or more at 10 atm and 400 ° C. and comprising a ceramic powder and an organic binder containing paraffin wax as a main component is added. In a method for producing a ceramics sintered body, which is obtained by firing after pressure degreasing, the molded body is embedded in powder, and the depressurization rate after the degreasing rate of 80% by weight is 20 atm / hr.
The following provides a method for producing a ceramics sintered body, characterized in that the pressure degreasing is performed.

[作用] 本発明のセラミックス焼結体の製造方法においては、成
形体の加圧脱脂工程を、成形体を粉末中に埋設するとと
もに、脱脂率80重量%以降の減圧速度を20atm/hr以
下とした。
[Operation] In the method for producing a ceramic sintered body of the present invention, the pressure degreasing step of the molded body is performed by embedding the molded body in the powder and reducing the depressurizing rate after the degreasing rate of 80% by weight to 20 atm / hr or less. did.

すなわち、本発明の加圧脱脂工程では、成形体を粉末中
に埋設することにより減圧時の炉内圧力と成形体内のガ
ス圧の差を緩衝し、成形体の割れを防止したのである。
炉内圧力の減圧速度が早い場合には、成形体内から排出
するガスの時間当りの量も多くなる。しかし、成形体内
のガスは、成形体を構成するセラミックの粒子間を通り
抜けて排出されるため、炉内圧の減圧速度よりも成形体
内圧力の減圧が遅れることとなる。その結果、炉内圧<
成形体内圧の如く圧力差が生じ、成形体内ガスの膨張し
ようとする力により成形体が割れるという事態に至る。
That is, in the pressure degreasing step of the present invention, by embedding the molded body in the powder, the difference between the pressure in the furnace at the time of depressurization and the gas pressure in the molded body was buffered, and cracking of the molded body was prevented.
When the rate of pressure reduction in the furnace is high, the amount of gas discharged from the molded body per hour also increases. However, since the gas in the molded body is discharged through the particles of the ceramics forming the molded body, the pressure inside the molded body is depressurized more slowly than the rate at which the furnace pressure is reduced. As a result, the furnace pressure <
A pressure difference such as the pressure inside the molded body is generated, and the molded body is cracked by the force of expansion of the gas inside the molded body.

そこで、本発明では、成形体として、10atm、400
℃で脱脂率が90重量%以上となるものを用い、この成
形体を粉末中に埋設し、且つ減圧速度を所定に制御する
ことにより成形体の割れを防止した。
Therefore, in the present invention, as a molded body, 10 atm, 400
Using a material having a degreasing rate of 90% by weight or more at 0 ° C., this molded body was embedded in powder and the pressure reduction rate was controlled to a predetermined level to prevent cracking of the molded body.

成形体を埋設するに用いる粉末は、成形体内圧と炉内圧
間の差を緩衝する役目をするもので、その材質としては
特に制限されないが、例えばアルミナ、活性炭、モリキ
ュラシーブなどの無機材料がガスと反応性がなく好適に
用いられる。また、この粉末としては比表面積が大きい
ものが好ましく、100〜200m2/gの範囲が好適であ
る。さらに、粉末は通常50〜150μmの粒径範囲の
ものを用いる。
The powder used for embedding the molded body serves to buffer the difference between the internal pressure of the molded body and the internal pressure of the furnace, and its material is not particularly limited, but inorganic materials such as alumina, activated carbon, and molecular sieve are used. It is preferably used because it has no reactivity with gas. Further, as the powder, one having a large specific surface area is preferable, and a range of 100 to 200 m 2 / g is preferable. Further, the powder to be used usually has a particle size range of 50 to 150 μm.

また、本発明の加圧脱脂においては、さらに脱脂率が8
0重量%までに関しては特に減圧速度に制限はなく、脱
脂率が80重量%以上になる場合にその減圧速度を20
atm/hr以下とすることが重要である。すなわち、脱脂率
が80重量%未満では、減圧速度を制御しても良好な成
形体は得られず、また、脱脂率が80重量%以上の場
合、減圧速度が20atm/hrを超えると成形体の割れが起
こる。
Further, in the pressure degreasing of the present invention, the degreasing rate is further 8
There is no particular limitation on the pressure reduction rate up to 0% by weight, and when the degreasing rate is 80% by weight or more, the pressure reduction rate is 20%.
It is important to keep it below atm / hr. That is, if the degreasing rate is less than 80% by weight, a good molded article cannot be obtained even if the depressurization rate is controlled, and if the degreasing rate is 80% by weight or more, the depressurization rate exceeds 20 atm / hr. Cracks occur.

10℃/hrで昇温脱脂中に所定温度で成形体を取り出し
脱脂率を測定する予備実験により得られた第1図に示す
温度−脱脂率の曲線から分るように、例えばパラフィン
ワックスを主成分とし他にエチレン酢酸ビニル共重合体
等を添加した有機バインダーの飛散は15〜80重量%
で活発化する。脱脂率75重量%での減圧はこの領域内
で行うこととなり、減圧スピードをコントロールして
も、発生ガス量が多いために、減圧による発生ガス量の
体積増加が著しく成形体は割れを生じる。
As can be seen from the temperature-degreasing rate curve shown in FIG. 1 obtained by a preliminary experiment in which a molded product is taken out at a predetermined temperature during degreasing at a temperature of 10 ° C./hr and the degreasing rate is measured, for example, paraffin wax is mainly used. The dispersion of the organic binder with ethylene vinyl acetate copolymer added as a component is 15 to 80% by weight.
Become active. The depressurization at a degreasing rate of 75% by weight is carried out in this region, and even if the depressurization speed is controlled, the amount of the generated gas is large, so that the volume of the generated gas increases remarkably due to the depressurization and the molded product is cracked.

一方、脱脂率80重量%以降での減圧は、活発な飛散が
終了しゆるやかになった後行なうため、ガスの発生はあ
るもののその量は少なく、又、脱脂率80重量%以上で
は、成形体には減圧スピードさえコントロールすれば成
形体に割れを生ずることなくガスを排出できるだけの細
孔が形成されており、従って減圧スピードを20atm/hr
以下にすることにより、成形体から割れを生じることな
く有機バインダーを除去できるのである。
On the other hand, the depressurization after the degreasing rate of 80% by weight is performed after the active scattering ends and becomes gentle, so that the amount of gas is small, but the degreasing rate is 80% by weight or more. Has pores that allow gas to be discharged without cracking the molded product if the pressure reduction speed is controlled. Therefore, the pressure reduction speed is 20 atm / hr.
By the following, the organic binder can be removed from the molded product without cracking.

本発明に用いるセラミック粉末としては、従来より知ら
れたアルミナ、ジルコニア等の他、いわゆるニューセラ
ミックスと称せられる窒化珪素、炭化珪素、部分安定化
ジルコニア、サイアロン等を使用することができ、通常
これらに焼結助剤としてMg、Al、Y、Ce、Zr、
Sr、B、Ta等の酸化物、窒化物、炭化物を添加した
ものが用いられる。
As the ceramic powder used in the present invention, in addition to conventionally known alumina, zirconia, and the like, so-called new ceramics such as silicon nitride, silicon carbide, partially stabilized zirconia, and sialon can be used. Mg, Al, Y, Ce, Zr as a sintering aid,
Those to which oxides, nitrides, and carbides of Sr, B, Ta, etc. are added are used.

また、有機バインダーとしては、パラフィンワックスを
主成分とするものが好適に用いられ、これにピリエチレ
ン、ポリスチレン、エチレン酢酸ビニル共重合体等を添
加したものが用いられる。
As the organic binder, those containing paraffin wax as a main component are preferably used, and those obtained by adding pyriethylene, polystyrene, ethylene vinyl acetate copolymer and the like are used.

次に、本発明に係るセラミックス焼結体の製造方法の一
例として第2図のフローチャートに従って説明する。
Next, an example of a method for manufacturing a ceramics sintered body according to the present invention will be described with reference to the flowchart of FIG.

まず、セラミック原料に所定量の焼結助剤を添加して原
料の調合を行った後混合粉砕を行なう。次いでこれをス
プレードライすることによって顆粒を得、これを静水圧
等方加圧により塊状に造粒した後これを解砕して所定粒
径のセラミック粉末を得る。このように調製されたセラ
ミック粉末に有機バインダーを加えて混練し、押出機に
より押出してペレット化し、次いでこれを射出成形して
所定形状の成形体を得る。次に、得られた成形体に脱脂
処理を施した後焼成してセラミックス焼結体を製造す
る。
First, a predetermined amount of a sintering aid is added to a ceramic raw material to prepare the raw material, and then mixed and pulverized. Then, this is spray-dried to obtain granules, and the granules are granulated by isostatic pressing under isostatic pressure and then crushed to obtain ceramic powder having a predetermined particle diameter. An organic binder is added to the thus-prepared ceramic powder, and the mixture is kneaded, extruded by an extruder to be pelletized, and then this is injection-molded to obtain a molded product having a predetermined shape. Next, the molded body thus obtained is subjected to degreasing treatment and then fired to produce a ceramics sintered body.

[実施例] 以下、本発明を実施例に基づいて更に詳細に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
[Examples] Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

(実施例) 窒化珪素(Si34)粉末100重量部に対して、焼結
助剤としてSrO2重量部、MgO3重量部、CeO2
3重量部を添加した後、混合粉砕して平均粒径0.5μ
mとした。次いでこれをスプレードライにより顆粒状と
した後、3ton/cm2の静水圧等方加圧によって塊状に造
粒し、次にこれを解砕して平均粒径30μmのセラミッ
ク粉末を得た。このように調製されたセラミック粉末1
00重量部に、有機バインダーとして結合剤(エチレン
酢酸ビニル共重合体)3重量部、可塑剤(パラフィンワ
ックス)15重量部、滑剤(ステアリン酸)2重量部を
加えて混練し、押出機により押出してペレット化し、次
いでこれを射出成形して、第3図に示す翼径55mmの翼
軸一体型ターボチャージャロータを得た。
(Example) With respect to 100 parts by weight of silicon nitride (Si 3 N 4 ) powder, 2 parts by weight of SrO, 3 parts by weight of MgO, and CeO 2 were used as sintering aids.
After adding 3 parts by weight, it is mixed and pulverized to have an average particle diameter of 0.5 μ.
m. Next, this was granulated by spray drying, and then granulated into a lump by isostatic pressing of 3 ton / cm 2 , and then crushed to obtain a ceramic powder having an average particle size of 30 μm. Ceramic powder 1 thus prepared
3 parts by weight of a binder (ethylene vinyl acetate copolymer) as an organic binder, 15 parts by weight of a plasticizer (paraffin wax), and 2 parts by weight of a lubricant (stearic acid) as an organic binder were mixed with 00 parts by weight, kneaded, and extruded by an extruder. And pelletized and then injection-molded to obtain a blade shaft integrated turbocharger rotor having a blade diameter of 55 mm shown in FIG.

次に、得られた成形体を第4図の加圧脱脂スケジュール
及び表1に示す条件下で加圧脱脂し、脱脂状況を調べ
た。
Next, the obtained molded body was subjected to pressure degreasing under the pressure degreasing schedule of FIG. 4 and the conditions shown in Table 1, and the degreasing condition was examined.

第4図の加圧脱脂スケジュールを説明すると、室温(RT)
から10℃/hの昇温速度で400℃まで昇温しその温度
で10時間保持し、その後降温するものである。また、
加圧条件は室温から140℃まではN2雰囲気下常圧と
し、140℃から400℃まではN2雰囲気下10atmの
圧力をかけた。そして、第4図のa、b、c、d及びe
点において減圧した。a、b、c、d及びe点における
減圧方法は以下の通りである。
Explaining the pressure degreasing schedule in Fig. 4, room temperature (RT)
To 10 ° C./h, the temperature is raised to 400 ° C., the temperature is maintained for 10 hours, and then the temperature is lowered. Also,
The pressurization conditions were normal pressure under N 2 atmosphere from room temperature to 140 ° C., and pressure of 10 atm under N 2 atmosphere from 140 ° C. to 400 ° C. And, a, b, c, d and e in FIG.
A vacuum was applied at the point. The pressure reduction method at points a, b, c, d and e is as follows.

a…225℃(脱脂率75重量%)で減圧した。a ... The pressure was reduced at 225 ° C. (degreasing rate 75% by weight).

b…250℃(脱脂率80重量%)で減圧した。b ... The pressure was reduced at 250 ° C. (degreasing rate 80% by weight).

c…400℃に昇温直後(脱脂率91重量%)で減圧し
た。
c ... Immediately after raising the temperature to 400 ° C. (degreasing rate 91% by weight), the pressure was reduced.

d…400℃キープ終了後(脱脂率100重量%)で減
圧した。
d ... After the completion of keeping at 400 ° C. (degreasing rate 100% by weight), the pressure was reduced.

e…400℃以下に昇温後(脱脂率100重量%)で減
圧した。
e ... After raising the temperature to 400 ° C. or lower (degreasing rate 100% by weight), the pressure was reduced.

脱脂結果を表1に示す。The degreasing results are shown in Table 1.

表1から明らかなように、成形体を粉末中に埋設させ、
脱脂率80重量%以降の減圧速度を20atm/hr以下に制
御した場合には、良好な脱脂体が得られたが、脱脂率8
0重量%未満では減圧速度を20atm/hr以下に制御して
も良好な脱脂体が得られなかった。
As is clear from Table 1, the molded body was embedded in powder,
When the depressurization rate after the degreasing rate of 80% by weight was controlled to 20 atm / hr or less, a good degreased body was obtained, but the degreasing rate was 8%.
If it is less than 0% by weight, a good degreased body cannot be obtained even if the pressure reduction rate is controlled to 20 atm / hr or less.

また、成形体を粉末中に埋設しない場合には脱脂率80
重量%以降の減圧速度を20atm/hr以下に制御しても良
好な脱脂体が得られなかった。
If the molded body is not embedded in the powder, the degreasing rate is 80
Even if the pressure reduction rate after weight% was controlled to 20 atm / hr or less, a good degreased body could not be obtained.

次に、成形体を粉末中に埋設させ、脱脂率80重量%以
降の減圧速度を20atm/hr以下に制御して得られた良好
な脱脂体を、7ton/cm2で静水圧等方加圧したのち窒素
雰囲気中にて1700℃で1hrキープして焼成したとこ
ろ、欠陥の発生もなく良好な焼結体が得られた。
Next, the molded body was embedded in powder, and the good degreased body obtained by controlling the depressurization rate after degreasing rate of 80% by weight to 20 atm / hr or less was isostatically pressed at 7 ton / cm 2. After that, when it was fired in a nitrogen atmosphere at 1700 ° C. for 1 hour, no defect was generated and a good sintered body was obtained.

[発明の効果] 以上説明したように、本発明のセラミックス焼結体の製
造方法は、成形後の脱脂処理を成形体を粉末中に埋設
し、かつ脱脂率80重量%以降の減圧速度を20atm/hr
以下とした加圧脱脂にて行なうので、成形体の割れが生
じない良好な脱脂体が得られ、その結果、歩留り良くセ
ラミックス焼結体を製造することができる。
[Effects of the Invention] As described above, in the method for manufacturing a ceramics sintered body of the present invention, the degreasing treatment after molding is performed by embedding the compacted body in powder and reducing the degreasing rate at 80 wt% or less at a pressure of 20 atm. / hr
Since the pressure degreasing described below is performed, it is possible to obtain a good degreased body that does not cause cracking of the molded body, and as a result, a ceramic sintered body can be manufactured with a good yield.

【図面の簡単な説明】[Brief description of drawings]

第1図は温度−脱脂率を示すグラフ、第2図は本発明に
係るセラミックス焼結体の製造方法を示すフローチャー
ト、第3図は成形体たる翼軸一体型ターボチャージャー
ロータを示す概略図、第4図は加圧脱脂スケジュールを
示すグラフである。
FIG. 1 is a graph showing temperature-degreasing rate, FIG. 2 is a flow chart showing a method for manufacturing a ceramics sintered body according to the present invention, and FIG. 3 is a schematic diagram showing a blade shaft integrated turbocharger rotor as a molded body, FIG. 4 is a graph showing a pressure degreasing schedule.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】10atm、400℃で脱脂率が90重量%
以上である、セラミック粉末とパラフィンワックスを主
成分とする有機バインダーからなる成形体を、加圧脱脂
後焼成することにより焼結体を得るセラミックス焼結体
の製造方法において、該成形体を粉末中に埋設し、かつ
脱脂率80重量%以降の減圧速度を20atm/hr以下とし
て前記加圧脱脂を行なうことを特徴とするセラミックス
焼結体の製造方法。
1. A degreasing rate of 90 wt% at 10 atm and 400 ° C.
In the above-described method for producing a ceramic sintered body, which comprises obtaining a sintered body by depressurizing and firing the formed body made of ceramic powder and an organic binder containing paraffin wax as a main component, And a degreasing rate of 80 wt% or less and a depressurizing rate of 20 atm / hr or less for performing the pressure degreasing.
JP63325577A 1988-12-23 1988-12-23 Method for manufacturing ceramics sintered body Expired - Fee Related JPH064503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325577A JPH064503B2 (en) 1988-12-23 1988-12-23 Method for manufacturing ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325577A JPH064503B2 (en) 1988-12-23 1988-12-23 Method for manufacturing ceramics sintered body

Publications (2)

Publication Number Publication Date
JPH02172853A JPH02172853A (en) 1990-07-04
JPH064503B2 true JPH064503B2 (en) 1994-01-19

Family

ID=18178443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325577A Expired - Fee Related JPH064503B2 (en) 1988-12-23 1988-12-23 Method for manufacturing ceramics sintered body

Country Status (1)

Country Link
JP (1) JPH064503B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2996369B2 (en) * 1992-10-27 1999-12-27 本田技研工業株式会社 Degreasing method for ceramic compacts
EP2503631A1 (en) * 2011-03-24 2012-09-26 Technical University of Denmark Method for producing ceramic devices by sintering in a low pO2 atmosphere and using sintering additives comprising a transition metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246969A (en) * 1985-08-22 1987-02-28 株式会社豊田中央研究所 Method of dewaxing ceramic formed body
JPS62100480A (en) * 1985-10-24 1987-05-09 日本特殊陶業株式会社 Method of dewaxing ceramic formed body

Also Published As

Publication number Publication date
JPH02172853A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
Claussen et al. Tailoring of Reaction‐Bonded Al2O3 (RBAO) Ceramics
US4019913A (en) Process for fabricating silicon carbide articles
JPS59141458A (en) Polyacetal binder for ceramic injection molding
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH064503B2 (en) Method for manufacturing ceramics sintered body
JP3127022B2 (en) Method for producing alumina-based composite sintered body
US5008054A (en) Ceramic injection molded body and method of injection molding the same
US4940843A (en) Method of producing non-oxide ceramic sintered bodies
EP0196600B1 (en) Method for fabricating of large cross section injection molded ceramic shapes
JP2970131B2 (en) Method for producing silicon nitride sintered body
JP3603115B2 (en) Sintering and forming method for anisotropic porous silicon nitride ceramics
JP4394784B2 (en) Silicon carbide sintered body
JP3126059B2 (en) Alumina-based composite sintered body
KR100355348B1 (en) Method of manufacturing silicon nitride/silicon carbide nanocomposites
JPS62202703A (en) Method of molding ceramics
JP2692377B2 (en) Silicon nitride sintered body and method for producing the same
JP2606719B2 (en) Manufacturing method of ceramic sintered body
JP3110256B2 (en) Method of manufacturing silicon carbide ceramic sleeve for fuel injection nozzle
JPH06263547A (en) Method for degreasing ceramic injection molded body
JPH0832590B2 (en) Silicon carbide sintered body and manufacturing method thereof
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JP3981510B2 (en) Method for producing silicon nitride sintered body
JPH07291737A (en) Atomospheric sintering method for silicon nitride ceramics
JPH06129777A (en) Zirconia ceramic tool

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees