JPH0644958A - Manufacture of negative electrode for lithium secondary battery - Google Patents

Manufacture of negative electrode for lithium secondary battery

Info

Publication number
JPH0644958A
JPH0644958A JP4199652A JP19965292A JPH0644958A JP H0644958 A JPH0644958 A JP H0644958A JP 4199652 A JP4199652 A JP 4199652A JP 19965292 A JP19965292 A JP 19965292A JP H0644958 A JPH0644958 A JP H0644958A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
carbonaceous material
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4199652A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
貴志 鈴木
Kohei Yamamoto
浩平 山本
Yoshihisa Hino
義久 日野
Yoshiro Harada
吉郎 原田
Hideaki Nagura
秀哲 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP4199652A priority Critical patent/JPH0644958A/en
Publication of JPH0644958A publication Critical patent/JPH0644958A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve battery performance by using a carbonaceous material as a negative electrode active material, and causing the material to preliminarily store a sufficient amount of lithium, regarding a lithium secondary battery causing charge and discharge processes to take place through reversible reaction where lithium released from either of positive and negative electrodes is stored in the other. CONSTITUTION:A carbonaceous material with lithium stored is water washed and dried, thereby manufacturing a negative electrode. In this case, though a reason is not known clearly, an amount of lithium in initially stored state and now allowed for reuse, or irreversible capacity becomes extremely large, when this method of manufacture is not applied. The irreversible capacity, however, can be substantially reduced, when the method is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、正極と負極との間で
一方が放出したリチウムを他方が吸蔵するという可逆反
応によって充放電を行うリチウム二次電池に関し、特
に、炭素質材料を活物質とする負極の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery that charges and discharges between a positive electrode and a negative electrode by a reversible reaction in which the other one occludes lithium emitted by the other, and particularly, a carbonaceous material as an active material. And a method for manufacturing a negative electrode.

【0002】[0002]

【従来の技術】この種のリチウム二次電池では、充電を
行うと正極からリチウムが放出されて負極に吸蔵され、
放電時には負極からリチウムが放出されて正極に吸蔵さ
れる。その際に正負極間で可逆に移動可能なリチウム量
によって電池容量が決まる。
2. Description of the Related Art In this type of lithium secondary battery, when charged, lithium is released from the positive electrode and occluded in the negative electrode,
During discharge, lithium is released from the negative electrode and occluded in the positive electrode. At that time, the battery capacity is determined by the amount of lithium that can reversibly move between the positive and negative electrodes.

【0003】この種のリチウム二次電池に使用されるリ
チウムの吸蔵・放出が可能な負極活物質については各種
有機高分子化合物を炭化した炭素質材料、モリブデン、
タングステンの酸化物などさまざまなものが研究されて
いる。現状では、リチウム・コバルト酸化物を正極とし
カーボンを負極とするものや、リチウム・マンガン酸化
物を正極としタングステン酸化物を負極とするものなど
が知られている。いずれも電解液としてはプロピレンカ
ーボネイトやジメトキシエタンに代表されるような非水
溶媒に過塩素酸リチウムや六フッ化リン酸リチウムに代
表されるような電解質を溶解した非水電解液を用いる。
また電池の形態としては、コイン形や円筒形などの各種
のケース構造を採用している。
Regarding the negative electrode active material capable of inserting and extracting lithium used in this type of lithium secondary battery, carbonaceous materials obtained by carbonizing various organic polymer compounds, molybdenum,
Various materials such as tungsten oxide have been studied. At present, there are known ones that use lithium / cobalt oxide as a positive electrode and carbon as a negative electrode, and one that uses lithium / manganese oxide as a positive electrode and tungsten oxide as a negative electrode. In both cases, a nonaqueous electrolytic solution in which an electrolyte represented by lithium perchlorate or lithium hexafluorophosphate is dissolved in a nonaqueous solvent represented by propylene carbonate or dimethoxyethane is used as the electrolytic solution.
Further, as the form of the battery, various case structures such as coin type and cylindrical type are adopted.

【0004】[0004]

【発明が解決しようとする課題】従来のリチウム二次電
池では、理論的な容積エネルギー密度および重量エネル
ギー密度を十分に生かせず、エネルギー密度が実用上満
足できないという問題があった。本発明者らはその原因
が次のような点にあることを究明した。
The conventional lithium secondary battery has a problem that the theoretical volumetric energy density and weight energy density cannot be fully utilized and the energy density cannot be practically satisfied. The present inventors have determined that the cause is as follows.

【0005】従来のリチウム二次電池の製造に際して
は、正極のリチウム吸蔵・放出が可能な容量と負極のリ
チウム吸蔵・放出が可能な容量とが等しくなるように両
極の活物質の量を決定していた。これは正極と負極との
間でそれぞれの吸蔵容量分のリチウムを充放電に伴って
可逆に移動させることができるという前提に基づいてい
る。しかし各種の電極材料について詳細な分析・測定を
行った結果、電極材料によっては一度吸蔵されたリチウ
ムの一部が吸蔵されたままで再放出されないことが解っ
た。しかも現用されている電極材料にも、吸蔵されたま
ま放出されないリチウムの割合が相当大きいものがある
ことが解った。特に負極活物質として用いるカーボンで
代表される炭素質材料の場合、その種類によって程度の
大小はあるもののリチウムの初期吸蔵量に対して50%
程度しか放出されず、その30%のリチウム量しか吸蔵
・放出を繰り返すことができない。残りの50%のリチ
ウムはカーボンに吸蔵されたまま残留し、以後の充放電
には関与しなくなる。
In the production of a conventional lithium secondary battery, the amounts of active materials of both electrodes are determined so that the capacity of the positive electrode capable of absorbing and releasing lithium and the capacity of the negative electrode capable of absorbing and releasing lithium are equal. Was there. This is based on the premise that lithium of the storage capacity between the positive electrode and the negative electrode can be reversibly moved with charge and discharge. However, as a result of detailed analysis and measurement of various electrode materials, it was found that, depending on the electrode material, part of the lithium that was once occluded is still occluded and is not released again. Moreover, it has been found that some of the currently used electrode materials have a considerably large proportion of lithium that is occluded and is not released. In particular, in the case of a carbonaceous material typified by carbon used as a negative electrode active material, the amount is 50% with respect to the initial storage amount of lithium, although the size varies depending on the type.
Only about 30% of the amount of lithium is released, and the occlusion / release of lithium can be repeated. The remaining 50% of lithium remains absorbed in the carbon and does not participate in subsequent charge and discharge.

【0006】従って正極にLiCoO2 、負極にカーボ
ンを用い、両極のリチウム吸蔵容量(初期吸蔵量)が等
しくなるように設計した従来のリチウム二次電池では、
正極側が吸蔵容量のほぼ100%のリチウムを吸蔵・放
出できるのに対し、負極は50%のリチウムしか吸蔵・
放電することができず、この少ない方の容量が電池の容
量を決定し、そのため正極の多くの部分が負極の初期充
電に関与しただけでその後は無駄になる。以上のことか
ら容積エネルギー密度および重量エネルギー密度が期待
値より大幅に小さくなっていた。
Therefore, in a conventional lithium secondary battery designed using LiCoO 2 for the positive electrode and carbon for the negative electrode and designed so that the lithium storage capacities (initial storage amounts) of both electrodes are equal,
The positive electrode can store and release almost 100% of its storage capacity, while the negative electrode stores and stores only 50% of lithium.
It cannot be discharged, and this smaller capacity determines the capacity of the battery, so that most of the positive electrode is only involved in the initial charging of the negative electrode and is wasted thereafter. From the above, volumetric energy density and weight energy density were significantly smaller than expected values.

【0007】この発明は前述した従来の問題点に鑑みな
されたもので、その目的は、負極活物質として炭素質材
料を用いるリチウム二次電池において、吸蔵されたまま
再放出されないリチウムの量を少なくすることができる
ようにした負極の製造方法を提供することにあり、これ
によって容積エネルギー密度および重量エネルギー密度
の大きなリチウム二次電池を実現することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to reduce the amount of lithium that is occluded but not re-emitted in a lithium secondary battery using a carbonaceous material as a negative electrode active material. Another object of the present invention is to provide a method for producing a negative electrode that can achieve the above, and thereby to realize a lithium secondary battery having a large volume energy density and a large weight energy density.

【0008】[0008]

【課題を解決するための手段】そこでこの発明では、正
極と負極との間で一方が放出したリチウムを他方が吸蔵
するという可逆反応によって充放電を行うリチウム二次
電池において、負極活物質としての炭素質材料にリチウ
ムを充分に吸蔵させた状態でこれを水洗処理し、その後
乾燥処理するようにした。
Therefore, in the present invention, as a negative electrode active material, a lithium secondary battery is charged and discharged by a reversible reaction in which one of the positive and negative electrodes absorbs lithium emitted by the other and the other occludes lithium. The carbonaceous material was washed with water in a state where lithium was sufficiently absorbed therein, and then dried.

【0009】[0009]

【作用】前述のように炭素質材料では吸蔵されたまま再
放出されないリチウムの量(不可逆容量)が非常に大き
いが、その理由と、この発明により不可逆容量が小さく
なる理由の詳細については今のところ不明である。現状
では次のように考えられる。
As described above, in the carbonaceous material, the amount of lithium that is occluded but not re-released (irreversible capacity) is very large. The reason for this and the reason why the present invention reduces the irreversible capacity are as follows. However, it is unknown. At present, it can be considered as follows.

【0010】前記不可逆容量分のリチウムは炭素質材料
の内部へ吸蔵されるというよりは、炭素質材料の表面に
おいてリチウムイオンの還元が起こると同時に、有機電
解液と何らかの反応を起こして安定な化合物を生成する
かまたは炭素質材料表面の表面官能基と反応し、電気化
学的操作ではリチウムイオンとして再び取り出すことが
できない状態になっていると考えられる。そして、この
発明を採用してリチウム吸蔵後の炭素質材料を水洗処理
することにより前記の化合物が水と反応し、その表面に
リチウムの吸蔵・放出が可能な膜が生成されるか、ある
いはリチウムイオンが移動可能な膜が生成され、その結
果前述の不可逆容量が少なくなると考えられる。
The irreversible capacity of lithium is not occluded in the carbonaceous material, but rather, lithium ions are reduced on the surface of the carbonaceous material, and at the same time, some reaction occurs with the organic electrolytic solution to provide a stable compound. It is considered that the compound is generated or reacts with the surface functional group on the surface of the carbonaceous material, and cannot be extracted again as lithium ion by an electrochemical operation. Then, by adopting the present invention and washing the carbonaceous material after lithium absorption with water, the above compound reacts with water to form a film capable of absorbing and desorbing lithium on the surface thereof, or It is considered that a film in which ions can move is generated, and as a result, the above-mentioned irreversible capacity decreases.

【0011】[0011]

【実施例】炭素材料にリチウムを吸蔵する方法としては
主として(1)TWO−BULB法、(2)混合法、
(3)加圧法、(4)溶媒法、(5)電気化学的方法の
5つがある。以下にその概略を示す。
Examples As a method of occluding lithium in a carbon material, (1) TWO-BULB method, (2) mixing method,
There are five methods: (3) pressurizing method, (4) solvent method, and (5) electrochemical method. The outline is shown below.

【0012】(1)TWO−BULB法 図1のように反応容器のガラス管3の一端を封じ、炭素
質材料4の試料および金属リチウム片5をある距離だけ
隔てて別の場所に設置して真空排気後封管する。2組の
別々の電気炉1、2を用いて、T1 >T2 (T1 は炭素
質材料4の温度、T2 は金属リチウム片5の温度)とな
るように温度を操作し、炭素質材料4に気相のリチウム
を接触、反応させる方法。
(1) TWO-BULB Method As shown in FIG. 1, one end of a glass tube 3 of a reaction vessel is sealed, and a sample of carbonaceous material 4 and a piece of metallic lithium 5 are placed at a different distance from each other. After vacuum evacuation, seal the tube. Using two sets of separate electric furnaces 1 and 2, the temperature is controlled so that T1> T2 (T1 is the temperature of the carbonaceous material 4, T2 is the temperature of the metallic lithium piece 5), and the carbonaceous material 4 is A method of contacting and reacting with vapor phase lithium.

【0013】(2)混合法 不活性ガス雰囲気、または除湿空気雰囲気において、炭
素質材料と粉末状の金属リチウムを混合し加熱する方
法。
(2) Mixing method A method in which a carbonaceous material and powdered metallic lithium are mixed and heated in an inert gas atmosphere or a dehumidified air atmosphere.

【0014】(3)加圧法 不活性ガス雰囲気、または除湿空気雰囲気において、炭
素質材料と粉末状の金属リチウムを混合し加圧する方
法。
(3) Pressurizing method A method of mixing and pressurizing a carbonaceous material and powdery metallic lithium in an inert gas atmosphere or a dehumidified air atmosphere.

【0015】(4)溶媒法 不活性ガス雰囲気、または除湿空気雰囲気において、適
当な条件下で金属リチウムを有機溶媒に溶解させ、この
溶液中に炭素質材料を浸漬させた後ガラスフィルタ等に
よって濾過した後同じ有機溶媒で洗浄する方法。
(4) Solvent Method In an inert gas atmosphere or a dehumidified air atmosphere, metallic lithium is dissolved in an organic solvent under appropriate conditions, a carbonaceous material is immersed in this solution, and then filtered with a glass filter or the like. Then, wash with the same organic solvent.

【0016】(5)電気化学的方法 不活性ガス雰囲気、または除湿空気雰囲気において、リ
チウム塩を含む有機溶媒にリチウム金属またはリチウム
化合物を対極として電解または短絡させる方法。またこ
の時、粉末状金属リチウムと炭素質材料を混ぜ合わせ、
リチウム塩を含む有機溶媒中に浸漬させても同様の効果
が得られる。
(5) Electrochemical method A method of electrolyzing or short-circuiting an organic solvent containing a lithium salt with a lithium metal or a lithium compound as a counter electrode in an inert gas atmosphere or a dehumidified air atmosphere. At this time, the powdery metallic lithium and carbonaceous material are mixed,
Similar effects can be obtained by immersing in an organic solvent containing a lithium salt.

【0017】これら5つの何れの方法を用いても炭素質
材料にリチウムを吸蔵することは可能であることが知ら
れているが、ここでは最も簡単に行える電気化学的方法
を用いた場合の実施例の詳細を示す。なおこの時炭素質
材料に導電剤としてアセチレンブラック、結着剤として
PTFEを重量比で10:0.1:1にして混合、混練
し造粒して負極合剤とした。
It is known that it is possible to occlude lithium in the carbonaceous material by using any of these five methods. Here, the electrochemical method, which is the simplest, can be used. Details of the example are shown below. At this time, acetylene black as a conductive agent and PTFE as a binder were mixed and kneaded at a weight ratio of 10: 0.1: 1 to form a negative electrode mixture.

【0018】《比較例》石炭ピッチを窒素気流中600
℃,3時間、1200℃,3時間の熱処理を行い、ピッ
チコークスを得た。これらのピッチコークスを用いて、
図2に示すCR2016偏平型電池タイプテストセルを
作製した。まずピッチコークス96重量部に対して、結
着剤としてのポリテトラフルオロエチレン樹脂4重量部
を加えて混練、造粒後、20mgを秤量した。この合剤を
内径11mmの成形型に入れ、3t/cm2 の圧力で成形し、
円板状の電極16とした。これを負極端子板12の内底
部に設けた直径11.2mmのステンレス(SUS30
4)ネット14に圧着し、この上にポリプロピレン製不
織布17、マイクロポーラスフィルム18を順に重ね合
わせ、封口ガスケット19で固定した。一方、正極活物
質のLiCoO2 は、酸化コバルト(CoO)と炭酸リ
チウム(Li2 CO3 )をモル比で2:1に混合し、空
気中で900℃,9時間加熱したものを使用した。この
LiCoO2 80重量部に対して、結着剤としてのポリ
テトラフルオロエチレン樹脂10重量部、導電剤として
のアセチレンブラック10重量部を加えて混練、造粒
後、100mgを秤量した。この合剤を、内径15.4mm
の成形型に入れ、3t/cm2 の圧力で成形し、円板状の電
極15とした。これを正極缶11の内底部に設けた直径
15mmのチタンネット13に圧着した。両者を非水電解
液中で重ね合わせ、正極缶11に負極端子板12をカシ
メ付け密封し、CR2016偏平型電池タイプテストセ
ルを作製した。非水電解液として、プロピレンカーボネ
ート−ジメトキシエタン混合溶媒(体積比で1:1)に
1mol /l のLiClO4 を溶解させたものを使用し
た。なおこのテストセルの活物質量は、電気化学当量と
し正極>>負極となるようにし、電池容量が負極規制と
なるように設定した。
<< Comparative Example >> Coal pitch is 600 in a nitrogen stream.
Heat treatment was performed at 1,300 ° C. for 3 hours at 1,200 ° C. to obtain pitch coke. With these pitch cokes,
A CR2016 flat battery type test cell shown in FIG. 2 was produced. First, 4 parts by weight of a polytetrafluoroethylene resin as a binder was added to 96 parts by weight of pitch coke, kneaded and granulated, and then 20 mg was weighed. Put this mixture in a mold with an inner diameter of 11 mm and mold at a pressure of 3 t / cm 2 ,
The disc-shaped electrode 16 was used. This is provided on the inner bottom of the negative electrode terminal plate 12 with stainless steel having a diameter of 11.2 mm (SUS30
4) It was pressure-bonded to the net 14, a polypropylene non-woven fabric 17 and a microporous film 18 were superposed in this order, and fixed with a sealing gasket 19. On the other hand, as LiCoO 2 as the positive electrode active material, cobalt oxide (CoO) and lithium carbonate (Li 2 CO 3 ) were mixed at a molar ratio of 2: 1 and heated in air at 900 ° C. for 9 hours. To 80 parts by weight of this LiCoO 2, 10 parts by weight of polytetrafluoroethylene resin as a binder and 10 parts by weight of acetylene black as a conductive agent were added, kneaded and granulated, and then 100 mg was weighed. This mixture has an inner diameter of 15.4 mm
It was placed in the molding die of No. 3 and was molded at a pressure of 3 t / cm 2 to obtain a disk-shaped electrode 15. This was pressed onto a titanium net 13 having a diameter of 15 mm provided on the inner bottom of the positive electrode can 11. Both of them were superposed in a non-aqueous electrolyte solution, and the negative electrode terminal plate 12 was caulked and sealed to the positive electrode can 11 to produce a CR2016 flat battery type test cell. As the non-aqueous electrolyte, a solution prepared by dissolving 1 mol / l LiClO 4 in a propylene carbonate-dimethoxyethane mixed solvent (volume ratio 1: 1) was used. The amount of active material in this test cell was set to electrochemical equivalent such that positive electrode >> negative electrode, and battery capacity was regulated to negative electrode.

【0019】このテストセルを組み立てた後、電流密度
0.5mA/cm2 の定電流で4.2Vまで充電後、2.8V
まで放電した。この結果得られた充電、及び放電カー
ブを図3に比較例(図3中の一点鎖線)として示す。
After assembling this test cell, it was charged to 4.2V with a constant current having a current density of 0.5mA / cm 2 and then 2.8V.
Discharged up to. The charging and discharging curves obtained as a result are shown in FIG. 3 as a comparative example (dotted line in FIG. 3).

【0020】《実施例》負極合剤30mgを秤量し、比較
例の場合と同様にこの合剤を内径11mmの成形型に入
れ、3t /cm2 の圧力で成形し、円板状の電極21とし
た。一方、直径15mmのステンレスネット22にニッケ
ルリード板25をスポット溶接した電極担持体にこの円
板状電極21を圧着し、炭素質材料極を作製した。この
炭素質材料極を、200℃,5時間、真空状態で乾燥し
た。その後、除湿空気雰囲気で、プロピレンカーボネー
ト−ジメトキシエタン混合溶媒(体積比で1:1)に1
mol/l のLiClO4 を溶解させ、ガラス製のフタ2
0aと同じくガラス製の容器本体20bとからなる容器
20に貯留された非水電解液23中に、この炭素質材料
極とニッケルリード板25の付いたリチウム金属24と
を、図4に示すように配置し、両ニッケルリード板2
5,25間を導線26で接続して外部短絡を5時間行っ
た。以上の操作後、炭素質材料極を蒸留水500ml中に
浸漬し、24時間放置した後、炭素質材料極のステンレ
スネット22からカーボンを脱落させ、このカーボンを
200℃,5時間、真空状態で乾燥した。このカーボン
20mgを秤量し、内径11mmの成形型に入れ、3t /cm
2 の圧力で成形し、円板状の電極16とした。以後比較
例の場合と同様にしてCR2016偏平型電池タイプテ
ストセルを作製した。
<Example> 30 mg of the negative electrode mixture was weighed, and this mixture was put into a molding die having an inner diameter of 11 mm and molded under a pressure of 3 t / cm 2 in the same manner as in the comparative example. And On the other hand, the disc-shaped electrode 21 was pressure-bonded to an electrode carrier in which a nickel lead plate 25 was spot-welded to a stainless net 22 having a diameter of 15 mm to produce a carbonaceous material electrode. This carbonaceous material electrode was dried in vacuum at 200 ° C. for 5 hours. Then, in a dehumidified air atmosphere, add 1 to a propylene carbonate-dimethoxyethane mixed solvent (volume ratio 1: 1).
Dissolve mol / l LiClO 4 and add a glass lid 2
As shown in FIG. 4, the carbonaceous material electrode and the lithium metal 24 with the nickel lead plate 25 are placed in the non-aqueous electrolytic solution 23 stored in the container 20 made of the glass container body 20b similar to that of 0a. Placed on both nickel lead plates 2
An external short circuit was carried out for 5 hours by connecting the wires 5 and 25 with a lead wire 26. After the above operation, the carbonaceous material electrode is immersed in 500 ml of distilled water and left for 24 hours, then the carbon is dropped from the stainless steel net 22 of the carbonaceous material electrode, and the carbon is kept in a vacuum state at 200 ° C. for 5 hours. Dried. 20 mg of this carbon is weighed and put into a mold having an inner diameter of 11 mm, 3 t / cm
It was molded under a pressure of 2 to obtain a disk-shaped electrode 16. Thereafter, a CR2016 flat battery type test cell was prepared in the same manner as in the comparative example.

【0021】このテストセルを組み立てた後、電流密度
0.5mA/cm2 の定電流で4.2Vまで充電後、2.8V
まで放電した。この結果得られた充電、及び放電カー
ブを図3に実施例(図3中の実線)として示す。
After assembling this test cell, it was charged to 4.2V with a constant current having a current density of 0.5mA / cm 2 and then 2.8V.
Discharged up to. The charging and discharging curves obtained as a result are shown in FIG. 3 as an example (solid line in FIG. 3).

【0022】[0022]

【発明の効果】以上詳細に説明したように、リチウムを
吸蔵させた炭素質材料を水洗し乾燥して負極を製造する
ようにした本発明によれば、その理由は明らかではない
が、本発明を適用しない場合には初期吸蔵されたままで
再利用不可能なリチウムの量(不可逆容量)が非常に大
きかったのに対し、大幅に不可逆容量を減らすことがで
きる。そのため本発明の方法により製造した負極を用い
てリチウム二次電池を構成すれば、容積エネルギー密度
および重量エネルギー密度の大きな電池を実現すること
ができる。
As described in detail above, according to the present invention in which a carbonaceous material in which lithium is occluded is washed with water and dried to produce a negative electrode, the reason is not clear, but the present invention In the case where is not applied, the amount of lithium that was initially occluded and cannot be reused (irreversible capacity) was very large, whereas the irreversible capacity can be significantly reduced. Therefore, if a lithium secondary battery is constructed using the negative electrode manufactured by the method of the present invention, a battery having a large volume energy density and a large weight energy density can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素質材料にリチウムを吸蔵させる方法の1つ
であるTWO−BULB法の説明図である。
FIG. 1 is an explanatory diagram of a TWO-BULB method, which is one of the methods for occluding lithium in a carbonaceous material.

【図2】CR2016偏平型電池タイプテストセルの側
断面図である。
FIG. 2 is a side sectional view of a CR2016 flat battery type test cell.

【図3】この発明の一実施例の効果を示す放充電特性図
である。
FIG. 3 is a discharge-charging characteristic diagram showing effects of one embodiment of the present invention.

【図4】この発明の一実施例に係る炭素質材料にリチウ
ムを吸蔵させるための装置を示す説明図である。
FIG. 4 is an explanatory view showing an apparatus for occluding lithium in a carbonaceous material according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原田 吉郎 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Harada 5-311, Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Hidenori Nagura 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electrochemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極との間で一方が放出したリチ
ウムを他方が吸蔵するという可逆反応によって充放電を
行うリチウム二次電池において、負極活物質としての炭
素質材料にリチウムを充分に吸蔵させた状態でこれを水
洗処理し、その後乾燥処理することを特徴とするリチウ
ム二次電池の負極の製造方法。
1. In a lithium secondary battery that is charged and discharged by a reversible reaction in which one of the positive electrodes and the negative electrode absorbs lithium released by the other, the carbonaceous material as the negative electrode active material sufficiently absorbs lithium. A method for producing a negative electrode for a lithium secondary battery, which comprises subjecting this to a water-washing treatment and then a drying treatment.
JP4199652A 1992-07-27 1992-07-27 Manufacture of negative electrode for lithium secondary battery Pending JPH0644958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4199652A JPH0644958A (en) 1992-07-27 1992-07-27 Manufacture of negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4199652A JPH0644958A (en) 1992-07-27 1992-07-27 Manufacture of negative electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0644958A true JPH0644958A (en) 1994-02-18

Family

ID=16411401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4199652A Pending JPH0644958A (en) 1992-07-27 1992-07-27 Manufacture of negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0644958A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102324A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Nonaqueous secondary battery
JP2007500922A (en) * 2003-07-29 2007-01-18 エフエムシー・コーポレイション Dispersion of lithium metal at the electrode.
JP2020080294A (en) * 2018-11-12 2020-05-28 国立研究開発法人物質・材料研究機構 Battery evaluation sample accommodation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102324A (en) * 1994-09-30 1996-04-16 Mitsubishi Chem Corp Nonaqueous secondary battery
JP2007500922A (en) * 2003-07-29 2007-01-18 エフエムシー・コーポレイション Dispersion of lithium metal at the electrode.
JP2020080294A (en) * 2018-11-12 2020-05-28 国立研究開発法人物質・材料研究機構 Battery evaluation sample accommodation device

Similar Documents

Publication Publication Date Title
JPH0945373A (en) Lithium secondary battery
JP3875053B2 (en) ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME
JPH1140156A (en) Nonaqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
JP3154719B2 (en) Non-aqueous electrolyte secondary battery
JP4501181B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP3368918B2 (en) Lithium secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP2001076720A (en) Magnesium compound, nonaqueous electrolyte battery using it, synthetic method of magnesium compound, and manufacturing method of nonaqueous electrolyte battery using it
JP2002260722A (en) Lithium secondary battery
EP0810681A1 (en) Nonaqueous electrolyte secondary battery
JPH04162370A (en) Nonaqueous electrolyte secondary battery
JPH0644958A (en) Manufacture of negative electrode for lithium secondary battery
JPH07335221A (en) Coin type nonelectrolytic secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JPH04171674A (en) Nonaqueous-electrolyte secondary battery
JPH1083835A (en) Manufacture of non-aqueous electrolytic secondary battery
JP3558751B2 (en) Non-aqueous solvent secondary battery
JPH06163078A (en) Nonaqueous electrolytic secondary battery
JPH0287462A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JP4250781B2 (en) Lithium secondary battery
JPH05226003A (en) Nonaqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery