JPH0644549Y2 - Compound impeder - Google Patents

Compound impeder

Info

Publication number
JPH0644549Y2
JPH0644549Y2 JP1986166933U JP16693386U JPH0644549Y2 JP H0644549 Y2 JPH0644549 Y2 JP H0644549Y2 JP 1986166933 U JP1986166933 U JP 1986166933U JP 16693386 U JP16693386 U JP 16693386U JP H0644549 Y2 JPH0644549 Y2 JP H0644549Y2
Authority
JP
Japan
Prior art keywords
welding
impeder
edges
pipe
tube material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986166933U
Other languages
Japanese (ja)
Other versions
JPS6371986U (en
Inventor
隆 片之坂
修 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1986166933U priority Critical patent/JPH0644549Y2/en
Publication of JPS6371986U publication Critical patent/JPS6371986U/ja
Application granted granted Critical
Publication of JPH0644549Y2 publication Critical patent/JPH0644549Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【考案の詳細な説明】 A.産業上の利用分野 この考案は、高周波電縫管溶接装置に用いられる複合イ
ンピーダに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a composite impeder used in a high frequency electric resistance welded pipe welding apparatus.

B.考案の概要 本考案は、高周波電縫管製造用ラインの管素材のVシー
ム溶接装置において、Vシーム溶接部に設置したV字状
ギヤツプの溶接点を加熱するための高周波電力が供給さ
れる加熱誘導コイルに対応するフエライト・コアと、そ
の前段にあつて管状に成形された管素材の両縁側部を予
熱するための20KHz程度以下の周波数の電力が供給され
る予熱コイルに対応する硅素鋼板積層コアとを一体的に
構成した複合インピーダを管素材のVシーム溶接部及び
予熱部に容易に設置し得るようにし、かつ管径が比較的
小さなものであつても加熱に関与しない無効な電流を削
減し、効率的に予熱および高周波溶接をなし得るように
して、高周波電縫管溶接装置の性能を向上し得るように
したものである。
B. Outline of the Invention The present invention is, in a V seam welding device for a pipe material of a high frequency electric resistance welded pipe manufacturing line, supplied with high frequency power for heating a welding point of a V-shaped gearup installed at a V seam welding portion. Corresponding to the heating induction coil and the silicon corresponding to the preheating coil to which the power of the frequency of about 20 KHz or less is supplied to preheat both edge sides of the tubular material formed in a tubular shape in front of it. A composite impeder integrally formed with a laminated steel plate core can be easily installed in the V seam welded portion and preheated portion of the pipe material, and even if the pipe diameter is relatively small, it does not contribute to heating. It is intended to improve the performance of the high frequency electric resistance welded pipe welding apparatus by reducing the electric current and efficiently performing preheating and high frequency welding.

C.従来の技術 高周波電縫管の溶接装置には、第8図に示す接触式と、
第9図に示す誘導式とがある。接触式は第8図に示すよ
うに、金属板を管状に成形した管素材1を相対向して配
置した一対の加圧ロール2a,2b間に挿通し、これを矢印
Aで示す進行方向に移動するようにする。
C. Conventional Technology For the welding equipment of high frequency electric resistance welded pipe, the contact type shown in FIG.
There is an induction type shown in FIG. In the contact type, as shown in FIG. 8, a tube material 1 formed by forming a metal plate into a tube is inserted between a pair of pressure rolls 2a and 2b arranged opposite to each other, and the pressure rolls 2a and 2b are moved in the traveling direction indicated by an arrow A. Try to move.

この場合、管素材1の進行方向にみて加圧ロール2a,2b
の手前側にはV字状ギヤツプ5が形成され、その対向す
る縁部5a,5bには100KHzから400KHz程度の周波数の高周
波電源7に接続された一対の接触子6a,6bによつて高周
波電力が供給され、溶接電流Iが流れることにより両縁
部が加熱される。さらに加圧ロール2a,2bによる加圧に
よつてV字状ギヤツプ5が閉じて両縁部5a,5bが接する
Vシーム溶接点4において、前記両縁部5a,5bの温度が
溶融点近傍に達し、加圧されながら溶接接合が行なわれ
る。
In this case, the pressure rolls 2a, 2b when viewed in the traveling direction of the tube material 1.
A V-shaped gear tap 5 is formed on the front side of the, and the opposite edge portions 5a, 5b are supplied with a high frequency power by a pair of contacts 6a, 6b connected to a high frequency power source 7 having a frequency of about 100 KHz to 400 KHz. Is supplied and the welding current I flows to heat both edges. Further, at the V seam welding point 4 where the V-shaped gear 5 is closed by the pressure applied by the pressure rolls 2a, 2b and both edges 5a, 5b are in contact, the temperature of the both edges 5a, 5b is near the melting point. Reaching and welding is performed while being pressurized.

また、第9図に示す誘導式の電縫管溶接装置にあつて
は、第8図に示す接触子6a,6bに代えて誘導コイル3を
用いてV字状ギヤツプ5の対向する縁部5a,5bに溶接電
流Iを流すもので、その他の点は接触式と同じである。
Further, in the induction type electric resistance welded pipe welding apparatus shown in FIG. 9, an induction coil 3 is used in place of the contacts 6a, 6b shown in FIG. 8 to face opposite edges 5a of the V-shaped gear 5. The welding current I is applied to the and 5b, and the other points are the same as the contact type.

このような従来の電縫管溶接装置によると次のような問
題を生ずる。
According to such a conventional electric resistance welded pipe welding apparatus, the following problems occur.

即ち、高周波電縫管溶接の場合、通常使用される周波数
が100〜400KHz程度と高く、近接効果により対向する縁
部5a,5bの先端部分のみが局部加熱されるので、溶接後
はこの局部加熱された先端部分が急冷される。この急冷
のため溶接部が硬化するので、溶接部を再加熱して焼鈍
する必要が生じる。ところで、この焼鈍のための電力は
溶接電力の2〜4倍の大きな電力が必要である。
That is, in the case of high-frequency electric resistance welding, the frequency that is normally used is as high as 100 to 400 KHz, and only the tips of the edges 5a and 5b facing each other are locally heated by the proximity effect. The tip portion thus cooled is rapidly cooled. Since the quenching hardens the weld, it is necessary to reheat and anneal the weld. By the way, the electric power for this annealing needs a large electric power of 2 to 4 times the welding electric power.

また、焼鈍は溶接に続いてライン内で行なわれることが
一般的であるが、再加熱した溶接部を徐冷する(すなわ
ち硬化しないように)ため徐冷区間として例えば35mと
いうような非常に長い距離が必要であり、このためにラ
インが長いものになつてしまうという問題がある。ま
た、縁部に供給する高周波電力の周波数を前記の値より
かなり低くするとは、加熱される範囲が広くなるものの
溶接にとっては不都合である。
In addition, annealing is generally performed in-line following welding, but since the reheated weld is gradually cooled (that is, not to be hardened), the annealing section is very long, such as 35 m. There is a problem in that the line is long because it requires a distance. Further, if the frequency of the high frequency power supplied to the edge portion is set to be considerably lower than the above value, the heating range becomes wide, but this is inconvenient for welding.

また電縫管溶接においては、管素材1の移動速度を最低
でもほぼ15m/mm以上にしないと安定な溶接が行なわれな
いことが解明されている(つまり、15m/mm以下では溶接
点の位置が安定せず、またエツジコーナーのオーバ・ヒ
ートが顕著になり、溶接品質が低下する)。このため、
管素材1が厚肉になると溶接のための必要電力が増大
し、 例えば肉厚20mm、溶接速度(=移動速度)15m/mmの場
合、溶接装置は2.000Kw程度の大容量が必要となる。ま
た、このような大容量では、一般に第8図に示す接触式
の給電方式が採用されるが、通電電流値が増大し、接触
子6a,6bの通電電流密度が増大するのに比例して接触子
の消耗が急速に増加し連続使用が困難になる。例えば、
4時間程度の連続運転にしか耐えなくなり、そのたびに
ラインを停止して接触子の交換を行なわねばならず、ラ
インの生産性が著しく低下する。要するに、接触子の消
耗を抑えるには通電電流値を抑える必要があるが、従来
方式では厚肉管についてはこれが難しいという問題であ
る。
In addition, in ERW pipe welding, it has been clarified that stable welding cannot be performed unless the moving speed of the pipe material 1 is at least approximately 15 m / mm (that is, the welding point position is 15 m / mm or less). Is not stable, and overheating of the edge corner becomes noticeable, resulting in poor welding quality). For this reason,
If the pipe material 1 becomes thicker, the power required for welding increases, and for example, when the wall thickness is 20 mm and the welding speed (= moving speed) is 15 m / mm, the welding device requires a large capacity of about 2.000 Kw. Further, in such a large capacity, the contact type power feeding method shown in FIG. 8 is generally adopted, but in proportion to the increase of the energizing current value and the energizing current density of the contacts 6a and 6b, The wear of the contactor increases rapidly, making continuous use difficult. For example,
It can only withstand continuous operation for about 4 hours, each time the line must be stopped and the contacts replaced, which significantly reduces the productivity of the line. In short, it is necessary to suppress the value of the applied current in order to suppress the wear of the contactor, but this is a problem that the conventional method is difficult for the thick-walled pipe.

また管素材1の肉厚が厚くなるに従つて、健全な溶接を
施すうえで難点が生じる。これを説明すると、近接効果
を利用してV字状ギヤツプ5の縁部5a,5bを効果的に加
熱して溶接を行なうため溶接には通常100〜400KHzの高
い周波数の電力が使用される。ところが、このような高
い周波数で加熱する場合、管素材1が厚肉になると、対
向する縁部5a,5bのコーナ(即ち、縁部の内,外径側の
角)に電流が集中し、このコーナが先に温度上昇して過
熱状態となり、縁部5a,5bの中央部(即ち、縁部の内,
外径側の中間)との温度差及び加熱幅の差が大きくなり
均等に加熱されなくなる。
Further, as the wall thickness of the pipe material 1 becomes thicker, a difficulty occurs in performing sound welding. To explain this, in order to effectively heat the edges 5a, 5b of the V-shaped gear 5 by the proximity effect to perform welding, electric power with a high frequency of 100 to 400 KHz is usually used for welding. However, in the case of heating at such a high frequency, when the tube material 1 becomes thick, the current concentrates on the corners of the opposing edge portions 5a and 5b (that is, the corners on the inside and outside diameter sides), This corner first rises in temperature and becomes overheated, and the central portions of the edges 5a and 5b (that is, of the edges,
The difference in temperature and the heating width from the middle of the outer diameter side) become large, and the heating is not performed uniformly.

即ちこの従来方法によると管素材1の両縁部は溶接点4
をピークとしてその前後で急激に昇温しかつ急激に降温
している(そのために焼鈍が必要とされる)。これを第
10図及び第11図によつて説明すると100〜400KHz程度の
高い周波数で急激に加熱されることにより両縁部の端
面、つまり第11図及び第10図に示すようにa点,b点のみ
が局部的に加熱されc点との温度差が大きく、降温時c
点に熱が奪われることにより急激に冷却されることにな
るのである。また、b点に比べてもa点の昇温の方が早
いので管素材が厚肉になるに従い対向する両縁部5a,5b
の内,外径側のコーナーに近い部分のみが円周方向の広
い範囲にわたつて溶融点近傍の温度に加熱され均等に加
熱されなくなる。
That is, according to this conventional method, both edges of the pipe blank 1 are welded to each other at the welding points 4
The temperature rises sharply before and after the peak, and the temperature drops rapidly (for that reason, annealing is required). This is the first
Explaining with reference to FIGS. 10 and 11, by rapidly heating at a high frequency of about 100 to 400 KHz, the end faces of both edges, that is, only points a and b as shown in FIGS. 11 and 10. Is locally heated and the temperature difference from point c is large,
The heat is taken away by the spot, so that it is rapidly cooled. Moreover, since the temperature rise at point a is faster than at point b, both edges 5a and 5b facing each other as the pipe material becomes thicker
Among them, only the part near the corner on the outer diameter side is heated to a temperature near the melting point over a wide range in the circumferential direction and is not evenly heated.

ところで、電縫管溶接では、溶接点付近の温度に達した
両縁部5a,5bの先端部分が、溶接に際して加圧ロール2a,
2bによる加圧によつて管の内径側に押出されて健全な溶
接が行なわれることが望ましい。しかるに、厚肉管の場
合、上述のように縁部5a,5bの温度及び加熱幅の不均一
(つまり、縁部の中央部より内外径側が高温及び内外径
側が加熱範囲が広い)のため溶融点近傍の温度に達した
内外径側の充分な押出排除が難しくなる。
By the way, in ERW pipe welding, the tip portions of both edge portions 5a, 5b that have reached the temperature near the welding point are pressure rolls 2a,
It is desirable that the pressure is applied by 2b so that the pipe is extruded toward the inner diameter side of the pipe to perform sound welding. However, in the case of a thick-walled tube, the temperature and heating width of the edges 5a and 5b are not uniform as described above (that is, the inner and outer diameters are higher in temperature than the center of the edges and the inner and outer diameters have a wider heating range) It becomes difficult to sufficiently extrude the inner and outer diameters when the temperature near the point is reached.

即ち、第12図に示すように、加圧ロール2a,2bで加圧し
た際、その中央部が互いにぶつかつてしまうため、内外
径側の充分な押出がされず図示しするように溶接部の内
外面部で過熱による酸化物の残留のまき込みが発生し、
溶接部の健全性の維持が難しくなるという問題がある。
That is, as shown in FIG. 12, when pressure is applied by the pressure rolls 2a and 2b, the center portions of the pressure rolls collide with each other, so that the inner and outer diameter sides are not sufficiently extruded and the welded portions are Oxidation of residual oxide occurs due to overheating on the inner and outer surfaces,
There is a problem that it becomes difficult to maintain the soundness of the welded portion.

さらに、上述のような電縫管の溶接法により溶接を効率
よく行なうには、高周波電流がV字状ギヤツプ5の縁部
5a,5bに集中して流れることが必要である。しかし管径
が小さい場合には管径路が短くなつて抵抗値が小さくな
るため第14図に示すように、有効電流ipのほかに、管素
材の内側部を通る無効電流iQが増加し、溶接を効率よく
行なうことができないという問題があつた。
Further, in order to perform the welding efficiently by the above-mentioned welding method of the electric resistance welded pipe, a high frequency current is applied to the edge portion of the V-shaped gear cup 5.
It is necessary to concentrate on 5a and 5b. However, when the pipe diameter is small, the pipe path becomes shorter and the resistance value becomes smaller.As shown in Fig. 14, in addition to the active current i p , the reactive current i Q passing through the inner part of the pipe material increases. However, there is a problem that welding cannot be performed efficiently.

本出願人はこのような問題を解決すべく、先に特願昭61
−55876号「高周波電縫管溶接方法とその装置」(以下
先願の発明と称す)を提案している。
In order to solve such a problem, the present applicant has previously filed Japanese Patent Application No. 61
No. 55876, "High-frequency electric resistance welded pipe welding method and apparatus" (hereinafter referred to as prior invention) is proposed.

先願の発明は、第8図及び第9図の従来のものの管素材
のVシーム溶接部の手前に周波数20.000Hz〜1.000Hz程
度の電力を供給して予熱する予熱コイルを設け、溶接部
で過熱する前に予熱しておき、溶接縁部を均一に加熱す
るようにしたものである。
In the invention of the prior application, a preheating coil for supplying electric power with a frequency of about 20.000 Hz to 1.000 Hz to preheat is provided in front of the V seam welding portion of the conventional pipe material shown in FIGS. It is preheated before it is overheated to uniformly heat the weld edge.

即ち誘導式の場合は第13図に示すように誘導コイル3の
管素材1の進行方向手前に予熱コイル8を設け、この予
熱コイル8に1KHz〜20KHz用の電源14を接続して電力を
供給する。この予熱コイル8の形状Kw数は種々あるが、
第13図はその一例である。
That is, in the case of the induction type, as shown in FIG. 13, a preheating coil 8 is provided in front of the tube material 1 of the induction coil 3 and a power source 14 for 1 KHz to 20 KHz is connected to the preheating coil 8 to supply electric power. To do. Although there are various shapes Kw of the preheating coil 8,
FIG. 13 shows an example.

なお第13図において先願の発明を簡単に説明すると、1
は厚肉の管素材、2a,2bは一対の加圧ロールけある。こ
の管素材1は、帯板をその長手方向を軸にして断面円形
に成形し、その会合する幅方向側端の両縁部5a,5bがス
リツトを形成する状態で、一対の加圧ロール2a,2bの間
に挿通すると、図示するようにV字状のギヤツプ5が形
成される。
The invention of the prior application will be briefly described with reference to FIG.
Is a thick tube material, and 2a and 2b are a pair of pressure rolls. This tube material 1 is formed by forming a strip into a circular cross-section with the longitudinal direction as an axis, and forming a slit by the edges 5a, 5b of the widthwise side edges where the strips meet each other. , 2b, a V-shaped gear 5 is formed as shown in the drawing.

また、このギヤツプ5の両縁部5a,5bが一対の加圧ロー
ル2a,2bによつて圧着される溶接点4から矢印Aと逆方
向に所定距離離れた位置に、管素材1を取り巻くリング
状に形成した加熱用の誘導コイル3を設置し、これに周
波数の高い(本例では周波数200KHz〜450KHz)高周波電
力を供給する電源7を接続する。
In addition, the ring 5 surrounding the pipe material 1 is located at a predetermined distance in the direction opposite to the arrow A from the welding point 4 where both edges 5a, 5b of the gear 5 are crimped by the pair of pressure rolls 2a, 2b. A heating induction coil 3 formed in a shape is installed, and a power source 7 for supplying high frequency high frequency power (frequency 200 KHz to 450 KHz in this example) is connected to the induction coil 3.

また、この加熱用の誘導コイル3の前段で矢印Aと逆方
向に所定距離離れた手前位置には、予熱コイル8を設置
する。この予熱コイル8は、管素材1の対向する両縁部
5a1,5b1に沿つた一対の直線部分9a,9bと、管素材1の
外周でその円周方向に沿つてこの直線部分9a,9bに接続
して設けられた幅広の環状部分10,11と接続端子部13b,1
3aよりなる。
Further, a preheating coil 8 is installed at a front position of the induction coil 3 for heating, which is a predetermined distance away from the arrow A in the opposite direction. The preheating coil 8 is formed on both edges of the tube material 1 facing each other.
5a 1, 5b 1 to沿Tsuta pair of straight portions 9a, 9b and, tube stock that circumferentially along connexion the linear portion 9a 1 of the outer periphery, wide annular portion 10, 11 arranged in connection with the 9b And connection terminal part 13b, 1
It consists of 3a.

先願の発明は以上のようにVシーム溶接部の手前に予熱
コイルを設けて1KHz〜20KHz程度の誘導コイルの周波数
より低い周波数で予熱するようにしているので、第11図
に示すa点のみの局部加熱は行なわれずb点や更にc点
部分も加熱されてa点とb点の温度差が少なくなる。従
つて上述した従来の欠点は除去され健全な溶接が行なわ
れる。しかし予熱コイルを新規に設けたので、管径が小
さい場合この予熱コイルでいかに効率の良い予熱をする
かが問題となる。
As described above, in the invention of the prior application, the preheating coil is provided in front of the V seam welded portion to preheat at a frequency lower than the induction coil frequency of about 1 KHz to 20 KHz. Therefore, only the point a shown in FIG. Local heating is not performed and point b and point c are also heated, and the temperature difference between points a and b is reduced. Therefore, the above-mentioned conventional drawbacks are eliminated and sound welding is performed. However, since a preheating coil is newly provided, how to preheat efficiently with this preheating coil becomes a problem when the pipe diameter is small.

D.考案が解決しようとする問題点 高周波電縫管溶接装置により溶接を効率よく行なうに
は、高周波電流又は予熱のための誘導電流がV字状ギヤ
ツプ5の両縁部5a,5b又はこれに連続する両縁部5a1,5b
1に集中して流れることが必要である。しかし管径が小
さい場合には円周が短くなり長手方向より抵抗値が低く
なるため第14図に例示するように、有効電流ipのほか
に、管素材の内側部を通る無効電流iQが増加し、溶接効
率の低下を来す。
D. Problems to be Solved by the Invention In order to perform welding efficiently with a high frequency electric resistance welded pipe welding device, a high frequency current or an induction current for preheating is applied to both edges 5a, 5b of the V-shaped gearup 5 or this. Continuous edges 5a 1 and 5b
It is necessary to concentrate on 1 and flow. However, when the pipe diameter is small, the circumference becomes shorter and the resistance value is lower than in the longitudinal direction, so as shown in Fig. 14, in addition to the active current i p , the reactive current i Q passing through the inner part of the pipe material Will increase, resulting in a decrease in welding efficiency.

そこで従来からV字状ギヤツプ5の管素材の内部に配設
して用いられているフエライト・コアを有するインピー
ダは予熱コイル8に対応する管素材の内部まで延長して
配設することが考えられるが、予熱コイル8に供給する
電力は周波数が20KHz以下と低いためフエライト・コア
のインピーダでは良い結果を得ることができなかつた。
Therefore, it is conceivable that the impeder having the ferrite core, which is conventionally used by being arranged inside the tube material of the V-shaped gear 5, extends to the inside of the tube material corresponding to the preheating coil 8. However, since the frequency of the power supplied to the preheating coil 8 is as low as 20 KHz or less, good results could not be obtained with a ferrite core impeder.

そこで予熱コイル8に対応する管素材の内径部に硅素鋼
板積層コアを有するインピーダを配設して用いることが
考えられるが、これらの2ケの異なるインピーダは狭い
管素材内部の所定位置に夫々固定するのに困難があり、
またこれら2ケのインピーダに夫々冷却水を給水するな
どその取扱いや操作が大変繁雑になるという問題点があ
つた。そこで本考案は、管素材の内部に周波数の異なる
電力の供給される誘導コイルと予熱コイルに適合したフ
エライト・コア及び硅素鋼板積層コアを一体的に構成し
た複合インピーダを設けて、溶接効率を高め、同時に取
付け、冷却を容易にし、操作上も便利になるようにした
ものである。
Therefore, it is conceivable to dispose and use an impeder having a silicon steel plate laminated core in the inner diameter portion of the tube material corresponding to the preheating coil 8, but these two different impeders are fixed at predetermined positions inside the narrow tube material, respectively. Have difficulty doing
Further, there has been a problem that handling and operation of these two impeders becomes very complicated by supplying cooling water to each of them. In view of this, the present invention provides a composite impeder in which a ferrite core and a silicon steel plate laminated core suitable for an induction coil and a preheating coil, which are supplied with electric power having different frequencies, are integrally formed inside the tube material to improve welding efficiency. At the same time, it is easy to install and cool, and convenient for operation.

E.問題点を解決するための手段 本考案の構成は、管素材をV字状ギヤツプを有する管状
に連続して成形し、管素材の対向する縁部近傍を予熱す
る予熱コイルを管素材のV字状ギャツプの手前に配設
し、V字状ギャップの対向する縁部を連続して加熱する
加熱手段を設けて構成される高周波電縫管溶接装置に使
用するインピーダであって、共通のロッドに対し、その
根端側及び先端側の外周に設置した根端側ホルダと先端
側ホルダとの間のロッドの外周における前記予熱コイル
と対応する位置に硅素鋼板積層コアを配設するととも
に、前記加熱手段と対応する位置にフェライト・コアを
設置し、これらのコアを内包するように絶縁筒で覆い、
該絶縁筒の両端を根端側ホルダと先端側ホルダとで密閉
し、前記硅素鋼板積層コアと前記フェライト・コアとを
冷却するための冷却水が流れる流路を前記絶縁筒の内部
に形成したことを特徴とする。
E. Means for Solving the Problems In the structure of the present invention, a tube material is continuously formed into a tube having a V-shaped gear, and a preheating coil for preheating near the opposite edges of the tube material is provided in the tube material. An impeder for use in a high frequency electric resistance welded pipe welding apparatus, which is arranged in front of a V-shaped gap and is provided with heating means for continuously heating the opposite edges of the V-shaped gap, With respect to the rod, while arranging the silicon steel plate laminated core at a position corresponding to the preheating coil in the outer circumference of the rod between the root end side holder and the tip end side holder installed on the outer circumference on the root end side and the tip end side, A ferrite core is installed at a position corresponding to the heating means, and these cores are covered with an insulating cylinder so as to include them.
Both ends of the insulating cylinder are sealed with a root end side holder and a tip side holder, and a flow path through which cooling water for cooling the silicon steel plate laminated core and the ferrite core flows is formed inside the insulating cylinder. It is characterized by

F.作用 上述のように構成することにより、一体化した複合イン
ピーダを高周波電縫管溶接装置における管素材内所定位
置に設置するだけで、加熱手段にフエライト・コアを対
応させてVシーム溶接点近傍を効率よく加熱し得るよう
電流を集中して流さしめると共に、予熱コイルに硅素鋼
板積層コアを対応させて管素材の両縁部を効率よく加熱
し得るよう電流を集中して流すようにして高周波電縫管
溶接装置の性能を向上するようにし、さらに複合インピ
ーダを単体のものとして取扱えるのでその取扱い操作を
簡便にし得るという作用を奏する。
F. Action With the above-described structure, the integrated composite impeder is simply installed at a predetermined position in the pipe material in the high-frequency electric resistance welded pipe welding device, and the ferrite core is made to correspond to the heating means to form the V seam welding point. In order to efficiently heat the vicinity, the current is concentrated and the preheating coil is made to correspond to the laminated core of silicon steel sheet so that both edges of the tube material can be efficiently heated so that the current is concentrated. Since the performance of the high frequency electric resistance welded pipe welding apparatus is improved and the composite impeder can be handled as a single unit, the handling operation can be simplified.

G.実施例 以下、本考案の複合インピーダの実施例を第1図乃至第
7図によって説明する。
G. Embodiment Hereinafter, an embodiment of the composite impeder of the present invention will be described with reference to FIGS.

なお、この第1図乃至第7図において、第8図乃至第14
図に示す従来例に対応する部分には同一符号を附すこと
とし、説明の便に供する。
In addition, in FIGS. 1 to 7, FIGS.
The parts corresponding to those of the conventional example shown in the figure are designated by the same reference numerals for convenience of explanation.

第1図は本考案の複合インピーダ20を管素材1内に配設
した高周波電縫管溶接装置の斜視図で、第13図に示した
先願の発明のものの予熱コイル8の形状が異なる例を示
す。
FIG. 1 is a perspective view of a high frequency electric resistance welded pipe welding apparatus in which a composite impeder 20 of the present invention is arranged in a pipe material 1. An example in which the shape of the preheating coil 8 of the invention of the prior application shown in FIG. 13 is different Indicates.

加熱用誘導コイル3と、予熱コイル8とに対応して、管
素材内には複合インピーダ20を配置したものである。
Corresponding to the heating induction coil 3 and the preheating coil 8, a composite impeder 20 is arranged in the tube material.

この複合インピーダ20は第2図及び第3図に示すよう
に、全体が略円筒形で、その中心軸部を挿通するロツド
21が設置してある。
As shown in FIGS. 2 and 3, the composite impeder 20 has a substantially cylindrical shape as a whole, and a rod for inserting the central shaft portion thereof.
21 is installed.

このロッド21は第3図の左側の太軸に形成した太軸部22
から細軸の軸棒部23を延設する。
This rod 21 has a thick shaft portion 22 formed on the thick shaft on the left side of FIG.
A shaft rod portion 23 of a thin shaft is extended from the.

この軸棒部23における予熱コイル8に対応する所定位置
には、硅素鋼板積層コア24を設置する。
A silicon steel plate laminated core 24 is installed at a predetermined position in the shaft rod portion 23 corresponding to the preheating coil 8.

これは、第4A図乃至第4D図の断面図に例示するように種
々の構造に構成できるものである。
It can be configured in various structures as illustrated in the cross-sectional views of FIGS. 4A-4D.

まず、第4A図では、種々の大きさの断面形状に形成した
直方体状ブロツクである複数の積層コア単体25を、図示
するようにロツド21を取巻く位置に配置して構成する。
First, in FIG. 4A, a plurality of laminated core units 25, which are rectangular parallelepiped blocks formed in various sizes of cross-sectional shapes, are arranged at positions surrounding the rod 21 as shown in the figure.

また、第4B図に示すように、その各積層コア単体25の間
にスペーサ25aを介在させ冷却水通路25bを形成するよう
に配置して構成する。
Further, as shown in FIG. 4B, spacers 25a are interposed between the individual laminated cores 25 to form cooling water passages 25b.

さらに、第4C図に示すように、ロツド21に中空円筒に形
成したコア単体25を嵌挿して一体的に構成する。
Furthermore, as shown in FIG. 4C, a hollow core 25 formed into a hollow cylinder is fitted into the rod 21 to be integrally configured.

また、第4D図に示すように、各積層コア単体25を絶縁筒
29の内周面に沿うよう角側部を円弧状に形成し、各コア
単体25の間にスペーサ25aを介在させることにより絶縁
筒29内で冷却水通路25bがほぼ均等に分布するように構
成するといつた種々の構成のものを適当に選択して用い
るものである。
In addition, as shown in FIG.
The corner side portions are formed in an arc shape along the inner peripheral surface of 29, and the spacer 25a is interposed between each core unit 25 so that the cooling water passages 25b are substantially evenly distributed in the insulating cylinder 29. Then, various configurations are appropriately selected and used.

また第2図に示すようにこの硅素鋼板積層コア24の長手
方向の長さlcorは、予熱コイル8の長手方向の長さlcよ
りも所定の長さ長く(lcor>lc)なるよう形成する。
Further, as shown in FIG. 2, the length lcor in the longitudinal direction of the silicon steel plate laminated core 24 is formed to be a predetermined length longer than the length lc in the longitudinal direction of the preheating coil 8 (lcor> lc).

また、軸棒部23における加熱用誘導コイル3に対応する
所定位置には、フエライト・コア26を設置する。これは
第5図の断面図にも示すように小円柱状のコア柱体27を
複数(本例では7個)を軸棒部23の外周に配置して構成
する。
Further, the ferrite core 26 is installed at a predetermined position in the shaft rod portion 23 corresponding to the heating induction coil 3. As shown in the sectional view of FIG. 5, this is constituted by arranging a plurality of (7 in this example) small columnar core columns 27 on the outer periphery of the shaft rod portion 23.

なお、本例ではコア柱体27を長手方向に3組直列に並べ
てフエライト・コア26を構成する。
In this example, three core columns 27 are arranged in series in the longitudinal direction to form the ferrite core 26.

また、軸棒部23に設置した硅素鋼板積層コア24とフエラ
イト・コア26との間部分にはスペーサとしての中間部材
28を嵌挿して設置する。
Further, an intermediate member as a spacer is provided between the silicon steel plate laminated core 24 and the ferrite core 26 installed on the shaft portion 23.
Install by inserting 28.

さらに、軸棒部23に設置した硅素鋼板積層コア24とフエ
ライト・コア26との外周部を円筒形の絶縁筒29を遊挿し
て覆い、その軸棒部23の太軸部22側端部を根端側ホルダ
30で閉塞するように支持すると共に、軸棒部23の自由端
部に先端側ホルダ31を嵌挿して閉塞するように支持す
る。
Furthermore, a cylindrical insulating tube 29 is loosely inserted to cover the outer peripheral portions of the silicon steel plate laminated core 24 and the ferrite core 26 installed on the shaft rod portion 23, and the end portion of the shaft rod portion 23 on the thick shaft portion 22 side is covered. Root end holder
The tip side holder 31 is inserted into the free end portion of the shaft rod portion 23 and supported so as to be closed.

そして、太軸部22から順次根端側ホルダ30、硅素鋼板積
層コア24、中間部材28、フエライト・コア26及び先端側
ホルダ31と隙間なく配置したものに対し、軸棒部23の自
由端部に形成したねじ溝32にナツト33,33をねじ嵌めて
締め付けることにより、これら全体を一体的に固締す
る。
Then, the thick shaft portion 22 is sequentially arranged from the root end side holder 30, the silicon steel plate laminated core 24, the intermediate member 28, the ferrite core 26 and the tip side holder 31 to the free end portion of the shaft rod portion 23. By nut-fitting the nuts 33, 33 into the thread groove 32 formed in the above, and tightening the nuts 33, 33, the whole of them is firmly fixed.

また、軸棒部23の太軸部22の近くでは、その中心軸に沿
つて冷却水の導通孔35を穿孔し、根端側ホルダ30に穿孔
した複数の入水口36,36に導通させる。
In the vicinity of the thick shaft portion 22 of the shaft rod portion 23, a cooling water passage hole 35 is bored along the central axis of the shaft rod portion 23 so as to be conducted to the plurality of water inlets 36, 36 bored in the root end side holder 30.

また、根端側ホルダ30には軸棒部23との間及び絶縁筒29
との間にシールド部材37,37を設置し、水漏れを防止す
るようにする。また、先端側ホルダ31には、複数の排出
孔38,38を穿孔する。
In addition, the root end side holder 30 is connected to the shaft rod portion 23 and the insulating cylinder 29.
Shield members 37, 37 are installed between and to prevent water leakage. Further, the tip end side holder 31 is provided with a plurality of discharge holes 38, 38.

このように構成することによつて、冷却水を軸棒部23の
導通孔35、入水口36,36を通し、絶縁筒29内に導き、硅
素鋼板積層コア24における複数の積層のコア単体25の隙
間を通りこれを冷却し、さらに中間部材28部分の空間を
通つて、フエライト・コア26の複数のコア柱体27の隙間
を通つてこれを冷却し、この後先端側ホルダ31の排出孔
38,38から外部に排出するようにする。
With this configuration, the cooling water is guided into the insulating cylinder 29 through the conduction hole 35 and the water inlets 36, 36 of the shaft rod portion 23, and a plurality of laminated core units 25 in the silicon steel plate laminated core 24. Through the gaps between the core columns 27 of the ferrite core 26 and then through the space of the intermediate member 28, and then the discharge holes of the tip side holder 31.
It will be discharged from the 38, 38 to the outside.

なお、第2図に示すように、この複合インピーダ20のロ
ツド21の図におけ左側の一端は従来と同様に図示されな
い固定部材に固定される。また図における右側の自由端
部を延長してバイトホルダ45とバイト46とを装着し、こ
のバイト46と、対応する管素材1の外周側に設置された
外周側バイト47と相俟て、溶接終了部のビードを削除す
るように構成してもよい。
As shown in FIG. 2, one end on the left side of the rod 21 of the composite impeder 20 in the figure is fixed to a fixing member (not shown) as in the conventional case. Further, the free end on the right side in the figure is extended to mount a bite holder 45 and a bite 46, and together with this bite 46 and the outer peripheral side bite 47 installed on the outer peripheral side of the corresponding pipe blank 1, welding is performed. The bead at the end may be deleted.

この場合には複合インピーダ20がバイト46の支持部材と
しての機能を兼ね備えることになりその有用性を向上で
きるものである。
In this case, the composite impeder 20 also has a function as a supporting member for the cutting tool 46, and its usefulness can be improved.

このように構成された複合インピーダ20は、第1図及び
第2図に示すように管素材1内における所定位置に設置
し、硅素鋼板積層コア24が予熱コイル8に対応し、かつ
フエライト・コア26が加熱用誘導コイル3に対応し、電
気的に適正に作用するように設定する。
The composite impeder 20 configured as described above is installed at a predetermined position in the tube material 1 as shown in FIGS. 1 and 2, the silicon steel plate laminated core 24 corresponds to the preheating coil 8, and the ferrite core. 26 corresponds to the heating induction coil 3 and is set so as to operate properly electrically.

次に、上述のように構成した本例装置の作動を説明す
る。
Next, the operation of the apparatus of this example configured as described above will be described.

まず、第1図に示すように管素材1は、一対の加圧ロー
ル2a,2bに挿通し、図示しない駆動ローラで管素材1を
矢印A方向に所定速度で移動する。
First, as shown in FIG. 1, the tube material 1 is inserted into a pair of pressure rolls 2a and 2b, and the tube material 1 is moved in the direction of arrow A at a predetermined speed by a driving roller (not shown).

また、予熱コイル8には、電源14から本例では20.000Hz
以下の電力を供給する。
In addition, the preheat coil 8 is supplied from the power supply 14 to 20.000 Hz in this example.
The following power is supplied.

この予熱コイル8を流れる電流ipによつて管素材1に誘
起される予熱電流ipは、第6図に示すように前段の両縁
部5a1,5b1においては狭い範囲に集中して流れ、両縁部
近傍を予熱する。しかし、V字状ギヤツプ5の両縁部5
a,5bに供給される電力(周波数100〜400KHz)に比べて
周波数が低いので(1.000〜20.000Hz程度)、前段の縁
部5a1,5b1のコーナーや縁部の最先端のみが過熱される
ことはなく、両縁部近傍の円周方向に沿つた部分が幅広
くほぼ同じ温度に予熱される。
As shown in FIG. 6, the preheating current i p induced in the tube material 1 by the current i p flowing through the preheating coil 8 is concentrated in a narrow range in both front edge portions 5a 1 and 5b 1 . Flow and preheat near both edges. However, both edges 5 of the V-shaped gear 5
Since the frequency is lower than the power supplied to a and 5b (frequency 100 to 400KHz) (about 1.000 to 20.000Hz), only the corners and edges of the front edges 5a 1 and 5b 1 are overheated. The portion along the circumferential direction near both edges is broadly preheated to almost the same temperature.

この場合本考案では、予熱コイル8に対応した部分には
硅素鋼板積層コア24が、また誘導過熱コイルに対応した
部分にはフエライト・コア26が挿入されていため管素材
1の軸方向の電流密度が増加し、第14図に示す管素材1
の内径面等に分流して流れる無効な電流iQが著しく減少
してその分縁部5a1,5b1に有効に流れ、縁部5a1,5b1
の予熱電流ipが集中し効率的に加熱される。この効果は
特に小径管になる程この電流の割合が増し、無効な電流
iQは著しく(ほとんど)減りその効果が顕著に現れる。
In this case, in the present invention, since the silicon steel plate laminated core 24 is inserted in the portion corresponding to the preheating coil 8 and the ferrite core 26 is inserted in the portion corresponding to the induction heating coil, the current density in the axial direction of the tube material 1 is increased. The pipe material 1 shown in Fig. 14 has increased.
It branched into the radially inner surface or the like significantly reduced invalid current i Q flowing correspondingly edges 5a 1 in the, 5b effectively flow to 1, the edge 5a 1, preheating current ip is concentrated efficiently to 5b 1 To be heated. The effect of this is that the smaller the diameter of the pipe is, the greater the proportion of this current becomes.
i Q is significantly (almost) reduced, and its effect is remarkable.

200〜450KHzの電力供給されるVギヤツプ5の部分に対
応してフエライト・コアを設けることは従来から行なわ
れているが、フエライト・コアは周波数が20KHz程度に
低くなると磁気飽和特性が悪く上記の効果は得られない
が、本考案では1〜20KHz程度の周波数で最も飽和特性
のよい硅素鋼板積層コアを使用したので小径管でも効率
の高い(コアの無い場合に比して3〜4倍)予熱結果が
得られた。
Although it has been conventionally performed to provide a ferrite core corresponding to the portion of the V-gear 5 that is supplied with power of 200 to 450 KHz, the ferrite core has poor magnetic saturation characteristics when the frequency is lowered to about 20 KHz, and Although the effect is not obtained, the present invention uses a laminated core of silicon steel plate with the best saturation characteristics at a frequency of about 1 to 20 KHz, so the efficiency is high even for small diameter pipes (3 to 4 times compared to the case without a core) Preheat results were obtained.

また、溶接点4においては、管素材1が一対の加圧ロー
ル2a,2bで圧着されて、第7図に示すように、対向する
縁部の溶融金属が管素材1の内,外側面部に押出され、
溶着することになる。この押出された部分は、溶接作業
後第2図のバイト46,47で削り落として仕上げるもので
ある。
Further, at the welding point 4, the pipe material 1 is pressure-bonded by the pair of pressure rolls 2a and 2b, and the molten metal at the opposite edges is applied to the inner and outer surface portions of the pipe material 1 as shown in FIG. Extruded,
It will be welded. This extruded portion is finished by cutting off with the cutting tools 46 and 47 shown in FIG. 2 after the welding operation.

上述したような高周波電縫管溶接装置に複合インピーダ
を設置して用いれば、管素材のVシーム溶接部の手前に
おいて、両縁部とその近傍(つまり熱影響部)が予熱さ
れるので、溶接後において溶接部の冷却は急冷ではなく
徐冷となり、よつて従来のような溶接後のシーム・アニ
ーラを不要とすることができる等先願の発明の効果に加
え、管素材のVシーム溶接部を直接溶接するために加熱
する誘導コイルに対応してフエライト・コアを設置し、
その前段部において、20KHz程度以下の周波数の電力が
供給される予熱コイルに対応して硅素鋼板積層コアを設
置し、これらの周波数特性に基づく電気的相互作用によ
り、特に管径の小さなものであつても、V字状ギヤツプ
に続く両縁部の所要部位に誘起電流が集中して流れるよ
うにし、管素材の内側面部を流れるような無効電流を削
減し、所定の加熱範囲を平均的にかつ効率良く予熱する
ことができ、高周波電縫管溶接装置の性能を向上すると
いう効果がある。
When the composite impeder is installed and used in the high-frequency electric resistance welded pipe welding apparatus as described above, both edges and the vicinity thereof (that is, the heat-affected zone) are preheated before the V-seam welded portion of the pipe material. In addition to the effects of the invention of the previous application, such as the fact that the cooling of the welded portion later becomes gradual cooling instead of quenching, and thus the conventional seam anneal after welding is unnecessary, and the V seam welded portion of the pipe material Install the ferrite core corresponding to the induction coil that heats to directly weld
In the preceding stage, a laminated silicon steel plate core is installed corresponding to the preheating coil to which electric power of a frequency of about 20 KHz or less is supplied, and the pipe diameter is particularly small due to the electrical interaction based on these frequency characteristics. However, the induced current is made to flow concentratedly in the required portions of both edges following the V-shaped gear, and the reactive current flowing in the inner side surface of the pipe material is reduced, and the predetermined heating range is averaged and It is possible to preheat efficiently and to improve the performance of the high frequency electric resistance welded pipe welding apparatus.

なお、本実施例では加熱手段が図9に示す誘導加熱コイ
ルである場合を示したが、図8に示す接触式の加熱手段
であってもよい。
Although the heating means is the induction heating coil shown in FIG. 9 in this embodiment, it may be the contact type heating means shown in FIG.

H.考案の効果 以上詳述したように、本考案はVシーム溶接部を200〜4
50KHzの周波数の電力で溶接するものにおいて、その前
段に予熱コイルを設け、20KHz以下の周波数の電力を供
給して予熱し、その管素材の内部に複合インピーダを設
け、該複合インピーダを前記予熱コイルに対応した部分
に硅素鋼板積層コアを設け、かつV字状ギヤツプに対応
した部分にフエライト・コアを同一ロツド上に設けて形
成したものであるから、V字状ギヤツプとこれに続く管
素材の両縁部に電流が集中して流し、その部分を効率よ
く加熱でき高周波電縫管溶接装置の性能を向上でき、特
に小径管の溶接において顕著にその効果が得られる。
H. Effect of the Invention As described in detail above, the present invention employs V seam welds of 200 to 4
In the case of welding with power of 50 KHz frequency, a preheating coil is provided in the preceding stage, power of 20 KHz or less is supplied and preheated, a composite impeder is provided inside the tube material, and the composite impeder is used as the preheating coil. Since a silicon steel laminated core is provided in a portion corresponding to the above, and a ferrite core is provided in a portion corresponding to the V-shaped gear on the same rod, the V-shaped gear and the pipe material subsequent thereto are formed. The electric current is concentrated on both edge portions, the portions can be efficiently heated, and the performance of the high frequency electric resistance welded pipe welding apparatus can be improved, and the effect is remarkably obtained especially in welding of small diameter pipes.

さらに、一本の複合インピーダを管素材内に設置すれば
よいから、その取付支持も容易であり、複合インピーダ
に冷却水を給水する管の操作、取扱いも容易にできると
いう効果がある。
Further, since it is sufficient to install one composite impeder in the pipe material, it is easy to mount and support the composite impeder, and there is an effect that the pipe for supplying cooling water to the composite impeder can be easily operated and handled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の複合インピーダを装着した高周波電縫
管溶接装置の一実施例を示す概略斜視図、第2図はその
縦断面図、第3図は本考案の複合インピーダの縦断面
図、第4A図乃至第4D図及び第5図は第3図V−V及びIV
−IV線に基づく断面に相当するもので硅素鋼板積層コア
の種々の構成及びフエライト・コア部の断面を例示する
断面図、第6図は予熱コイルによる誘起電流を示す斜視
図、第7図は溶接後の管の縦断面図、第8図及び第9図
は夫々従来の高周波電縫管の溶接装置の例を示す要部の
斜視図、第10図はその装置により溶接作業を行なつた場
合の管素材の両縁部の温度変化を示す線図、第11図及び
第12図は管素材の縦断面図、第13図は高周波電縫管溶接
装置の他の従来例を示す斜視図、第14図はその管素材が
小径である場合の誘導電流の流れを説明する斜視図であ
る。 1……管素材、3……誘導コイル、5……ギヤツプ、5
a,5b……縁部、8……予熱コイル、20……複合インピー
ダ、24……硅素鋼板積層コア、26……フエライト・コ
ア。
FIG. 1 is a schematic perspective view showing an embodiment of a high frequency electric resistance welded pipe welding apparatus equipped with the composite impeder of the present invention, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is a longitudinal sectional view of the composite impeder of the present invention. 4A to 4D and 5 are shown in FIGS.
-Sectional views corresponding to the cross section based on the line IV and illustrating various configurations of the silicon steel plate laminated core and the cross section of the ferrite core part, Fig. 6 is a perspective view showing the induced current by the preheating coil, and Fig. 7 is Longitudinal cross-sectional views of the pipe after welding, FIGS. 8 and 9 are perspective views of essential parts showing examples of conventional welding equipment for high-frequency electric resistance welded pipes, and FIG. 10 shows welding work performed by the equipment. Fig. 11 is a longitudinal sectional view of the pipe material, and Fig. 13 is a perspective view showing another conventional example of the high frequency electric resistance welded pipe welding apparatus. FIG. 14 is a perspective view for explaining the flow of the induced current when the tube material has a small diameter. 1 ... Pipe material, 3 ... Induction coil, 5 ... Gear cup, 5
a, 5b ... Edge, 8 ... Preheating coil, 20 ... Composite impeder, 24 ... Silicon steel laminated core, 26 ... Ferrite core.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】管素材をV字状ギャップを有する管状に連
続して成形し、管素材の対向する縁部近傍を予熱する予
熱コイルを管素材のV字状ギャップの手前に配設し、V
字状ギャップの対向する縁部を連続して加熱する加熱手
段を設けて構成される高周波電縫管溶接装置に使用する
インピーダであって、共通のロッドに対し、その根端側
及び先端側の外周に設置した根端側ホルダと先端側ホル
ダとの間のロッドの外周における前記予熱コイルと対応
する位置に硅素鋼板積層コアを配設するとともに、前記
加熱手段と対応する位置にフェライト・コアを設置し、
これらのコアを内包するように絶縁筒で覆い、該絶縁筒
の両端を根端側ホルダと先端側ホルダとで密閉し、前記
硅素鋼板積層コアと前記フェライト・コアとを冷却する
ための冷却水が流れる流路を前記絶縁筒の内部に形成し
たことを特徴とする複合インピーダ。
1. A tube material is continuously formed into a tube having a V-shaped gap, and a preheating coil for preheating the vicinity of opposite edges of the tube material is arranged in front of the V-shaped gap of the tube material. V
An impeder for use in a high frequency electric resistance welded pipe welding apparatus configured to provide heating means for continuously heating opposing edges of a character-shaped gap, the root end side and the tip side of a common rod. A silicon steel plate laminated core is arranged at a position corresponding to the preheating coil on the outer circumference of the rod between the root end side holder and the tip end side holder installed on the outer circumference, and a ferrite core is arranged at a position corresponding to the heating means. Set up,
These cores are covered with an insulating cylinder so as to be enclosed, and both ends of the insulating cylinder are sealed with a root end side holder and a tip side holder, and cooling water for cooling the silicon steel plate laminated core and the ferrite core. A composite impeder characterized in that a flow path for flowing is formed inside the insulating cylinder.
JP1986166933U 1986-10-30 1986-10-30 Compound impeder Expired - Lifetime JPH0644549Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986166933U JPH0644549Y2 (en) 1986-10-30 1986-10-30 Compound impeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986166933U JPH0644549Y2 (en) 1986-10-30 1986-10-30 Compound impeder

Publications (2)

Publication Number Publication Date
JPS6371986U JPS6371986U (en) 1988-05-13
JPH0644549Y2 true JPH0644549Y2 (en) 1994-11-16

Family

ID=31098385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986166933U Expired - Lifetime JPH0644549Y2 (en) 1986-10-30 1986-10-30 Compound impeder

Country Status (1)

Country Link
JP (1) JPH0644549Y2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912148Y2 (en) * 1980-10-31 1984-04-12 川崎製鉄株式会社 Impeder device for medium frequency induction welding method
JPS598869Y2 (en) * 1980-11-19 1984-03-19 川崎製鉄株式会社 Impeder device in high frequency induction welding method
JPS57130787A (en) * 1981-02-05 1982-08-13 Kawasaki Steel Corp Electric resistance welding method
JPS6397373A (en) * 1986-10-15 1988-04-28 Meidensha Electric Mfg Co Ltd Method and device for welding high frequency electric welded pipe

Also Published As

Publication number Publication date
JPS6371986U (en) 1988-05-13

Similar Documents

Publication Publication Date Title
US3860778A (en) Melt welding by high frequency electrical current
JP4528313B2 (en) Butt welding method of steel pipe and manufacturing method of welded steel pipe
JPH0644549Y2 (en) Compound impeder
JPS6397373A (en) Method and device for welding high frequency electric welded pipe
US7026568B2 (en) Ceramic weld insulator and metal weld gear combination for an improved micro weld head component of an orbital tube welding apparatus
JP3052555B2 (en) Manufacturing method of small-diameter ERW pipe
CN212443624U (en) Brazing device of shell-and-tube heat exchanger
KR20150028361A (en) Welding device for electric resistance welded pipe
US2652474A (en) Method of heating opposed edges of elongated members
US4376882A (en) Method of resistance flash butt welding
JP3704206B2 (en) Induction heating work coil and induction heating method
JP3556061B2 (en) Open pipe edge preheating device
KR100293577B1 (en) Method of and apparatus for producing steel pipes
WO1997048515A1 (en) Method and installation for butt welding two sheet sections, and coil for use therewith
JP3052547B2 (en) ERW pipe manufacturing equipment
JP3313304B2 (en) Open tube induction heating device
JPS5912146Y2 (en) Welded pipe manufacturing equipment
JP2001321951A (en) Joining device of metal and method of joining
KR101204884B1 (en) method for welding aluminum alloy use moving high-frequency coil
JPH07227675A (en) Lap seam welding equipment
JP3321040B2 (en) Open pipe edge preheating device
JP2924675B2 (en) Manufacturing method of welded section steel
JP3755922B2 (en) ERW pipe manufacturing apparatus and ERW pipe manufacturing method
JPS6250088A (en) Seam welding method of steel pipe
JPS6130794Y2 (en)