JPH0642956B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method

Info

Publication number
JPH0642956B2
JPH0642956B2 JP12796989A JP12796989A JPH0642956B2 JP H0642956 B2 JPH0642956 B2 JP H0642956B2 JP 12796989 A JP12796989 A JP 12796989A JP 12796989 A JP12796989 A JP 12796989A JP H0642956 B2 JPH0642956 B2 JP H0642956B2
Authority
JP
Japan
Prior art keywords
oxygen
yeast
tank
liquid
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12796989A
Other languages
Japanese (ja)
Other versions
JPH02307595A (en
Inventor
隆幸 鈴木
昭 渡辺
伸二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP12796989A priority Critical patent/JPH0642956B2/en
Publication of JPH02307595A publication Critical patent/JPH02307595A/en
Publication of JPH0642956B2 publication Critical patent/JPH0642956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性廃水の処理方法に係り、特に、生物処
理液中の炭酸ガス濃度を一定量保持することにより、酵
母を発生増殖させる廃水の浄化処理方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for treating organic wastewater, and in particular, it causes yeast to develop and proliferate by maintaining a constant carbon dioxide concentration in a biological treatment liquid. The present invention relates to a method for purifying wastewater.

〔従来の技術〕[Conventional technology]

酵母を利用しし尿を浄化する方法は、従来の活性汚泥法
と同様の好気的処理方法として、特定の有機性廃水の処
理に有効である。また、亜硫酸パルプ廃液の浄化に際し
て発生する酵母は、飼料として有効利用されている。酵
母は生育の至適pH範囲が酸性域(pH4〜5)であるた
め、低pHの廃水の処理には好適であるが、中性域の廃水
に対してはpH低下用にHCl、H2SO4などの鉱酸を注入
する必要があるばかりでなく、処理水の放流に際し、Na
OHなどのアルカリ剤を添加してpHを中和しなければなら
なかった。
The method of purifying urine using yeast is effective for treating a specific organic wastewater as an aerobic treatment method similar to the conventional activated sludge method. In addition, yeast generated during purification of the sulfite pulp waste liquid is effectively used as a feed. Since yeast has an optimum pH range for growth in the acidic range (pH 4 to 5), it is suitable for treating low pH wastewater, but for neutral wastewater, HCl and H 2 are used for pH reduction. Not only is it necessary to inject a mineral acid such as SO 4 , but when releasing treated water,
An alkaline agent such as OH had to be added to neutralize the pH.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、有機性廃水を酵母を主体とする微生物群を用
いて浄化する方法において、従来方法では、必要であっ
たpH調整用の薬品を不要とする方法を提供することを目
的とする。
An object of the present invention is to provide a method for purifying an organic wastewater using a microorganism group mainly composed of yeast, which eliminates the need for pH adjusting chemicals which were required in the conventional methods.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明では、有機性廃水を
酸素富化ガスを用いて生物学的に処理する方法におい
て、該廃水中の有機物の酸化分解で発生する炭酸ガスで
生物処理槽内の液のpHが5.5以下になるように、該酸素
富化ガスの供給量及び/又は酸素濃度を制御して、処理
槽内に酵母を発生増殖させることを特徴とする有機性廃
水の処理方法としたものである。
In order to achieve the above object, in the present invention, in a method of biologically treating an organic wastewater using an oxygen-enriched gas, carbon dioxide gas generated by oxidative decomposition of organic matter in the wastewater is used in a biological treatment tank. The method for treating organic wastewater, characterized in that the supply amount and / or oxygen concentration of the oxygen-enriched gas is controlled so that the pH of the liquid becomes 5.5 or less, and yeast is generated and propagated in the treatment tank. It is what

また、前記生物学的に処理後、生物処理槽内の液をpH6.
0〜8.5として活性汚泥処理することを特徴とする有機性
廃水の生物学的処理方法としたものである。
After the biological treatment, the liquid in the biological treatment tank is adjusted to pH 6.
The method is a biological treatment method of organic wastewater characterized by treating activated sludge as 0 to 8.5.

本発明では、上記のように、液中のpHを、酸素供給量及
び/又は酸素濃度を制御することによって5.5以下に保
持することができ、それによって生物処理槽内に酵母が
発生増殖するから、この酵母を用いて有機性廃水を浄化
するものである。
In the present invention, as described above, the pH in the liquid can be maintained at 5.5 or less by controlling the oxygen supply amount and / or the oxygen concentration, whereby the yeast develops and grows in the biological treatment tank. This yeast is used to purify organic wastewater.

そして、前記のようにpH5.5以下を保持するためには、
生物処理槽は実質的に大気と遮断された密閉槽とするの
がよい。
And, as described above, in order to maintain pH 5.5 or less,
The biological treatment tank is preferably a closed tank which is substantially isolated from the atmosphere.

次に、本発明を第1図を参照して詳細に説明する。Next, the present invention will be described in detail with reference to FIG.

第1図は本発明の一実施態様を示す工程図である。FIG. 1 is a process drawing showing an embodiment of the present invention.

第1図において、排水1は、実質的に大気が侵入しない
密閉型の反応槽2に導入され、気相部3に導入された酸
素富化ガス4によって曝気され、廃水中の有機物が主と
してCO2とH2Oに酸化されたのち、固液分離工程5で
酵母と処理水6とに分離され、分離酵母の大部は返送管
7を通して反応槽2に返送され、一部は余剰酵母8とし
て排出される。処理水6は、さらに生物処理を受けるか
あるいはそのまま放流される。
In FIG. 1, waste water 1 is introduced into a closed reaction tank 2 in which atmospheric air does not substantially enter, and is aerated by an oxygen-enriched gas 4 introduced into a gas phase part 3, and organic matter in the waste water is mainly CO 2. After being oxidized to 2 and H 2 O, it is separated into yeast and treated water 6 in the solid-liquid separation step 5, most of the separated yeast is returned to the reaction tank 2 through the return pipe 7, and part of the surplus yeast 8 Is discharged as. The treated water 6 is further subjected to biological treatment or discharged as it is.

反応槽のpHは、2.5〜5.5に制御するのが望ましい。これ
は酵母の生育の至適pHが前記低pH域にあることと、酵母
以外の微生物の増殖を抑制するためである。pHは酸素富
化ガス4の供給量及び/又は酸素濃度を制御することに
よって行われる。
The pH of the reaction vessel is preferably controlled to 2.5 to 5.5. This is because the optimum pH for yeast growth is in the low pH range and the growth of microorganisms other than yeast is suppressed. The pH is controlled by controlling the supply amount of oxygen-enriched gas 4 and / or the oxygen concentration.

反応槽2内液のpHは、液中のCO2濃度が高くなるほど
低下するが、液中のCO2濃度は動的平衡下では気相部
のCO2濃度によって決まってくる。従って、気相部2
へ過剰の酸素富化ガス(実質的にCO2が含有されてい
ない)を供給すれば気相部のCO2が希釈されるので、
液中のCO2が気相部に移行し、pHが上昇する。また、
酸素富化ガスの酸素濃度が低い場合には、必要とされる
ガス量が酸素濃度が高い場合に比べて多くなるので気相
部CO2が希釈され、液のpHが上昇する。酸素富化ガス
の供給量、濃度は廃水の被生物酸化性の有機物濃度によ
って異なってくるので、本発明を実施する場合には予備
試験を行って供給量、酸素濃度を決定するとよい。
PH of the reaction vessel 2 within liquid is reduced the higher the CO 2 concentration in the liquid increases, the CO 2 concentration in the solution is in dynamic equilibrium under come determined by CO 2 concentration in the gas phase. Therefore, the gas phase part 2
If excess oxygen-enriched gas (substantially free of CO 2 ) is supplied to CO 2 in the gas phase,
CO 2 in the liquid migrates to the gas phase and the pH rises. Also,
When the oxygen concentration of the oxygen-enriched gas is low, the required gas amount becomes larger than that when the oxygen concentration is high, so that the gas phase CO 2 is diluted and the pH of the liquid rises. Since the supply amount and the concentration of the oxygen-enriched gas differ depending on the concentration of the bio-oxidizable organic matter in the wastewater, it is advisable to carry out a preliminary test to determine the supply amount and the oxygen concentration when carrying out the present invention.

上記第1図では、固液分離した酵母を反応槽に返送して
いるが、返送は必ずしも必要でなく、分離酵母はすべて
排出してもよい。この場合、1過性の処理となるので、
反応槽中の酵母の洗出を防止するため、廃水の槽内滞留
日数は2〜3日以上が必要となる。反応槽は高濃度酸素
ガスを用いれば必ずしも密閉槽でなくともよいが、酸素
を効率よく利用するためには密閉型の槽の方が望まし
い。また、第1図の後段に後処理工程(図示せず)とし
て活性汚泥処理工程を配備する場合(第2図示例)に
は、固液分離工程を省略してもよい。
In FIG. 1 described above, the solid-liquid separated yeast is returned to the reaction tank, but the returning is not always necessary and the separated yeast may be entirely discharged. In this case, since it is a one-time process,
In order to prevent the yeast in the reaction tank from being washed out, the number of days of retention of waste water in the tank must be 2 to 3 days or more. The reaction tank is not necessarily a closed tank if high-concentration oxygen gas is used, but a closed tank is preferable in order to use oxygen efficiently. Further, when the activated sludge treatment step is provided as a post-treatment step (not shown) in the latter stage of FIG. 1 (second illustrated example), the solid-liquid separation step may be omitted.

第2図に後処理工程として活性汚泥処理工程を設けた本
発明のもう一つの工程図を示す。
FIG. 2 shows another process diagram of the present invention in which an activated sludge treatment process is provided as a post-treatment process.

第2図において、反応槽2からの流出液10は、沈殿槽等
の固液分離工程14からの返送汚泥11とともに、活性汚泥
処理槽12に導入され、空気13によって散気され、流出液
10の残留BODが酸化分解されたのち、沈殿槽14で酵母
及び活性汚泥が固液分離され、1部11は処理槽12に返送
され、残部は15は余剰汚泥として排出される。処理水16
は、放流あるいはさらに高度の処理が行われる。処理槽
12では、流出液10中のCO2ガスが放散されpHが6.0〜8.
5に上昇する十分量の空気が供給される。
In FIG. 2, the effluent 10 from the reaction tank 2 is introduced into the activated sludge treatment tank 12 together with the returned sludge 11 from the solid-liquid separation step 14 such as a sedimentation tank, and is diffused by the air 13 to generate the effluent.
After 10 residual BODs are oxidatively decomposed, yeast and activated sludge are solid-liquid separated in the settling tank 14, 1 part 11 is returned to the treatment tank 12, and the remaining 15 is discharged as excess sludge. Treated water 16
Are discharged or treated at a higher level. Processing tank
In 12, the CO 2 gas in the effluent 10 is released and the pH is 6.0 to 8.
A sufficient amount of air to rise to 5 is supplied.

pHが反応槽2と同じく、5.5以下のままでは、カビなど
の糸状微生物が発生して沈殿槽14における固液分離が困
難となり、また、処理槽12のpHが8.5以上になると液の
発泡性が著しく上昇し、散気が不可能になるからである
(第5図)。pH8.5以上で発泡性が上昇する理由につい
ては不明であるが、反応槽2で酸素曝気することによっ
て液中に発泡の原因となる粘質物が増加するからである
と予想される。
Like the reaction tank 2, if the pH is 5.5 or less, filamentous microorganisms such as mold are generated and solid-liquid separation in the precipitation tank 14 becomes difficult, and if the pH of the treatment tank 12 is 8.5 or more, the foamability of the liquid is increased. Is significantly increased, making it impossible to diffuse air (Fig. 5). Although the reason why the foaming property increases at pH 8.5 or higher is unknown, it is presumed that this is because when the reaction tank 2 is aerated with oxygen, the viscous substance that causes foaming increases in the liquid.

なお、活性汚泥処理は、曝気処理でも硝化脱窒素処理で
もかまわない。
The activated sludge treatment may be aeration treatment or nitrification denitrification treatment.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて、より具体的に説明する
が、本発明はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

実施例1 実施装置は6(気相部2、液相部4)の撹拌機付
の密閉型タンクを用い、酸素源として純酸素を利用し
た。処理は固液分離工程を設けない−過性(One Throug
h)の処理方式とした。廃水として人工廃水を1/日
供給し、水温20℃で処理を行った。BOD濃度の異なる各
種人工廃水の処理結果を第1表に示す。
Example 1 The apparatus used was an enclosed tank with a stirrer of 6 (gas phase part 2, liquid phase part 4) and pure oxygen was used as an oxygen source. The treatment does not include a solid-liquid separation step-transient (One Throug
The processing method of h) was adopted. Artificial wastewater was supplied as wastewater for 1 / day and treated at a water temperature of 20 ° C. Table 1 shows the treatment results of various artificial wastewaters with different BOD concentrations.

表示されたように、本発明によれば反応槽のpHは5.5以
下になり、その結果反応槽の微生物相に多数の酵母が発
生し、また、除去BOD量(kg)当りの汚泥(菌体)発生
量(kg)も0.24〜0.36(kg/kg)となって、標準的な活
性汚泥量より小さなものとなった。なお、表示していな
いが、pH6.0,7.0に制御して行った処理では、微生物相
に酵母がみられず、また、汚泥の発生量も0.51〜0.55
(kg/kg)となり、本発明に比べて高くなった。
As shown, according to the present invention, the pH of the reaction tank becomes 5.5 or less, as a result, a large number of yeasts are generated in the microflora of the reaction tank, and the sludge (cells) per removed BOD amount (kg) is increased. ) The generated amount (kg) was 0.24 to 0.36 (kg / kg), which was smaller than the standard activated sludge amount. Although not shown, no yeast was found in the microflora and the sludge generation amount was 0.51 to 0.55 in the treatment performed by controlling the pH to 6.0 or 7.0.
(Kg / kg), which is higher than that of the present invention.

次に、第1表の廃水Bを用いて、通気ガスの酸素濃度を
変えて行った処理結果、及び第1表の廃水Bを用いて酸
素富化ガス(O260%)の通気量を変えて行った処理結
果をそれぞれ第3図、第4図に示す。第3図で酸素濃度
の低下に従って送気量を増加しているのは、反応槽の液
のDO(溶存酸素)濃度を1〜3mg/に保つためであ
る。
Next, the treatment results obtained by changing the oxygen concentration of the aeration gas using the waste water B in Table 1 and the aeration amount of the oxygen-enriched gas (O 2 60%) using the waste water B in the table 1 are shown. The results of the different treatments are shown in FIGS. 3 and 4, respectively. In FIG. 3, the amount of insufflation increased as the oxygen concentration decreased because the DO (dissolved oxygen) concentration in the liquid in the reaction tank was maintained at 1 to 3 mg /.

第3図、第4図からpHを5.5以下に保つためには、所定
の廃水に対して所定の酸素濃度の酸素富化ガスを、所定
量通気しなければならないことがわかる。第3図におけ
る通気量50/日、70/日のpH5.7〜5.9の処理では、
酵母はほとんど発生していなかった。第3図のpH5.5以
下の液を空気で曝気したところ、1〜5分でpHが6.0〜
7.0に達した。
It can be seen from FIGS. 3 and 4 that in order to keep the pH at 5.5 or less, a predetermined amount of oxygen-enriched gas with a predetermined oxygen concentration must be aerated to a predetermined wastewater. In the treatment of aeration rate of 50 / day and 70 / day of pH 5.7-5.9 in Fig. 3,
Almost no yeast was generated. When a liquid with a pH of 5.5 or less in Fig. 3 was aerated with air, the pH was 6.0 ~ in 1 to 5 minutes.
Reached 7.0.

また、第1表の各処理水I(反応槽流出液)全量を活性
汚泥処理装置(曝気槽1、沈殿槽1)を用いて空気
曝気したときの処理水(処理水II)の水質を第2表に示
す。
In addition, the quality of the treated water (treated water II) when the total amount of each treated water I (reaction tank effluent) in Table 1 was aerated using the activated sludge treatment device (aeration tank 1, precipitation tank 1) The results are shown in Table 2.

さらに、第1表の廃水Eを処理した処理水を活性汚泥処
理する。曝気槽のpHを4.5〜9.5の範囲に調整して行った
ところ、活性汚泥(酵母も構成菌体の一部)の沈降性、
発泡性が第5図に示したようにpHによって著しく異な
り、pHが6より低い条件では沈降性が悪く、pHが8.5よ
りも高い条件では発泡性が上昇した。
Further, the treated water obtained by treating the wastewater E in Table 1 is treated with activated sludge. When the pH of the aeration tank was adjusted to the range of 4.5 to 9.5, the sedimentation of activated sludge (yeast was a part of the constituent cells),
The foamability was remarkably different depending on the pH as shown in Fig. 5, and when the pH was lower than 6, the sedimentation was poor, and when the pH was higher than 8.5, the foamability was increased.

〔効果〕〔effect〕

以上のように、本発明によれば、pH調整の薬品を使用す
る必要がないので、pH調整用装置及び薬品の消費を省略
することができ、経済的に酵母を利用した廃水の処理が
可能になった。
As described above, according to the present invention, since it is not necessary to use a pH adjusting chemical, it is possible to omit the pH adjusting device and the consumption of the chemical, and it is possible to treat yeast wastewater economically. Became.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施態様を示す工程図、第2図
は、後処理工程を設けた本発明のもう一つの実施態様を
示した工程図、第3図は酸素濃度とpHの関係を示すグラ
フ、第4図は酸素通気量とpHの関係を示すグラフ、第5
図は活性汚泥混合液の沈降性と発泡性を示すグラフであ
る。 1……廃水、2……反応槽、3……気相部、4……酸素
富化ガス、5……固液分離工程、6……処理水、7……
返送管、8……余剰酵母、9……排ガス、10……流出
液、11……返送汚泥、12……活性汚泥処理槽、13……空
気、14……固液分離工程
FIG. 1 is a process diagram showing an embodiment of the present invention, FIG. 2 is a process diagram showing another embodiment of the present invention in which a post-treatment process is provided, and FIG. 3 is a graph showing oxygen concentration and pH. Fig. 4 is a graph showing the relationship, Fig. 4 is a graph showing the relationship between oxygen aeration amount and pH, Fig. 5
The figure is a graph showing the sedimentation property and foaming property of the activated sludge mixed liquid. 1 ... Wastewater, 2 ... Reaction tank, 3 ... Gas phase part, 4 ... Oxygen-enriched gas, 5 ... Solid-liquid separation process, 6 ... Treated water, 7 ...
Return pipe, 8 ... surplus yeast, 9 ... exhaust gas, 10 ... effluent, 11 ... return sludge, 12 ... activated sludge treatment tank, 13 ... air, 14 ... solid-liquid separation process

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 伸二 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (56)参考文献 特開 昭58−216788(JP,A) 特開 昭54−133758(JP,A) 特開 昭58−81478(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Yoshida 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Inside the EBARA Research Institute (56) Reference JP-A-58-216788 (JP, A) Kai 54-133758 (JP, A) JP 58-81478 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機性廃水を酸素富化ガスを用いて生物学
的に処理する方法において、該廃水中の有機物の酸化分
解で発生する炭酸ガスで生物処理槽内の液のpHが5.5
以下になるように、該酸素富化ガスの供給量及び/又は
酸素濃度を制御して、処理槽内に酵母を発生増殖させる
ことを特徴とする有機性廃水の処理方法。
1. A method of biologically treating organic wastewater using an oxygen-enriched gas, wherein the pH of the liquid in the biological treatment tank is 5. due to carbon dioxide generated by the oxidative decomposition of organic matter in the wastewater. 5
A method for treating organic wastewater, characterized in that the supply amount and / or the oxygen concentration of the oxygen-enriched gas is controlled so that the yeast is generated and propagated in the treatment tank as described below.
【請求項2】請求項1記載の生物学的に処理後、生物処
理槽内の液をpH6.0〜8.5として活性汚泥処理する
ことを特徴とする有機性廃水の処理方法。
2. A method for treating organic wastewater, comprising treating the liquid in the biological treatment tank with pH 6.0 to 8.5 after the biological treatment according to claim 1 and treating with activated sludge.
JP12796989A 1989-05-23 1989-05-23 Organic wastewater treatment method Expired - Lifetime JPH0642956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12796989A JPH0642956B2 (en) 1989-05-23 1989-05-23 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12796989A JPH0642956B2 (en) 1989-05-23 1989-05-23 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH02307595A JPH02307595A (en) 1990-12-20
JPH0642956B2 true JPH0642956B2 (en) 1994-06-08

Family

ID=14973166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12796989A Expired - Lifetime JPH0642956B2 (en) 1989-05-23 1989-05-23 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0642956B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9425110D0 (en) * 1994-12-13 1995-02-08 Boc Group Plc Sewage respiration inhibition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133758A (en) * 1978-04-10 1979-10-17 Hitachi Ltd Method of active sludge processing for organic drainage
JPS58216788A (en) * 1982-06-01 1983-12-16 Kurita Water Ind Ltd Aeration device for sewage

Also Published As

Publication number Publication date
JPH02307595A (en) 1990-12-20

Similar Documents

Publication Publication Date Title
JP2000015288A (en) Waste water treatment method and apparatus
JP2006272177A (en) Method and system for removing biological nitrogen
JPS60187396A (en) Apparatus for biologically removing nitrogen in waste water
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPH0642956B2 (en) Organic wastewater treatment method
JP3837757B2 (en) Method for treating selenium-containing water
JPS6222678B2 (en)
JP3271322B2 (en) Treatment of wastewater containing dimethyl sulfoxide
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPH1085790A (en) Biological denitrification apparatus for drainage
KR950000212B1 (en) Waste water clarifier
JPH0418992A (en) Treatment of night soil sewage
JPH06182377A (en) Method for treating sewage
JP2003094096A (en) Method for treating organic waste, apparatus therefor, and sludge
JPS60129194A (en) Treatment of sewage
JP2000202485A (en) Treatment of organic sewage
JP3837763B2 (en) Method for treating selenium-containing water
JPS586558B2 (en) Sewage treatment method
JP2001259679A (en) Biological treating method
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
JPH0929282A (en) Method for biological denitrification of wastewater, and device therefor
JPH0780481A (en) Treatment of organonitrogen compound-containing discharged liquid
JPH09150184A (en) Treatment of organic sewage
JPH0679714B2 (en) Organic wastewater treatment method