JPH0642546B2 - MOS semiconductor device - Google Patents

MOS semiconductor device

Info

Publication number
JPH0642546B2
JPH0642546B2 JP62113385A JP11338587A JPH0642546B2 JP H0642546 B2 JPH0642546 B2 JP H0642546B2 JP 62113385 A JP62113385 A JP 62113385A JP 11338587 A JP11338587 A JP 11338587A JP H0642546 B2 JPH0642546 B2 JP H0642546B2
Authority
JP
Japan
Prior art keywords
region
insulating film
substrate
concentration
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62113385A
Other languages
Japanese (ja)
Other versions
JPS63278276A (en
Inventor
博 石原
研一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62113385A priority Critical patent/JPH0642546B2/en
Publication of JPS63278276A publication Critical patent/JPS63278276A/en
Publication of JPH0642546B2 publication Critical patent/JPH0642546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はMOS型半導体装置に関し、特には接合リーク
電流の少ないMOS型半導体装置に関する。
The present invention relates to a MOS type semiconductor device, and more particularly to a MOS type semiconductor device having a small junction leak current.

〈従来の技術〉 電気的に書き込み消去が可能な読み出し専用メモリであ
るEEPROMや半導体上の容量に電荷を蓄えることで記憶を
行なうDRAM等のメモリセルには、半導体基板の空乏化を
防ぐために半導体基板に形成されたドレイン領域と素子
分離絶縁領域とに連続し、半導体基板上に絶縁膜を介し
て形成されたゲート領域下を覆う領域にドレイン領域と
同一導電型の不純物領域が形成されている。第3図はEE
PROMとして用いられるMOSトランジスタの一部断面図
である。p型Si基板1にはn型不純物を拡散してドレ
イン領域2が形成され、また前記基板1の素子分離領域
にはフィールド絶縁膜3が形成される。ドレイン領域2
とフィールド絶縁膜3の間の基板1上には第1のゲート
絶縁膜4が形成され、該第1のゲート絶縁膜4上にはフ
ローティングゲート5、層間絶縁膜6及びコントロール
ゲート7が順次形成され、ゲートをなしている。このゲ
ートやドレイン領域2及びフィールド絶縁膜3を含むS
i基板1は絶縁膜8で覆われ、保護されている。前記フ
ィールド絶縁膜3直下の基板1にはチャネル・ストッパ
としてp不純物領域9が形成され、隣接する素子間を
電気的に分離している。更に基板1のゲート直下には、
不純物領域9とドレイン領域2とに両側が隣接、n
型不純物としてAsを7×1014cm-2程度注入した高濃度
不純物領域10が形成され、該不純物領域10がS
i基板1の空乏化を防いでいる。
<Prior Art> Memory cells such as EEPROM, which is a read-only memory that can be electrically written and erased, and DRAM, which stores data by storing charges in a semiconductor capacitor, are used to prevent depletion of the semiconductor substrate. An impurity region having the same conductivity type as that of the drain region is formed in a region which is continuous with the drain region and the element isolation insulating region formed on the substrate and covers the lower portion of the gate region formed on the semiconductor substrate with an insulating film interposed therebetween. . Figure 3 shows EE
It is a partial cross-sectional view of a MOS transistor used as a PROM. A drain region 2 is formed in the p-type Si substrate 1 by diffusing n-type impurities, and a field insulating film 3 is formed in the element isolation region of the substrate 1. Drain region 2
A first gate insulating film 4 is formed on the substrate 1 between the field insulating film 3 and the field insulating film 3, and a floating gate 5, an interlayer insulating film 6 and a control gate 7 are sequentially formed on the first gate insulating film 4. It is a gate. S including the gate and drain regions 2 and the field insulating film 3
The i substrate 1 is covered and protected by an insulating film 8. A p + impurity region 9 is formed as a channel stopper on the substrate 1 immediately below the field insulating film 3 to electrically separate adjacent elements. Furthermore, directly below the gate of the substrate 1,
Both sides are adjacent to the p + impurity region 9 and the drain region 2, and n
A high-concentration n + impurity region 10 in which As as a type impurity is implanted at about 7 × 10 14 cm -2 is formed.
The depletion of the i substrate 1 is prevented.

〈発明が解決しようとする問題点〉 EEPROM或いはDRAM等の半導体装置に用いられるMOSト
ランジスタのゲート絶縁膜は半導体装置の高集積化・高
密度化に伴って従来に比べ薄くなっている。ところで、
上記第3図からも明らかなように、チャネル・ストッパ
をなすp不純物領域9と高濃度n不純物領域10と
のPN接合はゲート絶縁膜4下に形成されている。この
ため、ゲート絶縁膜4が薄くなると、リークの発生する
電圧が低下し、使用電圧範囲内のゲート電圧を印加した
時にも前記PN接合にリーク電流が発生してしまう。リ
ーク電流はEEPROMでは書き込み消去時の電流損失とな
り、DRAMにおいてはメモリ保持特性の悪化の原因とな
る。
<Problems to be Solved by the Invention> The gate insulating film of a MOS transistor used in a semiconductor device such as an EEPROM or a DRAM has become thinner than in the past due to higher integration and higher density of the semiconductor device. by the way,
As is clear from FIG. 3, the PN junction between the p + impurity region 9 and the high-concentration n + impurity region 10 forming the channel stopper is formed under the gate insulating film 4. Therefore, when the gate insulating film 4 becomes thin, the voltage at which leakage occurs decreases, and a leakage current occurs at the PN junction even when a gate voltage within the operating voltage range is applied. Leakage current causes a current loss during writing and erasing in EEPROM, and causes deterioration of memory retention characteristics in DRAM.

このリーク電流の発生を抑制させるにはPN接合をより
厚い絶縁膜下に形成するとよい。そこで高濃度n不純
物領域10中のn型不純物をより高濃度にし、n型不純
物をより広く拡散させることによってPN接合をフィー
ルド絶縁膜3といったゲート絶縁膜4より厚い絶縁膜下
に形成する方法がある。しかし、この方法ではリーク電
流の発生を抑制することはできるが、第4図に示すよう
にn型不純物が高濃度化することによって高濃度n
純物領域10上の絶縁膜の寿命等の特性が悪化するとい
う問題が生じる。
In order to suppress the generation of this leak current, it is advisable to form a PN junction under a thicker insulating film. Therefore, a method of forming a PN junction below the gate insulating film 4 such as the field insulating film 3 by increasing the concentration of the n-type impurity in the high-concentration n + impurity region 10 and diffusing the n-type impurity more widely There is. However, although this method can suppress the generation of leakage current, as shown in FIG. 4, by increasing the concentration of the n-type impurity, the characteristics such as the life of the insulating film on the high concentration n + impurity region 10 can be reduced. A problem that is worse.

〈問題点を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、第1の導電型の半導体基板に形成された第2の導電
型のドレイン領域と、前記半導体基板に形成された素子
分離領域下に形成された第1の導電型のチャネル・スト
ッパ領域とに両端が連続し、且つ前記半導体基板上のゲ
ート絶縁膜及びゲート電極から成るゲート領域下に形成
された高濃度不純物領域は第2の導電型であり、且つ拡
散係数の異なる少なくとも2種の不純物種からなる少な
くとも2重構造を有し、且つ前記チャネル・ストッパ領
域と前記素子分離領域下でPN接合していることを特徴
とするMOS型半導体装置を提供するものである。
<Means for Solving Problems> The present invention has been made to solve the above problems, and includes a second conductivity type drain region formed on a first conductivity type semiconductor substrate, and Both ends are continuous with the first conductivity type channel stopper region formed under the element isolation region formed on the semiconductor substrate, and formed under the gate region formed of the gate insulating film and the gate electrode on the semiconductor substrate. The doped high-concentration impurity region is of the second conductivity type and has at least a double structure composed of at least two kinds of impurity species having different diffusion coefficients, and PN is formed under the channel stopper region and the element isolation region. The present invention provides a MOS type semiconductor device characterized by being joined.

〈作用〉 本発明の如く、半導体基板の空乏化を防ぐための高濃度
不純物領域を拡散係数の異なる少なくとも2種の不純物
種にて形成することにより、空乏化を防ぐに足りる従来
とほぼ同じ不純物量であっても、高濃度不純物領域をよ
り広く形成することが可能になる。
<Operation> By forming the high-concentration impurity region for preventing depletion of the semiconductor substrate with at least two kinds of impurity species having different diffusion coefficients as in the present invention, almost the same impurities as in the conventional case sufficient for preventing depletion are formed. Even if the amount is large, the high concentration impurity region can be formed wider.

〈実施例〉 以下、図面を用いて本発明の実施例を説明するが、本発
明はこれに限定されるものではない。
<Examples> Examples of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto.

第1図(a)〜(d)は本発明の一実施例の製造プロセスを示
す断面図である。p型Si基板1の主面上を洗浄し、該
主面上にSiO2膜13を300〜1000Åの厚さに、SiO
34膜12を1000〜2000Åの厚さに順次形成した後、S
i基板1上の活性領域をレジスト11で選択的に覆い、
前記レジスト11をマスクにしてプラズマエッチングを
行なって、第1図(a)の如くSiO2膜13とSi34
12とをパターニングする。次いでレジスト11をマス
クとしてp型Si基板1に寄生チャネル防止のための硼
素イオンを120KeVで1×1013cm2注入した後、レジス
ト11を除去し、Si34膜12をマスクにして950℃
2O雰囲気中で5〜10時間の熱酸化を行なうと、第1
図(b)の如くp不純物領域9及び0.7〜1.5μmの膜厚
のフィールド絶縁膜3が形成される。次いで上記Si3
4膜12とSiO2膜13を除去し、Si基板1上を新
たにレジスト14で選択的に覆い、該レジスト14をマ
スクとしてSi基板1に砒素及びリンのイオン注入を行
なって、第1及び第2の高濃度n不純物領域15a,
bを形成する。次に前記レジスト14を除去した後、第
1図(c)の如く熱酸化法によりSi基板1上に500〜1000
Å程度のゲート絶縁膜4を形成し、該ゲート絶縁膜4上
に電荷注入用の窪みを形成する。このゲート絶縁膜4上
に、ポリシリコンからなるフローティングゲート5と層
間絶縁膜6、及びリンをドープしたポリシリコンからな
るコントロールゲート7を順次形成する。この後、第1
図(d)の如く前記コントロールゲート7をマスクとして
Si基板1に砒素を高濃度にイオン注入してドレイン領
域2を形成し、Si基板1全面をPSG等の絶縁膜8で
覆う。この絶縁膜8にコンタクトホール(図示せず)を
形成し、Al等からなる電極(図示せず)を形成する。
1 (a) to 1 (d) are cross-sectional views showing a manufacturing process of an embodiment of the present invention. The main surface of the p-type Si substrate 1 is cleaned, and a SiO 2 film 13 is formed on the main surface to a thickness of 300 to 1000Å.
After sequentially forming the 3 N 4 film 12 to a thickness of 1000 to 2000 Å, S
selectively covering the active region on the i-substrate 1 with a resist 11;
Plasma etching is performed using the resist 11 as a mask to pattern the SiO 2 film 13 and the Si 3 N 4 film 12 as shown in FIG. Then, using the resist 11 as a mask, boron ions for preventing parasitic channels are implanted into the p-type Si substrate 1 at 120 KeV at 1 × 10 13 cm 2 and then the resist 11 is removed. The Si 3 N 4 film 12 is used as a mask for 950 ℃
When thermal oxidation is performed for 5 to 10 hours in an H 2 O atmosphere, the first
As shown in FIG. 6B, the p + impurity region 9 and the field insulating film 3 having a film thickness of 0.7 to 1.5 μm are formed. Then the above Si 3
The N 4 film 12 and the SiO 2 film 13 are removed, the Si substrate 1 is newly covered with a resist 14 selectively, and arsenic and phosphorus ions are implanted into the Si substrate 1 using the resist 14 as a mask. And the second high-concentration n + impurity region 15a,
b is formed. Next, after removing the resist 14, 500-1000 is deposited on the Si substrate 1 by the thermal oxidation method as shown in FIG. 1 (c).
A gate insulating film 4 having a thickness of about Å is formed, and a recess for charge injection is formed on the gate insulating film 4. A floating gate 5 made of polysilicon, an interlayer insulating film 6, and a control gate 7 made of phosphorus-doped polysilicon are sequentially formed on the gate insulating film 4. After this, the first
As shown in FIG. 3D, arsenic is ion-implanted at a high concentration into the Si substrate 1 using the control gate 7 as a mask to form the drain region 2, and the entire surface of the Si substrate 1 is covered with an insulating film 8 such as PSG. A contact hole (not shown) is formed in the insulating film 8 and an electrode (not shown) made of Al or the like is formed.

上述の如く高濃度n不純物領域の不純物種として拡散
係数の大きいリンと小さい砒素の2種を用いることによ
り、リンにより第1の高濃度n不純物領域15aが形
成され、ゲート絶縁膜4より厚いフィールド絶縁膜3の
下で前記第1の高濃度n不純物領域15aとチャネル
・ストッパ用のp不純物領域9とによるPN接合が形
成されるため、リーク電流の発生を抑制できる。更に砒
素により第2の高濃度n不純物領域15bが従来と同
様に形成され、基板の空乏化を防ぐことが可能になる。
By using two large phosphorus and less arsenic diffusion coefficient as an impurity species as described above the high-concentration n + impurity region, the first high concentration n + impurity regions 15a is formed by phosphorus, than the gate insulating film 4 Since a PN junction is formed under the thick field insulating film 3 by the first high-concentration n + impurity region 15a and the p + impurity region 9 for the channel stopper, generation of leak current can be suppressed. Further, the second high-concentration n + impurity region 15b is formed by arsenic as in the conventional case, and it becomes possible to prevent the depletion of the substrate.

上記本実施例において、n型不純物を基板にイオン注入
したが、本発明はこれに限定されるものではなく、拡散
等他の方法であってもよい。
Although the n-type impurity is ion-implanted into the substrate in the present embodiment, the present invention is not limited to this, and other methods such as diffusion may be used.

第2図は高濃度n不純物領域を形成する際、砒素注入
量を7×1014cm-2にし、リン注入量を変化させた時のP
N接合のリーク電流の変化を表した図である。同図か
ら、リンを注入するとリーク電流が低下することは明ら
かである。また、砒素を7×1014cm-2とリンを1×1014
cm-2とを注入する、つまりn型不純物を8×1014cm-2
度Si基板に注入し、高濃度n不純物領域を形成して
も、第4図から明らかなように該高濃度n不純物領域
上のゲート絶縁膜の寿命は従来とほぼ変わらない。
FIG. 2 shows P when the arsenic implantation amount is set to 7 × 10 14 cm -2 and the phosphorus implantation amount is changed when the high-concentration n + impurity region is formed.
It is a figure showing the change of the leak current of N junction. From the figure, it is clear that the injection of phosphorus reduces the leakage current. Also, arsenic is 7 × 10 14 cm -2 and phosphorus is 1 × 10 14 cm 2.
cm −2 , that is, even if a high-concentration n + impurity region is formed by injecting n-type impurities into the Si substrate at about 8 × 10 14 cm −2 , as shown in FIG. The life of the gate insulating film on the n + impurity region is almost the same as the conventional one.

上記本実施例において高濃度n不純物領域をなし、拡
散係数の異なるn型不純物としてリンと砒素を用いた
が、本発明はこれに限定されるものではなく、リンとア
ンチモンの組合せ、或いはリンと砒素とアンチモンの組
合せであってもよく、また他のn型不純物であっても上
記と同様の効果が得られるならば、それを用いてもよ
い。
Although phosphorus and arsenic are used as the n-type impurities having the high-concentration n + impurity region and different diffusion coefficients in the present embodiment, the present invention is not limited to this, and a combination of phosphorus and antimony or phosphorus. And arsenic and antimony may be used, and other n-type impurities may be used as long as the same effect as described above can be obtained.

〈発明の効果〉 本発明により、高濃度不純物領域の濃度を増加させるこ
となくPN接合部がフィールド酸化膜下に形成されてい
るので、リーク電流の減少をゲート絶縁膜の特性を悪化
させることなく実施することが可能になる。したがっ
て、本発明は信頼性の高いMOS型半導体装置の製造に
寄与するものである。
<Effects of the Invention> According to the present invention, since the PN junction is formed under the field oxide film without increasing the concentration of the high-concentration impurity region, it is possible to reduce the leakage current without deteriorating the characteristics of the gate insulating film. It becomes possible to carry out. Therefore, the present invention contributes to the manufacture of a highly reliable MOS semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(d)は本発明の一実施例の製造プロセスを示
す断面図、第2図はリン注入量に対するリーク電流の変
化を示す図、第3図は従来例を示す断面図、第4図は高
濃度n不純物領域をなすn不純物濃度に対する前記
高濃度n不純物領域上のゲート絶縁膜の寿命の変化を
示す図である。 1…p型Si基板 2…ドレイン領域 3…フィールド
絶縁膜 4…ゲート絶縁膜 5…フローティングゲート
6…層間絶縁膜 7…コントロールゲート 8…絶縁
膜 9…p不純物領域 15a…第1の高濃度n
純物領域 15b…第2の高濃度n不純物領域
1 (a) to 1 (d) are cross-sectional views showing a manufacturing process of an embodiment of the present invention, FIG. 2 is a view showing a change in leak current with respect to a phosphorus implantation amount, and FIG. 3 is a cross-sectional view showing a conventional example. FIG. 4 and FIG. 4 are views showing changes in the life of the gate insulating film on the high concentration n + impurity region with respect to the n + impurity concentration forming the high concentration n + impurity region. DESCRIPTION OF SYMBOLS 1 ... P-type Si substrate 2 ... Drain region 3 ... Field insulating film 4 ... Gate insulating film 5 ... Floating gate 6 ... Interlayer insulating film 7 ... Control gate 8 ... Insulating film 9 ... P + impurity region 15a ... 1st high concentration n + impurity region 15b ... second high-concentration n + impurity region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】第1の導電型の半導体基板に形成された第
2の導電型のドレイン領域と前記半導体基板に形成され
た素子分離領域下に形成された第1の導電型のチャネル
・ストッパ領域とに両端が連続し、且つ前記半導体基板
上のゲート絶縁膜及びゲート電極から成るゲート領域下
に形成された高濃度不純物領域は、第2の導電型であ
り、且つ拡散係数の異なる少なくとも2種の不純物種か
らなる少なくとも2重構造を有し、且つ前記チャネル・
ストッパ領域と前記素子分離領域下でPN接合している
ことを特徴とするMOS型半導体装置。
1. A channel stopper of a first conductivity type formed below a drain region of a second conductivity type formed on a semiconductor substrate of a first conductivity type and an element isolation region formed on the semiconductor substrate. The high-concentration impurity region which is continuous with the region at both ends and is formed under the gate region formed of the gate insulating film and the gate electrode on the semiconductor substrate is of the second conductivity type and has at least 2 different diffusion coefficients. The channel has at least a double structure of two impurity species,
A MOS semiconductor device characterized in that a PN junction is formed between the stopper region and the element isolation region.
【請求項2】前記不純物種は1種がリンであり、他がひ
素及び/またはアンチモンであることを特徴とする特許
請求の範囲第1項記載のMOS型半導体装置。
2. The MOS type semiconductor device according to claim 1, wherein one of the impurity species is phosphorus and the other is arsenic and / or antimony.
JP62113385A 1987-05-08 1987-05-08 MOS semiconductor device Expired - Lifetime JPH0642546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113385A JPH0642546B2 (en) 1987-05-08 1987-05-08 MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113385A JPH0642546B2 (en) 1987-05-08 1987-05-08 MOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS63278276A JPS63278276A (en) 1988-11-15
JPH0642546B2 true JPH0642546B2 (en) 1994-06-01

Family

ID=14610963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113385A Expired - Lifetime JPH0642546B2 (en) 1987-05-08 1987-05-08 MOS semiconductor device

Country Status (1)

Country Link
JP (1) JPH0642546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539217A (en) * 1993-08-09 1996-07-23 Cree Research, Inc. Silicon carbide thyristor
US5719409A (en) * 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223165A (en) * 1984-04-19 1985-11-07 Toshiba Corp Manufacture of semiconductor device
JPS6276676A (en) * 1985-09-30 1987-04-08 Toshiba Corp Mos type semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS63278276A (en) 1988-11-15

Similar Documents

Publication Publication Date Title
US4646118A (en) Semiconductor memory device
JPH05218451A (en) Non-volatile semiconductor memory device and manufacture thereof
JPH0365905B2 (en)
JP3241330B2 (en) Flash memory and manufacturing method thereof
JPH09232448A (en) Thin film transistor and its manufacture
JP2675572B2 (en) Method for manufacturing semiconductor integrated circuit
KR19980070397A (en) Semiconductor device
JPH07169863A (en) Non-volatile semiconductor storage
KR950012744B1 (en) Method of producing semiconductor memory device
US5942778A (en) Switching transistor and capacitor for memory cell
JPH0621389A (en) Semiconductor device and its manufacture
JPH0642546B2 (en) MOS semiconductor device
JPH10233492A (en) Semiconductor device and its manufacture
US20030157758A1 (en) Non-volatile semiconductor memory device and manufacturing method therefor
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP3405664B2 (en) Semiconductor device and manufacturing method thereof
JPH0621387A (en) Semiconductor memory and manufacture thereof
KR20000001261A (en) Method for forming eprom cells
JP3253992B2 (en) Semiconductor device and manufacturing method thereof
JP3085687B2 (en) Semiconductor memory device and method of manufacturing the same
JP2900717B2 (en) Semiconductor device
JP2889683B2 (en) Semiconductor device
JPS61134058A (en) Manufacture of semiconductor device
JP2508223B2 (en) MOS type read-only semiconductor memory device
JPH098154A (en) Semiconductor memory device and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term