JPH0641067Y2 - Refrigerator control device - Google Patents

Refrigerator control device

Info

Publication number
JPH0641067Y2
JPH0641067Y2 JP1825589U JP1825589U JPH0641067Y2 JP H0641067 Y2 JPH0641067 Y2 JP H0641067Y2 JP 1825589 U JP1825589 U JP 1825589U JP 1825589 U JP1825589 U JP 1825589U JP H0641067 Y2 JPH0641067 Y2 JP H0641067Y2
Authority
JP
Japan
Prior art keywords
temperature
compressor
signal
heat exchanger
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1825589U
Other languages
Japanese (ja)
Other versions
JPH02109928U (en
Inventor
晃 三友
孝房 柳
守 酒巻
富雄 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1825589U priority Critical patent/JPH0641067Y2/en
Publication of JPH02109928U publication Critical patent/JPH02109928U/ja
Application granted granted Critical
Publication of JPH0641067Y2 publication Critical patent/JPH0641067Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (イ)産業上の利用分野 本考案は、冷凍サイクル中に設けられた利用側熱交換
器、蓄熱槽、負荷の間でブラインを循環させて負荷の温
度制御を成すようにした冷凍機の制御に関するものであ
る。
[Detailed Description of the Invention] (b) Industrial field of application The present invention controls the temperature of the load by circulating brine between the heat exchanger, the heat storage tank, and the load side, which are provided in the refrigeration cycle. It relates to the control of the refrigerator.

(ロ)従来の技術 このような冷凍機の従来技術としては、実願昭59-10505
2号に記載されているようなものがあった。この公報に
記載されたものは、タンク(蓄熱槽)、負荷側熱交換器
(負荷)、循環ポンプ、水熱交換器を水配管で接続して
水回路を構成したものであり、冷却された水を負荷に供
給して負荷の温度制御を行うと共に2台の圧縮機の運転
を制御して循環する水の温度を制御するものであった。
(B) Conventional technology As a conventional technology for such a refrigerator, Japanese Patent Application No. 59-10505
There was something like that described in No. 2. The one described in this publication is a tank (heat storage tank), a load side heat exchanger (load), a circulation pump, and a water heat exchanger connected by a water pipe to form a water circuit, which is cooled. Water was supplied to the load to control the temperature of the load, and the operation of the two compressors was controlled to control the temperature of the circulating water.

(ハ)考案が解決しようとする課題 このように構成された冷凍装置では、負荷に循環される
水の温度を一定にするために水の温度を検出する温度検
出器を設け、この温度検出器が検出する温度が一定にな
るように圧縮機の運転を制御するものであった。この場
合、圧縮機の頻繁なON/OFF動作を防止するために圧縮機
のON/OFFには所定のデイファレンシャルが設定されてい
るものであった。従って、圧縮機のON/OFF周期の制限に
よる負荷の温度制御特性の劣化や負荷変動による水の温
度ハンチングを防止するために大容量のタンク(蓄熱
槽)が必要であった。
(C) Problem to be Solved by the Invention In the refrigerating apparatus configured as described above, a temperature detector for detecting the temperature of water is provided in order to keep the temperature of the water circulated in the load constant. The operation of the compressor was controlled so that the temperature detected by the compressor was constant. In this case, in order to prevent the frequent ON / OFF operation of the compressor, a predetermined differential is set for ON / OFF of the compressor. Therefore, a large-capacity tank (heat storage tank) is required to prevent deterioration of the temperature control characteristics of the load due to the limitation of the ON / OFF cycle of the compressor and temperature hunting of the water due to load fluctuation.

かかる問題点に鑑みて本考案は、圧縮機のON/OFF周期を
短くすることなく蓄熱槽の小型化を可能にした冷凍機の
制御装置を提供するものである。
In view of such a problem, the present invention provides a controller for a refrigerator in which the heat storage tank can be downsized without shortening the ON / OFF cycle of the compressor.

(ニ)課題を解決するための手段 本考案は、圧縮機、この圧縮機の能力を下げるパワーセ
ーブ機構、熱源側熱交換器、減圧装置、ブラインと熱交
換する利用側熱交換器を冷媒配管で接続して冷凍サイク
ルを構成すると共に、利用側熱交換器、蓄熱槽、負荷を
ブライン配管で接続して負荷の温度制御を成すように構
成した冷凍機の制御装置において、ブラインの温度を検
出する温度検出器と、この検出器の検出した温度が第1
の温度値以下のときに第1の信号の出力を開始し、この
温度が所定のデイファレンシャルを有する第2の温度値
以上になったときこの信号の出力を停止する第1の温度
判断部と、前記温度が第2の温度値より高い第3の温度
値以下のときに第2の信号の出力を開始し、この温度が
所定のデイファレンシャルを有する第4の温度値以上に
なったときこの信号の出力を停止する第2の温度判断部
と、第1の信号に基づいて圧縮機の運転を停止させる圧
縮機制御部と、圧縮機の運転時に第2の信号に基づいて
パワーセーブ機構を作動させるパワー制御部とを備えた
ものである。
(D) Means for Solving the Problems The present invention is directed to a compressor, a power saving mechanism for reducing the capacity of the compressor, a heat source side heat exchanger, a pressure reducing device, and a utilization side heat exchanger for exchanging heat with brine as refrigerant piping. Connected to each other to configure a refrigeration cycle, and the temperature of the brine is detected in the refrigerator control device configured to connect the use side heat exchanger, the heat storage tank, and the load with brine piping to control the temperature of the load. Temperature detector and the temperature detected by this detector
A first temperature determination unit that starts outputting the first signal when the temperature value is equal to or lower than the temperature value of 1 and stops outputting the signal when the temperature becomes equal to or higher than the second temperature value having a predetermined differential. And when the temperature is equal to or lower than the third temperature value higher than the second temperature value, the output of the second signal is started, and the temperature becomes equal to or higher than the fourth temperature value having a predetermined differential. At this time, a second temperature determination unit that stops the output of this signal, a compressor control unit that stops the operation of the compressor based on the first signal, and a power save based on the second signal during the operation of the compressor. And a power control unit for operating the mechanism.

(ホ)作用 このように構成された制御装置を用いると、圧縮機の運
転を停止することなくパワーセーブ機構で圧縮機の能力
を制御することができ、圧縮機のON/OFF回数を減らすこ
とができる。また、第1の温度判断部、第2の温度判断
部を用いて、圧縮機ON/OFF及びパワーセーブ機構の作動
を近接した温度値で制御することができる。
(E) Action By using the control device configured in this way, the power saving mechanism can control the capacity of the compressor without stopping the operation of the compressor, thus reducing the number of times the compressor is turned on and off. You can Further, by using the first temperature determination unit and the second temperature determination unit, it is possible to control the compressor ON / OFF and the operation of the power saving mechanism with close temperature values.

(ヘ)実施例 以下本考案の実施例を図面を用いて説明する。第1図は
冷凍装置の冷媒配管及び水配管を示す概略図であり、図
中1は圧縮機、2は熱源側熱交換器、3が減圧装置、4
は利用側熱交換器、5はアキュムレータであり冷媒配管
で冷凍サイクルを構成するように環状に接続されてい
る。熱源側熱交換器2には送風装置6が設けられてお
り、この送風装置を運転することによって空気と冷媒と
の熱交換が行われる。利用側熱交換器4は蓄熱槽7に貯
えられた水(ブライン)8と熱交換できるように設けら
れている。9は電磁弁(配管10と共にパワーセーブ機構
を構成)であり、冷凍サイクル中の高圧側と低圧側とを
つなぐ配管10に設けられている。従って、この電磁弁が
開状態になることによって高圧側の冷媒の一部が低圧側
に流れて圧縮機の能力が低下するものである。11は循環
ポンプであり、蓄熱槽の中の水8を負荷12へ循環させ
る。尚、13は蓄熱槽7と負荷12とをつなぐ水配管であ
る。14は蓄熱槽7内の水8を攪拌させるための循環ポン
プである。15は温度検出器であり、蓄熱槽7内の水8の
温度を検出できるように設けられている。
(F) Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a refrigerant pipe and a water pipe of a refrigeration system, in which 1 is a compressor, 2 is a heat source side heat exchanger, 3 is a decompression device, 4
Is a use side heat exchanger, and 5 is an accumulator, which is connected in an annular shape by a refrigerant pipe so as to form a refrigeration cycle. The heat source side heat exchanger 2 is provided with an air blower 6, and the air is exchanged with the refrigerant by operating this air blower. The utilization side heat exchanger 4 is provided so as to exchange heat with the water (brine) 8 stored in the heat storage tank 7. Reference numeral 9 denotes a solenoid valve (which constitutes a power saving mechanism together with the pipe 10) and is provided in the pipe 10 which connects the high pressure side and the low pressure side in the refrigeration cycle. Therefore, when this solenoid valve is opened, a part of the high-pressure side refrigerant flows to the low-pressure side, and the capacity of the compressor is reduced. A circulation pump 11 circulates the water 8 in the heat storage tank to the load 12. Incidentally, 13 is a water pipe connecting the heat storage tank 7 and the load 12. Reference numeral 14 is a circulation pump for stirring the water 8 in the heat storage tank 7. A temperature detector 15 is provided so as to detect the temperature of the water 8 in the heat storage tank 7.

第2図は温度検出器15が検出した温度に基づいて圧縮機
1のON/OFF及び電磁弁9のON/OFF(開閉)動作を制御す
る制御装置の電気回路図である。図中R1は切り替え接片
であり、温度検出器15が検出した温度が第1の温度値
(T1)以下のときにH端子側になり、この温度が所定の
デイファレンシャルを有する第2の温度値(T2)以上に
なったときL端子側になるものである。R2は切り替え接
片であり、温度検出器15が検出した温度が第3の温度値
(T3)以下のときにH端子側になり、この温度が所定の
デイファレンシャルを有する第4の温度値(T4)以上に
なったときL端子側になるものである。この温度値T1〜
T4の関係は第3図に示すようになっている。この第3図
においてT1とT2とのデイファレンシャル幅は約0.5度で
あり、T3とT4とのデイファレンシャル幅も約0.5度であ
る。また、T1とT3との温度幅は約1.0度に設定してい
る。これら温度値T1〜T4の値は圧縮機の能力、蓄熱槽の
容量、負荷の大きさに基づいて任意に設定する。また第
2図において、接片R1のL端子と電源母線l2との間には
圧縮機1(実際には圧縮機駆動用のリレーであるが圧縮
機として扱う)と補助リレー1Xが並列に接続されてい
る。接片R1の端子Cと電源母線1との間には補助リレ
ー1Xの常開接片1Xaが接続されている。接片R2の端子C
と電源母線1に接続され、端子LはR1の端子Cに接続
され、端子Hと電源母線l2との間には補助リレー1Xの常
開接片1Xbと電磁弁9が直列に接続されている。
FIG. 2 is an electric circuit diagram of a control device that controls ON / OFF of the compressor 1 and ON / OFF (open / close) operation of the solenoid valve 9 based on the temperature detected by the temperature detector 15. In the figure, R1 is a switching contact piece, which is on the H terminal side when the temperature detected by the temperature detector 15 is equal to or lower than the first temperature value (T1), and this temperature has the second differential value having a predetermined differential. When the temperature value (T2) or higher is reached, it becomes the L terminal side. R2 is a switching contact piece, which is on the H terminal side when the temperature detected by the temperature detector 15 is the third temperature value (T3) or less, and this temperature is the fourth temperature value having a predetermined differential. When it becomes (T4) or more, it becomes the L terminal side. This temperature value T1 ~
The relationship of T4 is shown in FIG. In FIG. 3, the differential width between T1 and T2 is about 0.5 degree, and the differential width between T3 and T4 is also about 0.5 degree. The temperature range between T1 and T3 is set to about 1.0 degree. These temperature values T1 to T4 are arbitrarily set based on the capacity of the compressor, the capacity of the heat storage tank, and the size of the load. Further, in FIG. 2, a compressor 1 (actually a relay for driving the compressor, but it is treated as a compressor) and an auxiliary relay 1X are connected in parallel between the L terminal of the contact piece R1 and the power source bus l2. Has been done. A normally open contact piece 1Xa of the auxiliary relay 1X is connected between the terminal C of the contact piece R1 and the power bus 1. Terminal C of contact piece R2
Is connected to the power source bus 1 and the terminal L is connected to the terminal C of R1. The normally open contact piece 1Xb of the auxiliary relay 1X and the solenoid valve 9 are connected in series between the terminal H and the power source bus l2. .

第4図はこのように構成された冷凍機及び制御装置を用
いたときの温度(温度検出器15が検出する水8の温
度)、接片R1,R2の位置、圧縮機1及び電磁弁9の動作
状態を示す動作説明図である。この図において、まず運
転開始時には、温度がT4以上なので接片R1,R2の両方が
端子L側にあり圧縮機1の運転が行われる。この後温度
がT3以下になると接片R2が端子H側に変わって電磁弁9
がON(開状態)になり、圧縮機1の能力を下げた運転を
行う。次に温度がさらに下がりT1以下になると接片R1が
端子H側に変わり圧縮機1、及びリレー1Xへの通電が遮
断される。従って、圧縮機1が停止すると共に電磁弁9
も閉状態になる。こののち温度の上昇と下降に合わせて
第4図に示す様に接片R1,R2が切り替わり圧縮機の能力
が制御される。これによって温度検出器の検出する温度
は温度T1−α(0〜0.5)〜温度T4+β(0〜0.5)の間
で安定するものである。
FIG. 4 shows the temperature (the temperature of the water 8 detected by the temperature detector 15), the positions of the contact pieces R1 and R2, the compressor 1 and the solenoid valve 9 when the refrigerator and the control device configured as described above are used. FIG. 8 is an operation explanatory view showing an operation state of FIG. In this figure, at the beginning of operation, since the temperature is T4 or higher, both the contact pieces R1 and R2 are on the terminal L side, and the compressor 1 is operated. After this, when the temperature drops below T3, the contact piece R2 changes to the terminal H side and the solenoid valve 9
Is turned on (open state), and operation is performed with the capacity of the compressor 1 lowered. Next, when the temperature further decreases to T1 or less, the contact piece R1 changes to the terminal H side, and the energization of the compressor 1 and the relay 1X is cut off. Therefore, the compressor 1 stops and the solenoid valve 9
Is also closed. After that, as the temperature rises and falls, the contact pieces R1 and R2 are switched as shown in FIG. 4 to control the capacity of the compressor. As a result, the temperature detected by the temperature detector is stabilized between the temperature T1−α (0 to 0.5) and the temperature T4 + β (0 to 0.5).

(ト)考案の効果 本考案は、圧縮機、この圧縮機の能力を下げるパワーセ
ーブ機構、熱源側熱交換器、減圧装置、ブラインと熱交
換する利用側熱交換器を冷媒配管で接続して冷凍サイク
ルを構成すると共に、利用側熱交換器、蓄熱槽、負荷を
ブライン配管で接続して負荷の温度制御を成すように構
成した冷凍機の制御装置において、ブラインの温度を検
出する温度検出器と、この検出器の検出した温度が第1
の温度値以下のときに第1の信号の出力を開始し、この
温度が所定のデイファレンシャルを有する第2の温度値
以上になったときこの信号の出力を停止する第1の温度
判断部と、前記温度が第2の温度値より高い第3の温度
値以下のときに第2の信号の出力を開始し、この温度が
所定のデイファレンシャルを有する第4の温度値以上に
なったときこの信号の出力を停止する第2の温度判断部
と、第1の信号に基づいて圧縮機の運転を停止させる圧
縮機制御部と、圧縮機の運転時に第2の信号に基づいて
パワーセーブ機構を作動させるパワー制御部とを備えた
ので、圧縮機の運転を停止することなくパワーセーブ機
構で圧縮機の能力を制御することができ、圧縮機のON/O
FF回数を減らすことができる。また、第1の温度判断
部、第2の温度判断部を用いて、圧縮機ON/OFF及びパワ
ーセーブ機構の作動(冷凍サイクルの能力の切り替え)
を近接した温度値で制御することができ、ブラインの温
度変動幅を小さくすることができる。従って、従来のよ
うに蓄熱槽の容量を大きくしてブラインの温度変動幅を
吸収し小さくする必要がなく、その分、蓄熱槽の容量を
小さくすることができ、冷凍機全体の小型化が可能とな
るものである。
(G) Effect of the invention The invention is to connect a compressor, a power save mechanism for reducing the capacity of the compressor, a heat source side heat exchanger, a pressure reducing device, and a utilization side heat exchanger for exchanging heat with a brine by refrigerant pipes. A temperature detector for detecting the temperature of brine in a control device for a refrigerator configured to configure a refrigeration cycle and connect a utilization side heat exchanger, a heat storage tank, and a load with a brine pipe to control the temperature of the load. And the temperature detected by this detector is the first
A first temperature determination unit that starts outputting the first signal when the temperature value is equal to or lower than the temperature value of 1 and stops outputting the signal when the temperature becomes equal to or higher than the second temperature value having a predetermined differential. And when the temperature is equal to or lower than the third temperature value higher than the second temperature value, the output of the second signal is started, and the temperature becomes equal to or higher than the fourth temperature value having a predetermined differential. At this time, a second temperature determination unit that stops the output of this signal, a compressor control unit that stops the operation of the compressor based on the first signal, and a power save based on the second signal during the operation of the compressor. Since it has a power control unit that operates the mechanism, the power saving mechanism can control the capacity of the compressor without stopping the operation of the compressor.
The number of FFs can be reduced. Also, using the first temperature determination unit and the second temperature determination unit, the compressor ON / OFF and the operation of the power save mechanism (switching of the refrigeration cycle capacity)
Can be controlled by temperature values close to each other, and the fluctuation range of the brine temperature can be reduced. Therefore, it is not necessary to increase the capacity of the heat storage tank to absorb and reduce the temperature fluctuation range of the brine as in the conventional case, and the capacity of the heat storage tank can be reduced accordingly and the entire refrigerator can be downsized. It will be.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷凍装置の冷媒配管及び水配管を示す概略図、
第2図は第1図に示した冷凍装置に用いる電気回路図、
第3図は温度T1〜T4の関係を示す説明図、第4図は第1
図に示した温度検出器の検出した温度の変化を示す特性
図である。 1……圧縮機、2……熱源側熱交換器、3……減圧装
置、4……利用側熱交換器、7……蓄熱槽、9……電磁
弁、12……負荷、15……温度検出器、R1,R2……接片。
FIG. 1 is a schematic view showing a refrigerant pipe and a water pipe of a refrigeration system,
2 is an electric circuit diagram used in the refrigerating apparatus shown in FIG. 1,
FIG. 3 is an explanatory view showing the relationship between temperatures T1 to T4, and FIG.
It is a characteristic view which shows the change of the temperature which the temperature detector shown in the figure detected. 1 ... Compressor, 2 ... Heat source side heat exchanger, 3 ... Pressure reducing device, 4 ... Utilization side heat exchanger, 7 ... Heat storage tank, 9 ... Solenoid valve, 12 ... Load, 15 ... Temperature detectors, R1, R2 ... contacts.

フロントページの続き (72)考案者 茂木 富雄 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (56)参考文献 実開 昭55−135262(JP,U)Continued Front Page (72) Inventor Tomio Mogi 2--18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) References

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】圧縮機、この圧縮機の能力を下げるパワー
セーブ機構、熱源側熱交換器、減圧装置、ブラインと熱
交換する利用側熱交換器を冷媒配管で接続して冷凍サイ
クルを構成すると共に、利用側熱交換器、蓄熱槽、負荷
をブライン配管で接続して負荷の温度制御を成すように
構成した冷凍機の制御装置において、ブラインの温度を
検出する温度検出器と、この検出器の検出した温度が第
1の温度値以下のときに第1の信号の出力を開始し、こ
の温度が所定のデイファレンシャルを有する第2の温度
値以上になったときこの信号の出力を停止する第1の温
度判断部と、前記温度が第2の温度より高い第3の温度
以下の時に第2の信号の出力を開始し、この温度が所定
のデイファレンシャルを有する第4の温度値以上になっ
たときこの信号の出力を停止する第2の温度判断部と、
第1の信号に基づいて圧縮機の運転を停止させる圧縮機
制御部と、圧縮機の運転時に第2の信号に基づいてパワ
ーセーブ機構を作動させるパワー制御部とを備えたこと
を特徴とする冷凍機の制御装置。
1. A refrigeration cycle is constructed by connecting a compressor, a power save mechanism for reducing the capacity of the compressor, a heat source side heat exchanger, a pressure reducing device, and a utilization side heat exchanger for exchanging heat with brine by a refrigerant pipe. In addition, in the controller of the refrigerator configured to connect the use-side heat exchanger, the heat storage tank, and the load with the brine piping to control the temperature of the load, a temperature detector that detects the temperature of the brine, and this detector The output of the first signal is started when the detected temperature of is less than or equal to the first temperature value, and the output of this signal is stopped when the temperature becomes equal to or higher than the second temperature value having a predetermined differential. And a fourth temperature value that starts outputting the second signal when the temperature is equal to or lower than the third temperature, which is higher than the second temperature, and which has a predetermined differential. When this signal is exceeded A second temperature determining section for stopping power,
A compressor control unit that stops the operation of the compressor based on the first signal, and a power control unit that operates the power save mechanism based on the second signal when the compressor is operating are provided. Refrigerator control device.
JP1825589U 1989-02-17 1989-02-17 Refrigerator control device Expired - Lifetime JPH0641067Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1825589U JPH0641067Y2 (en) 1989-02-17 1989-02-17 Refrigerator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1825589U JPH0641067Y2 (en) 1989-02-17 1989-02-17 Refrigerator control device

Publications (2)

Publication Number Publication Date
JPH02109928U JPH02109928U (en) 1990-09-03
JPH0641067Y2 true JPH0641067Y2 (en) 1994-10-26

Family

ID=31232737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1825589U Expired - Lifetime JPH0641067Y2 (en) 1989-02-17 1989-02-17 Refrigerator control device

Country Status (1)

Country Link
JP (1) JPH0641067Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060154A (en) * 2019-10-07 2021-04-15 伸和コントロールズ株式会社 Hydrogen cooling device, hydrogen supply system, and refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060154A (en) * 2019-10-07 2021-04-15 伸和コントロールズ株式会社 Hydrogen cooling device, hydrogen supply system, and refrigerator
WO2021070806A1 (en) * 2019-10-07 2021-04-15 伸和コントロールズ株式会社 Hydrogen cooling device, hydrogen supply system, and refrigerator

Also Published As

Publication number Publication date
JPH02109928U (en) 1990-09-03

Similar Documents

Publication Publication Date Title
JPH0641067Y2 (en) Refrigerator control device
JP2003254635A (en) Multi-chamber type air conditioner
JPH0349034B2 (en)
JPH0712417A (en) Air-conditioning machine
JPS6129649A (en) Heat-pump hot-water supply device
JP3237206B2 (en) Air conditioner
JPS63163725A (en) Air conditioner
JPH03211380A (en) Air conditioner
JP2719456B2 (en) Air conditioner
JPS59217460A (en) Refrigeration cycle of air conditioner
JPH0349016B2 (en)
JPS6256415B2 (en)
JPH0643653Y2 (en) Air conditioner
JPS6132302Y2 (en)
JPH0522761Y2 (en)
JPS5856529Y2 (en) Refrigeration equipment
JPS6045345B2 (en) Heat recovery air conditioner
JP2845617B2 (en) Air conditioner
JPH0718938Y2 (en) air conditioner
JPH0233108Y2 (en)
JPH09152168A (en) Separate type air conditioner
JPH0330766Y2 (en)
JPH09152169A (en) Multi-type air conditioner
KR19980016168A (en) DETERMINATION APPARATUS AND METHOD FOR DETERMINING OVERFLOW FAILURE
KR0133026B1 (en) Apparatus for controlling movement of airconditioner