JPH0640776A - Hydraulic composite structure and its production - Google Patents

Hydraulic composite structure and its production

Info

Publication number
JPH0640776A
JPH0640776A JP21662292A JP21662292A JPH0640776A JP H0640776 A JPH0640776 A JP H0640776A JP 21662292 A JP21662292 A JP 21662292A JP 21662292 A JP21662292 A JP 21662292A JP H0640776 A JPH0640776 A JP H0640776A
Authority
JP
Japan
Prior art keywords
hydraulic
slurry
porous structure
substance
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21662292A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Kiminobu Ashida
公伸 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21662292A priority Critical patent/JPH0640776A/en
Publication of JPH0640776A publication Critical patent/JPH0640776A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To ensure high strength and various functions by incorporating a specified part and parts formed with a hydraulic material or a material contg. the hydraulic material and different from the specified part in microstructure. CONSTITUTION:An org. porous substrate such as plastic foam, e.g. soft polyurethane foam is impregnated with a hydraulic slurry of cement, etc., and dried to obtain a hydraulic porous structure consisting of a three-dimensional skeleton 1 and three-dimensional open pores 2 formed with the hydraulic material or a material contg. the hydraulic material and different from the skeleton 1 in microstructure. This porous structure has 10mum to 50mm pore diameter and 50-95% porosity. The porous structure is then immersed in a hydraulic slurry of cement, etc., under reduced pressure while removing bubbles, the pores 2 are filled with the slurry and this slurry 2 is hardened to produce the objective hydraulic composite structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特殊な構造を有する水硬
性複合構造体及びその製造方法に関する。水硬性構造体
は、建築、土木や廃棄物処理等の分野で広範囲の応用が
あり、非常に有用な材料である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic composite structure having a special structure and a method for producing the same. Hydraulic structures have a wide range of applications in the fields of construction, civil engineering, waste treatment, etc., and are extremely useful materials.

【0002】[0002]

【従来技術】従来、水硬性構造体の複合強化方法として
は、強化材として用いる材料の形態により分類でき、砂
利や砂等の粒子形態の強化材を水硬性物質の母相に分散
させた、一般にコンクリートと呼ばれるものがある。そ
の他、カーボン繊維やカーボンウイスカーのようなウイ
スカーや短繊維或いは長繊維を水硬性物質の母相に分散
させた繊維強化セメント或いはコンクリートが知られて
いる。
2. Description of the Related Art Conventionally, a composite reinforcing method for a hydraulic structure can be classified according to the form of a material used as a reinforcing material, and a reinforcing material in a particle form such as gravel or sand is dispersed in a matrix of a hydraulic material. There is generally called concrete. In addition, a fiber reinforced cement or concrete in which whiskers such as carbon fibers and carbon whiskers, short fibers or long fibers are dispersed in a matrix of a hydraulic material is known.

【0003】[0003]

【発明が解決しようとする課題】従来の方法では、複合
強化材料の幾何学的形状は、一次元、二次元のものであ
り、等方性の高い新規な三次元の複合方法が望まれてい
た。そこで本発明者らは鋭意検討した結果、三次元の連
通気孔を有する水硬性多孔質構造体を水硬性複合構造体
に適用することにより、三次元的な新規な複合方法が実
現できることを見い出し本発明を完成するに至った。
In the conventional method, the geometric shape of the composite reinforcing material is one-dimensional or two-dimensional, and a novel three-dimensional composite method having high isotropicity is desired. It was Therefore, as a result of diligent studies, the present inventors have found that a three-dimensional novel composite method can be realized by applying a hydraulic porous structure having three-dimensional continuous ventilation holes to a hydraulic composite structure. The invention was completed.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明の特徴
は、水硬性物質を含有する材料で構成された三次元の網
目構造部分と、残りの部分が前記水硬性物質と材質が異
なるか、又は水硬性物質を含有する微構造が異なる物質
で構成されてなる水硬性複合構造体であり、その製造方
法上の特徴は、水硬性物質で構成された三次元の連通気
孔を有する水硬性多孔質構造体の気孔部分に、水硬性物
質を含有するスラリーを充填した後、硬化させることに
ある。
That is, a feature of the present invention is that a three-dimensional network structure portion composed of a material containing a hydraulic substance and the remaining part are different in material from the hydraulic substance, Or a hydraulic composite structure composed of substances having different microstructures containing hydraulic substances, and the characteristic of the manufacturing method thereof is a hydraulic porous structure having three-dimensional continuous vents made of hydraulic substances. The purpose is to fill the pores of the porous structure with a slurry containing a hydraulic material and then cure the slurry.

【0005】以下、本発明をさらに詳細に説明する。本
発明の水硬性複合構造体を製造する際に使用する水硬性
多孔質構造体の代表的微構造を模式的に表した部分的拡
大図を図1に示した。図中の1は三次元骨格で、2は三
次元連通気孔を表す。この気孔部分は前記水硬性多孔質
構造体の三次元骨格と材質が異なるか、又は水硬性物質
を含有する微構造が異なる物質で形成される部分であ
る。すなわち、最終的には2の部分も三次元の網目状構
造となり、網目状構造が絡まった状態の水硬性複合構造
体が得られることが本発明の特徴である。
The present invention will be described in more detail below. A partially enlarged view schematically showing a typical microstructure of a hydraulic porous structure used for producing the hydraulic composite structure of the present invention is shown in FIG. In the figure, 1 represents a three-dimensional skeleton, and 2 represents a three-dimensional continuous vent. The pore portion is a portion made of a material different from the three-dimensional skeleton of the hydraulic porous structure or a material having a different microstructure containing a hydraulic material. That is, the feature of the present invention is that finally, the second portion also has a three-dimensional network structure, and a hydraulic composite structure in which the network structure is entangled can be obtained.

【0006】すなわち、本発明の水硬性複合構造体は、
例えば以下に説明する製造方法によって製造される。水
硬性物質を含有する材料で構成された三次元の網目構造
部分1は、水硬性多孔質構造体の三次元骨格から形成さ
れる。ここで、水硬性多孔質構造体の孔径は、用途或い
は後工程で行なう水硬性物質を含有するスラリーを充填
する方法によっても異なるが、10μm 〜50mmであり、好
ましくは 100μm 〜10mmである。気孔率としては50〜95
%が好ましい。水硬性多孔質構造体は、水硬性物質以外
に合成樹脂などの有機物の骨格や有機質或いは無機質等
の粒子、ウイスカー、短繊維及び長繊維等の充填強化材
を含んでも良い。水硬性物質の具体例としては、各種セ
メント、石膏、石灰、スラグ等が挙げられる。具体的に
は、各種ポルトランドセメント、各種混合セメント、各
種アルミナセメント、微粉砕高炉スラグにアルカリ刺激
材を加えたもの等が挙げられる。また、高強度の水硬性
物質としては、水セメント比が小さく流動性のあるもの
が好ましく、セメント粒子以外にシリカフュームなどの
微粉末や減水剤などの界面活性剤を含むものが好まし
い。また、アルミナセメント系の水硬性物質の硬化体は
耐熱性が高く、600℃程度の高温まで使用できる特徴が
ある。さらに、耐熱性を向上させるためにセラミックス
の充填材料を添加することもできる。また、断熱軽量化
を目的にALC等の気泡を導入した水硬性材料を使用す
ることもできる。
That is, the hydraulic composite structure of the present invention is
For example, it is manufactured by the manufacturing method described below. The three-dimensional network structure portion 1 made of a material containing a hydraulic substance is formed from the three-dimensional skeleton of the hydraulic porous structure. Here, the pore size of the hydraulic porous structure is 10 μm to 50 mm, preferably 100 μm to 10 mm, although it varies depending on the use or the method of filling the slurry containing the hydraulic substance in the subsequent step. Porosity 50-95
% Is preferred. The hydraulic porous structure may include, in addition to the hydraulic substance, a skeleton of an organic material such as a synthetic resin, particles of an organic material or an inorganic material, a filler reinforcing material such as whiskers, short fibers and long fibers. Specific examples of the hydraulic material include various cements, gypsum, lime, slag and the like. Specific examples thereof include various Portland cements, various mixed cements, various alumina cements, and finely ground blast furnace slag to which an alkali stimulant is added. Further, as the high-strength hydraulic substance, a substance having a small water-cement ratio and fluidity is preferable, and a substance containing fine powder such as silica fume or a surfactant such as a water reducing agent in addition to the cement particles is preferable. In addition, the hardened body of alumina cement hydraulic material has high heat resistance and is characterized in that it can be used up to a high temperature of about 600 ° C. Further, a ceramic filler may be added to improve heat resistance. Further, a hydraulic material in which bubbles such as ALC are introduced may be used for the purpose of heat insulation and weight reduction.

【0007】水硬性多孔質構造体の製造方法としては、
三次元連通気孔の形成が可能である方法であれば特に限
定されないが、気孔率の大きなものも調製可能な水硬性
多孔質構造体の製造方法が好ましい。具体的には、有機
質の三次元連通気孔を有する多孔質基体の骨格表面に上
記材質の材料の水硬性物質を含有するスラリーを用いて
製造する方法がある。本発明にいう水硬性物質を含有す
るスラリーとは水硬性物質を水等で練り混ぜ、まだ、水
硬性物質が硬化していない状態の混練りぶつを含む材料
のことで、これに前記粒子、ウイスカー、短繊維及び長
繊維等の充填強化材を含んでも良い。調製した水硬性物
質を含有するスラリー中に多孔質基体を含浸した後、余
分のスラリーを除去する方法や前記スラリーを多孔質基
体に吹き付ける方法等により多孔質基体の骨格表面に被
覆を形成し、水硬性多孔質構造体を製造する方法等があ
る。
As a method for producing a hydraulic porous structure,
The method is not particularly limited as long as it is a method capable of forming three-dimensional continuous ventilation holes, but a method for producing a hydraulic porous structure capable of preparing a material having a large porosity is preferable. Specifically, there is a method of producing using a slurry containing a hydraulic substance of the above-mentioned material on the skeleton surface of a porous substrate having organic three-dimensional continuous ventilation holes. The slurry containing a hydraulic substance according to the present invention is a material containing a kneading mixture in a state in which the hydraulic substance is not kneaded, by kneading the hydraulic substance with water or the like, and the particles, Filling reinforcements such as whiskers, short fibers and long fibers may also be included. After impregnating the porous substrate in the slurry containing the prepared hydraulic substance, a coating is formed on the skeleton surface of the porous substrate by a method of removing excess slurry or a method of spraying the slurry onto the porous substrate, There is a method for producing a hydraulic porous structure.

【0008】これらの多孔質基体としては、合成樹脂発
泡体がある。具体例としては、ポリウレタンフォーム、
ポリスチレンフォーム、エポキシフォーム、ポリ塩化ビ
ニルフォーム、フェノール樹脂フォーム、シリコンフォ
ーム、ポリアクリルフォームなどの材質で三次元連通気
孔を形成しやすい合成樹脂発泡体が好ましい。このうち
ウレタンフォームが好ましく、特にセル膜のない軟質ポ
リウレタンフォームが好ましい。セル膜のない軟質ポリ
ウレタンフォームの製法としては、発泡時のコントロー
ルによりセル膜をなくしたもの、或いはアルカリ処理、
熱処理、水圧処理等によりセル膜を除去する方法がある
が、特にアルカリ処理、熱処理による方法がセル膜除去
の完全さの点で好ましい。この他、天然のへちま等の植
物繊維質や金属連続気孔多孔体等も多孔質基体として使
用できる。
As these porous substrates, there are synthetic resin foams. Specific examples include polyurethane foam,
A synthetic resin foam, which is easy to form three-dimensional continuous vents, is preferable from materials such as polystyrene foam, epoxy foam, polyvinyl chloride foam, phenol resin foam, silicon foam, and polyacrylic foam. Of these, urethane foam is preferable, and flexible polyurethane foam having no cell membrane is particularly preferable. As a method for producing a flexible polyurethane foam without a cell membrane, the cell membrane is eliminated by controlling foaming, or an alkali treatment,
Although there is a method of removing the cell film by heat treatment, water pressure treatment or the like, a method of alkali treatment or heat treatment is particularly preferable in terms of completeness of cell film removal. In addition to this, plant fibers such as natural haemoma and metal continuous pore porous materials can also be used as the porous substrate.

【0009】得られた水硬性多孔質構造体は、乾燥せず
に、また、硬化せずにそのまま使用してもよいが、乾燥
後或いは硬化後、その気孔部分に水硬性多孔質構造体を
構成する水硬性物質と材質が異なるか、又は水硬性物質
を含有するスラリーを充填した後、異なる微構造とした
複合体としてもよい。アルミナセメント系などの耐熱性
の高い水硬性物質の水硬性多孔質構造体の場合には、用
途によっては硬化後、温度 200〜 600℃で熱処理して基
体である合成樹脂発泡体を分解除去することもできる。
水硬性多孔質構造体を硬化する場合の硬化条件は、それ
ぞれの水硬性多孔質構造体の材質に適した通常の硬化体
の条件で良い。蒸気養生やオートクレーブを用いる方法
も適用できる。
The obtained hydraulic porous structure may be used as it is without being dried or cured. However, after the drying or the curing, the hydraulic porous structure is provided in the pores. A composite having a different microstructure may be used after the material is different from that of the constituent hydraulic material or a slurry containing the hydraulic material is filled. In the case of a hydraulic porous structure made of a highly heat-resistant hydraulic material such as alumina cement, it is cured and heat-treated at a temperature of 200 to 600 ° C to decompose and remove the base synthetic resin foam depending on the application. You can also
The curing conditions for curing the hydraulic porous structure may be those of ordinary cured products suitable for the material of each hydraulic porous structure. A method using steam curing or an autoclave can also be applied.

【0010】水硬性多孔質構造体は未乾燥、又は未硬化
のまま使用しても良い。未乾燥、未硬化、或いは硬化す
る何れの場合でも、水硬性多孔質構造体の三次元連通気
孔に充填していく材料を水硬性多孔質構造体1の材質か
ら水硬性多孔質構造体の気孔部分に充填する水硬性物質
を含有する材質に連続的に変化させながら充填しても良
い。例えば、水硬性物質を含有するスラリーの材質を順
次変化させることにより、水硬性多孔質構造体と充填部
分の界面に傾斜機能界面を形成し、硬化収縮率の違いや
熱膨張率の違い等による界面付近の歪の低減等の機械的
特性の制御が可能である。
The hydraulic porous structure may be used undried or uncured. Regardless of whether it is undried, uncured, or cured, the material for filling the three-dimensional continuous ventilation holes of the hydraulic porous structure is changed from the material of the hydraulic porous structure 1 to the pores of the hydraulic porous structure. The material containing the hydraulic substance to be filled in the portion may be filled while being continuously changed. For example, by gradually changing the material of the slurry containing the hydraulic material, a functionally graded interface is formed at the interface between the hydraulic porous structure and the filling portion, which causes a difference in curing shrinkage or a difference in thermal expansion coefficient. It is possible to control mechanical properties such as reduction of strain near the interface.

【0011】また、得られた水硬性多孔質構造体の気孔
部分に充填する材質が、前記水硬性多孔構造体と材質的
には同じであっても、その原料粒度、混合する充填強化
材の種類及び量、充填方法及び硬化条件等によって、最
終的な硬化を終了した時点で充填部分の微構造が異なっ
てくる場合もある。最終的に得られた水硬性複合構造体
の気孔率は、用途、目的によって異なり調整することが
できる。例えば、水硬性多孔質構造体として高強度の材
質を選定し、充填する材質として断熱軽量化を目的とし
たALC等の気泡を導入した水硬性材料を選定すること
等も可能である。この例では、水硬性多孔質構造体が強
度を担い、充填する材質で断熱軽量化という機能を担う
複合構造体となる。また、充填する材質としては調湿性
を有する木質粉末や木片、脱臭剤や芳香剤、電波遮蔽材
等のものを使用することも可能である。
Further, even if the material for filling the pores of the obtained hydraulic porous structure is the same in material as the hydraulic porous structure, the raw material particle size and the filling reinforcing material to be mixed are Depending on the type and amount, the filling method, the curing conditions, etc., the microstructure of the filled portion may differ when the final curing is completed. The porosity of the finally obtained hydraulic composite structure can be adjusted depending on the use and purpose. For example, it is possible to select a high-strength material as the hydraulic porous structure, and to select a hydraulic material containing bubbles such as ALC for the purpose of reducing heat insulation and weight as a filling material. In this example, the hydraulic porous structure serves as a strength, and the filling material serves as a composite structure having a function of adiabatic and lightweight. Further, as the material to be filled, it is possible to use wood powder or wood chips having a humidity control property, a deodorant, an aromatic agent, a radio wave shielding material, or the like.

【0012】前記水硬性多孔質構造体の気孔部分に充填
する水硬性物質を含有するスラリーに使用される水硬性
物質の具体例としては、各種セメント、石膏、石灰、ス
ラグ等が挙げられる。具体的には、各種ポルトランドセ
メント、各種混合セメント、各種アルミナセメント、微
粉砕高炉スラグにアルカリ刺激材を加えたもの等が挙げ
られる。また、高強度の水硬性物質としては、水セメン
ト比が小さく流動性のあるものが好ましく、セメント粒
子以外にシリカフュームなどの微粉末や減水剤などの界
面活性剤を含むものが好ましい。また、アルミナセメン
ト系の水硬性物質の硬化体は耐熱性が高く、600 ℃程度
の高温まで使用できる特徴がある。さらに、耐熱性を向
上させるためにセラミックスの充填材料を添加すること
もできる。また、断熱軽量化を目的にALC等の気泡を
導入した水硬性材料を使用することもできる。水硬性物
質を含有するスラリーの調製はこれらの水硬性物質を水
等で練り混ぜる一般的な方法で調製することができる。
この水硬性物質を含有するスラリーには、前記の粒子、
ウイスカー、短繊維及び長繊維等の充填強化材を含んで
も良い。材質の選定にあたっては、用途及び水硬性多孔
質構造体の材質の特性、特に硬化収縮率の違いや熱膨張
率の違い等による機械的及び熱的性質等を考慮して選定
する必要がある。
Specific examples of the hydraulic material used in the slurry containing the hydraulic material to fill the pores of the hydraulic porous structure include various cements, gypsum, lime, slag and the like. Specific examples thereof include various Portland cements, various mixed cements, various alumina cements, and finely ground blast furnace slag to which an alkali stimulant is added. Further, as the high-strength hydraulic substance, a substance having a small water-cement ratio and fluidity is preferable, and a substance containing fine powder such as silica fume or a surfactant such as a water reducing agent in addition to the cement particles is preferable. Further, the hardened body of alumina cement-based hydraulic material has high heat resistance and is characterized in that it can be used at a high temperature of about 600 ° C. Further, a ceramic filler may be added to improve heat resistance. Further, a hydraulic material in which bubbles such as ALC are introduced may be used for the purpose of heat insulation and weight reduction. The slurry containing the hydraulic substance can be prepared by a general method in which these hydraulic substances are kneaded with water or the like.
The slurry containing this hydraulic material, the particles,
Filling reinforcements such as whiskers, short fibers and long fibers may also be included. In selecting the material, it is necessary to consider the application and the characteristics of the material of the hydraulic porous structure, in particular, the mechanical and thermal properties due to the difference in curing shrinkage and the difference in thermal expansion.

【0013】前記水硬性多孔質構造体の気孔部分に前記
水硬性物質を含有するスラリーを充填した後、硬化する
ことにより水硬性複合構造体を製造する。その際の硬化
条件としては、それぞれの水硬性物質の材質に適した通
常の硬化体の条件で良い。蒸気養生やオートクレーブを
用いる方法も適用できる。
A hydraulic composite structure is manufactured by filling the pores of the hydraulic porous structure with a slurry containing the hydraulic material and then curing the slurry. The curing conditions at that time may be those of ordinary cured products suitable for the material of each hydraulic substance. A method using steam curing or an autoclave can also be applied.

【0014】[0014]

【実施例】以下、本発明の実施例について具体的に説明
する。 [実施例1]有機質の多孔質基体として合成樹脂発泡体
である厚み20mmのセル膜のない軟質ポリウレタンフォー
ム[ブリヂストン(株)社製エバーライトSF:型式 H
R-13(孔径:1.56〜2.27 mm)]を用いた。ポルトラン
ドセメント 83 重量部、シリカ系の微粉末 15 重量部、
高性能減水剤2重量部及び水 18 〜20重量部を十分に混
練りして調製した水硬性スラリー(スラリー1)に前記
ウレタンフォームを含浸して付着し、室温で乾燥した。
乾燥体は三次元連通気孔を有する水硬性多孔質構造体
で、その気孔率は77%であった。尚、ポルトランドセメ
ントは、電気化学工業(株)製普通ポルトランドセメン
ト、シリカ系の微粉末は、平均粒径 0.1μm のシリカフ
ラワー、高性能減水剤は、第一工業製薬(株)製「セル
フロー110P」を使用した。この水硬性多孔質構造体を
セメント80重量部、軽量骨材(三機工業(株)「サンキ
ライト」)20重量部、水50重量部を十分に混練りして調
製した水硬性スラリー(スラリー2)に減圧脱泡しなが
ら浸漬して気孔内にスラリーを充填したのち硬化し水硬
性複合構造体を得た。得られた水硬性複合構造体の材令
28 日における曲げ強度を測定したところ、45 Kg/cm2
であった。
EXAMPLES Examples of the present invention will be specifically described below. [Example 1] A 20 mm thick flexible polyurethane foam without a cell membrane, which is a synthetic resin foam as an organic porous substrate [Everlite SF: Model H manufactured by Bridgestone Corporation]
R-13 (pore size: 1.56 to 2.27 mm)] was used. 83 parts by weight of Portland cement, 15 parts by weight of silica-based fine powder,
The urethane foam was impregnated and adhered to a hydraulic slurry (slurry 1) prepared by sufficiently kneading 2 parts by weight of a high-performance water reducing agent and 18 to 20 parts by weight of water, and dried at room temperature.
The dried body was a hydraulic porous structure having three-dimensional continuous pores, and its porosity was 77%. Incidentally, Portland cement is ordinary Portland cement manufactured by Denki Kagaku Kogyo Co., Ltd., silica-based fine powder is silica flour with an average particle size of 0.1 μm, and high performance water reducing agent is manufactured by Daiichi Kogyo Seiyaku Co., Ltd. “Cellflow 110P”. "It was used. A hydraulic slurry (slurry prepared by thoroughly kneading 80 parts by weight of this hydraulic porous structure with 20 parts by weight of lightweight aggregate (Sankilite, Sanki Kogyo Co., Ltd.) and 50 parts by weight of water. It was immersed in 2) while defoaming under reduced pressure to fill the slurry in the pores and then cured to obtain a hydraulic composite structure. Age of the obtained hydraulic composite structure
The bending strength measured on 28th was 45 Kg / cm 2
Met.

【0015】[比較例1]水硬性多孔質構造体の三次元
の網目構造を破壊して複合した場合を実験するために、
実施例1において得られた気孔率は77%の水硬性多孔質
構造体の乾燥体を粉砕してウレタンフォームから分離回
収し、この粉砕物と実施例1で用いた水硬性スラリー
(スラリー2)とを実施例1と同様のスラリー1とスラ
リー2の割合になるように混合し、得られた水硬性スラ
リーに実施例1で用いたウレタンフォームを減圧脱泡し
ながら浸漬して気孔内にスラリーを充填したのち硬化し
水硬性複合構造体を得た。得られた水硬性複合構造体の
材令 28 日における曲げ強度を測定したところ、35 Kg/
cm2 であり、実施例1に比較して低かった。これは、実
施例1のように三次元連通気孔を有する水硬性多孔質構
造体の網目構造と気孔部分に充填した水硬性物質の網目
状構造が相互に絡まった状態の構造でないためである。
[Comparative Example 1] In order to carry out an experiment in the case where the three-dimensional network structure of the hydraulic porous structure was destroyed and composited,
The dried porous porous structure having a porosity of 77% obtained in Example 1 was pulverized and separated and recovered from urethane foam. The pulverized product and the hydraulic slurry used in Example 1 (slurry 2) Were mixed in the same ratio as in Example 1 to the slurry 1 and the slurry 2, and the urethane foam used in Example 1 was immersed in the obtained hydraulic slurry while defoaming under reduced pressure to form a slurry in the pores. And then cured to obtain a hydraulic composite structure. The bending strength of the obtained hydraulic composite structure on 28 days was measured to be 35 Kg /
cm 2 , which was lower than that in Example 1. This is because the network structure of the hydraulic porous structure having the three-dimensional continuous air holes and the network structure of the hydraulic material filled in the pores are not entangled with each other as in Example 1.

【0016】[実施例2]実施例1において水硬性スラ
リー(スラリー1)として、アルミナセメント 83 重量
部、シリカ系の微粉末 15 重量部、高性能減水剤2重量
部及び水 18 〜20重量部を十分に混練りして調製したも
のを用いた。尚、アルミナセメントは、電気化学工業
(株)製「アルミナセメント1号」を使用し、シリカ系
の微粉末及び高性能減水剤は、実施例1と同一のものを
使用した。この水硬性スラリーにウレタンフォームを含
浸して付着し、室温で乾燥した。乾燥体は三次元連通気
孔を有する水硬性多孔質構造体で、その気孔率は83%で
あった。この水硬性多孔質構造体をセメント100重量
部、標準砂100重量部、水50重量部を十分に混練りして
調製した水硬性スラリー(スラリー2)に減圧脱泡しな
がら浸漬して気孔内にスラリーを充填したのち硬化し水
硬性複合構造体を得た。得られた水硬性複合構造体の材
令 28 日における曲げ強度を測定したところ、55 kg/cm
2 であった。
Example 2 As a hydraulic slurry (slurry 1) in Example 1, 83 parts by weight of alumina cement, 15 parts by weight of fine silica-based powder, 2 parts by weight of a superplasticizer and 18 to 20 parts by weight of water were used. Was prepared by thoroughly kneading. The alumina cement used was "Alumina Cement No. 1" manufactured by Denki Kagaku Kogyo Co., Ltd., and the same silica-based fine powder and high-performance water reducing agent as in Example 1 were used. Urethane foam was impregnated and adhered to this hydraulic slurry, and dried at room temperature. The dried body was a hydraulic porous structure having three-dimensional continuous pores, and its porosity was 83%. This hydraulic porous structure is immersed in a hydraulic slurry (slurry 2) prepared by thoroughly kneading 100 parts by weight of cement, 100 parts by weight of standard sand, and 50 parts by weight of water while defoaming under reduced pressure, and inside the pores. The slurry was filled in and then cured to obtain a hydraulic composite structure. The flexural strength of the obtained hydraulic composite structure on 28 days was measured to be 55 kg / cm.
Was 2 .

【0017】[比較例2]水硬性多孔質構造体の三次元
の網目構造を破壊して複合した場合を実験するために、
実施例2において得られた気孔率は83%の水硬性多孔質
構造体の乾燥体を粉砕してウレタンフォームから分離回
収し、この粉砕物と実施例2で用いた水硬性スラリー
(スラリー2)とを実施例1と同様のスラリー1とスラ
リー2の割合になるように混合し、得られた水硬性スラ
リーに実施例1で用いたウレタンフォームを減圧脱泡し
ながら浸漬して気孔内にスラリーを充填したのち硬化し
水硬性複合構造体を得た。得られた水硬性複合構造体の
材令 28 日における曲げ強度を測定したところ、40 kg/
cm2 であり、実施例2に比較して低かった。これは、実
施例2のように三次元連通気孔を有する水硬性多孔質構
造体の網目構造と気孔部分に充填した水硬性物質の網目
状構造が相互に絡まった状態の構造でないためである。
[Comparative Example 2] In order to perform an experiment in the case where the three-dimensional network structure of the hydraulic porous structure was destroyed and composited,
The dried porous hydraulic structure having a porosity of 83% obtained in Example 2 was pulverized and separated and recovered from the urethane foam, and the pulverized product and the hydraulic slurry used in Example 2 (slurry 2). Were mixed in the same ratio as in Example 1 to the slurry 1 and the slurry 2, and the urethane foam used in Example 1 was immersed in the obtained hydraulic slurry while defoaming under reduced pressure to form a slurry in the pores. And then cured to obtain a hydraulic composite structure. The flexural strength of the obtained hydraulic composite structure at 28 days was measured to be 40 kg /
cm 2 , which was lower than that in Example 2. This is because the network structure of the hydraulic porous structure having three-dimensional continuous air holes and the network structure of the hydraulic substance filled in the pores are not entangled with each other as in Example 2.

【0018】[0018]

【発明の効果】本発明の水硬性複合構造体は、特殊な強
化機構概念に基づくもので、三次元の網目状水硬性多孔
質構造体の補強効果と残りの部分が異なる材質、又は異
なる構造によって構成されているので、高強度、多機能
を有する水硬性複合構造体とすることができる。構造材
料としての特性に軽量性、調湿性、芳香性、消臭効果、
音響効果等の機能性を付加した用途等、広範囲の応用が
期待される非常に有用な材料である。
EFFECTS OF THE INVENTION The hydraulic composite structure of the present invention is based on a special concept of strengthening mechanism. The reinforcing effect of the three-dimensional reticulated hydraulic porous structure and the remaining part are different materials or different structures. Since it is composed of, a hydraulic composite structure having high strength and multiple functions can be obtained. Lightness, humidity control, fragrance, deodorant effect, as a structural material
It is a very useful material that is expected to have a wide range of applications, such as applications with added functionality such as acoustic effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水硬性複合構造体を製造する際に使用
する水硬性多孔質構造体の代表的微構造を模式的に表し
た部分的拡大図である。
FIG. 1 is a partially enlarged view schematically showing a typical microstructure of a hydraulic porous structure used when producing a hydraulic composite structure of the present invention.

【符号の説明】[Explanation of symbols]

1:水硬性多孔質構造体の三次元骨格 2:水硬性多孔質構造体の三次元連通気孔 1: Three-dimensional skeleton of hydraulic porous structure 2: Three-dimensional continuous ventilation hole of hydraulic porous structure

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水硬性物質を含有する材料で構成された
三次元の網目構造部分と、残りの部分が前記水硬性物質
と材質が異なるか、又は水硬性物質を含有する微構造が
異なる物質で構成されてなることを特徴とする水硬性複
合構造体。
1. A three-dimensional network structure part composed of a material containing a hydraulic substance, and the remaining part made of a different material from the hydraulic substance, or a substance having a different microstructure containing the hydraulic substance. A hydraulic composite structure characterized by comprising:
【請求項2】 水硬性物質を含有する材料で構成された
三次元の連通気孔を有する水硬性多孔質構造体の気孔部
分に、水硬性物質を含有するスラリーを充填した後、硬
化させることを特徴とする特許請求範囲第1項記載の水
硬性複合構造体の製造方法。
2. A method of filling a slurry containing a hydraulic substance into a pore portion of a hydraulic porous structure having a three-dimensional continuous vent hole made of a material containing a hydraulic substance and then curing the slurry. The method for producing a hydraulic composite structure according to claim 1.
JP21662292A 1992-07-23 1992-07-23 Hydraulic composite structure and its production Pending JPH0640776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21662292A JPH0640776A (en) 1992-07-23 1992-07-23 Hydraulic composite structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21662292A JPH0640776A (en) 1992-07-23 1992-07-23 Hydraulic composite structure and its production

Publications (1)

Publication Number Publication Date
JPH0640776A true JPH0640776A (en) 1994-02-15

Family

ID=16691322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21662292A Pending JPH0640776A (en) 1992-07-23 1992-07-23 Hydraulic composite structure and its production

Country Status (1)

Country Link
JP (1) JPH0640776A (en)

Similar Documents

Publication Publication Date Title
EP1594818B1 (en) Cementitious products
WO2020092754A1 (en) Geopolymer expansion additive
JPH0640776A (en) Hydraulic composite structure and its production
JPH07233587A (en) Light weight concrete and production method thereof and architectural panel by use thereof
KR102387959B1 (en) 3D Printing Material and 3D Printing Method using the same
JP2021020838A (en) Cement composition, method for producing cured body thereof and shaped article
JPH07291765A (en) Aging method of cement molding
JP3887463B2 (en) Method for producing lightweight cellular concrete
JP3841472B2 (en) Porous inorganic molded product
JPH04114978A (en) Cured cement material containing plastic powder and production thereof
EP4119526A1 (en) Liquid foam with gas pores
JPH11314977A (en) Lightweight concrete composition and its production
JP2001302327A (en) Production process of alc(autoclaved lightweight concrete) excellent in water repellency
JPH11189479A (en) Lightweight block
JPH11199346A (en) Floating block
JPH1067580A (en) Lightweight cement composite and its production
JP4559716B2 (en) Cement composite
JPH0255276A (en) Production of lightweight concrete product
JPS63282179A (en) Production of porous ceramics
JPH0811700B2 (en) Method for producing a hardened cemented plate having a dense surface and having gloss and light reflectivity
JPH0920574A (en) Production of porous sound-absorbing material
JP2002121060A (en) Lightweight concrete and concrete for bridge floor slab
JPH0725083B2 (en) Lightweight aerated cement board and manufacturing method thereof
JPH0825820B2 (en) Method for manufacturing ALC panel
JPS638281A (en) Manufacture of glazed cement product