JPH0640081B2 - Water quality monitoring method in steam power plant - Google Patents

Water quality monitoring method in steam power plant

Info

Publication number
JPH0640081B2
JPH0640081B2 JP63107315A JP10731588A JPH0640081B2 JP H0640081 B2 JPH0640081 B2 JP H0640081B2 JP 63107315 A JP63107315 A JP 63107315A JP 10731588 A JP10731588 A JP 10731588A JP H0640081 B2 JPH0640081 B2 JP H0640081B2
Authority
JP
Japan
Prior art keywords
condensate
concentration
exchange resin
ion exchange
carbonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63107315A
Other languages
Japanese (ja)
Other versions
JPH01277748A (en
Inventor
文雄 水庭
克巳 大角
久雄 伊藤
裕夫 五十嵐
紀一 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63107315A priority Critical patent/JPH0640081B2/en
Publication of JPH01277748A publication Critical patent/JPH01277748A/en
Publication of JPH0640081B2 publication Critical patent/JPH0640081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は原子力または火力等の汽力発電プラントのター
ビン復水および給水の水質監視方法に係り、特に、復水
脱塩器イオン交換樹脂の取替え或いは薬品再生時期を判
断するに好適な水質監視方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for monitoring the water quality of turbine condensate and feed water of a steam power plant such as nuclear power or thermal power, and more particularly to replacement of a condensate demineralizer ion exchange resin. Alternatively, the present invention relates to a water quality monitoring method suitable for determining the timing of chemical regeneration.

[従来の技術] 従来の沸騰水型原子力発電プラントの汽水循環系の水質
管理項目には、例えば通商産業省資源エネルギー庁編:
原子力発電便覧:電力新報社(1979)に記載されているよ
うに導電率、金属不純物濃度、溶存酸素濃度、塩化物イ
オン濃度、水素イオン濃度があり、これらを日常的に管
理してプラントの運用を行なっており、濃度監視手段と
しては例えば特開昭62-106367号公報に記載のように自
動連続オンライン装置がある。
[Prior Art] Water quality management items of a conventional brackish water circulation system of a boiling water nuclear power plant include, for example, the Agency for Natural Resources and Energy, Ministry of International Trade and Industry:
Nuclear Power Generation Handbook: Conductivity, metal impurity concentration, dissolved oxygen concentration, chloride ion concentration, hydrogen ion concentration as described in Shindensha (1979), and manage these on a daily basis to operate the plant. As the concentration monitoring means, for example, there is an automatic continuous online device as described in JP-A-62-106367.

沸騰水型原子力発電プラントでは復水器からの復水を復
水脱塩器を通して再び原子炉に戻すが、復水器に海水リ
ークがあった場合に塩化物イオンが原子炉内に流入する
可能性があるため、該復水脱塩器はこの海水リークに対
処することが設置目的の1つとなっている。復水脱塩器
内に充填されたイオン交換樹脂は、復水中の各種のイオ
ン成分を吸着して、プラントの運転経過に伴ってその吸
着性能が低下するので、定期的に(普通は一年間に2
回)薬品による再生が行なわれている。
In a boiling water nuclear power plant, the condensate from the condenser is returned to the reactor through the condensate demineralizer, but if there is a seawater leak in the condenser, chloride ions can flow into the reactor. Therefore, the condensate demineralizer has one of the purposes of installation to cope with this seawater leak. The ion exchange resin filled in the condensate demineralizer adsorbs various ionic components in the condensate, and its adsorption performance declines with the operation of the plant. To 2
Times) Regeneration by chemicals is performed.

他方、従来、復水脱塩器のイオン交換樹脂の吸着負荷量
(吸着したイオンの量)を次のような方法で評価するこ
とが知られていた。すなわち、復水脱塩器入口および出
口での復水導電率を測り、この入口、出口での導電率の
差は復水脱塩器で除去された塩濃度によるものと見做
し、これを塩化ナトリウム濃度に換算して、その濃度に
通水量を乗じて吸着負荷量と評価する方法である。
On the other hand, conventionally, it has been known to evaluate the adsorption load (amount of adsorbed ions) of the ion exchange resin of the condensate demineralizer by the following method. That is, the condensate conductivity at the inlet and outlet of the condensate demineralizer was measured, and the difference in conductivity at the inlet and outlet was considered to be due to the salt concentration removed by the condensate demineralizer. It is a method of converting to sodium chloride concentration and multiplying the concentration by the water flow rate to evaluate the adsorption load.

[発明が解決しようとする課題] 本発明者らは、海水リークがない状態での実プラントに
おいて、運転開始前と1年間運転した後の復水脱塩器の
イオン交換樹脂を第5図に示したように細分化した各個
所から採取して分析し、運転中にイオン交換樹脂に吸着
されたイオンの種類とその吸着量を求めた。その結果、
第1表に示したように陽イオンは鉄、ニッケル等のプラ
ント構成材料から溶出したと考えられる成分であり、そ
の吸着量は全陽イオン交換容量(新品のイオン交換樹脂
の陽イオン交換容量)の約2.5%であった。陰イオンは、
炭酸イオンだけが認められ、その吸着量は全陰イオン交
換容量(新品のイオン交換樹脂の陰イオン交換容量)の
約8.3%であった。
[Problems to be Solved by the Invention] The present inventors have shown in FIG. 5 the ion exchange resin of the condensate desalinizer before the start of operation and after operating for one year in an actual plant in a state where there is no seawater leak. As shown, each of the subdivided sites was sampled and analyzed to determine the type of ions adsorbed on the ion exchange resin during operation and the adsorption amount thereof. as a result,
As shown in Table 1, cations are components that are considered to have been eluted from plant constituent materials such as iron and nickel, and their adsorption amount is the total cation exchange capacity (cation exchange capacity of new ion exchange resin). Was about 2.5%. Anion is
Only carbonate ions were observed, and the adsorption amount was about 8.3% of the total anion exchange capacity (anion exchange capacity of the new ion exchange resin).

第1表に示した1年間運転での吸着量からすれば、1年
間運転後でもイオン交換樹脂は十分にイオン交換容量を
残しており、薬品再生頻度を通常の年2回の頻度より少
なくすることが可能と考えられる。復水脱塩器イオン交
換樹脂の薬品再生によって発生する廃液は濃縮処理をし
て放射性廃棄物としてドラム缶に詰め保管するので、薬
品再生の頻度を少なくし得れば放射性廃棄物ドラム缶の
発生量を減らすことができる。
Judging from the adsorption amount after one-year operation shown in Table 1, the ion-exchange resin has sufficient ion-exchange capacity even after one-year operation, and the chemical regeneration frequency should be less than the usual twice-a-year frequency. It seems possible. Condensate demineralizer Waste liquid generated by chemical regeneration of ion exchange resin is concentrated and packed in a drum as radioactive waste and stored, so if the frequency of chemical regeneration can be reduced, the amount of radioactive waste drum can generated can be reduced. Can be reduced.

適切な薬品再生時期は、上記のような実機におけるイオ
ン交換樹脂の採取・分析からそのイオン吸着量を評価す
ることによって決めることができるが、この評価方法は
復水脱塩器全体の性能を評価するために復水脱塩器内の
数多くの個所からイオン交換樹脂試料を採取することが
必要なこと、定検等のプラント停止中でなければ試料を
採取できないこと等、実施上の制約がある。
The appropriate chemical regeneration time can be determined by evaluating the amount of adsorbed ions from the sampled / analyzed ion exchange resin in the actual equipment as described above, but this evaluation method evaluates the performance of the entire condensate demineralizer. In order to do so, it is necessary to collect ion exchange resin samples from many places in the condensate demineralizer, and there are restrictions on implementation, such as being able to collect samples only during plant shutdowns such as regular inspections. .

他方、復水脱塩器の入口および出口での導電率の差を測
定して復水脱塩器イオン交換樹脂の吸着負荷量を評価す
る前記従来の方法を用いてイオン交換樹脂の薬品再生時
期を決めることには、下記の問題がある。すなわち、こ
の評価方法では、復水中に炭酸のような弱電解質が存在
する場合は、陽イオン負荷が過大に評価され、薬品再生
時期が早まり過ぎるという問題がある。すなわち、復水
中に存在する成分がNaCl等のような強電解質のみであれ
ば導電率はイオン交換樹脂への負荷となる成分の濃度を
正しく示すが、炭酸が存在する場合は CO2+H2O → H++ HCO3 -……(1) となって水素イオン(H+)を遊離する。H+はイオン交換樹
脂への負荷とはならないにもかかわらず導電率への寄与
が大きいので、導電率をNaCl濃度に換算すると陽イオン
負荷が過大に評価されることになる。
On the other hand, the chemical regeneration time of the ion exchange resin is measured by using the conventional method in which the difference in conductivity between the inlet and outlet of the condensate demineralizer is measured to evaluate the adsorption load of the condensate demineralizer ion exchange resin. There are the following problems in deciding. That is, this evaluation method has a problem that when a weak electrolyte such as carbonic acid is present in the condensate, the cation load is excessively evaluated, and the chemical regeneration time is too early. That is, if the components present in the condensate are only strong electrolytes such as NaCl, the conductivity shows the concentration of the components that load the ion exchange resin correctly, but in the presence of carbonic acid, CO 2 + H 2 O → H + + HCO 3 - is a ... (1) to liberate hydrogen ions (H +). Since H + does not impose a load on the ion exchange resin, it makes a large contribution to the conductivity, so if the conductivity is converted to the NaCl concentration, the cation load will be overestimated.

本発明の目的は、汽力発電プラントの復水脱塩器内のイ
オン交換樹脂への負荷となるイオンの濃度を正しく検出
し、ひいては、該イオン交換樹脂の吸着負荷量、吸着性
能を正しく評価し、その薬品再生時期もしくは交換時期
を適切に決定することを可能とする方法を提供すること
にある。
The object of the present invention is to accurately detect the concentration of ions that become a load on the ion exchange resin in the condensate demineralizer of a steam power plant, and to correctly evaluate the adsorption load amount and adsorption performance of the ion exchange resin. , It is to provide a method that makes it possible to appropriately determine when to regenerate or replace the drug.

[課題を解決するための手段] 復水脱塩器のイオン交換樹脂への負荷となる復水中のイ
オンの濃度は特許請求の範囲の第1項記載の方法によっ
て知ることができ、該イオン交換樹脂への吸着負荷量は
請求項2記載の方法によって知ることができる。
[Means for Solving the Problem] The concentration of ions in the condensate that becomes a load on the ion exchange resin of the condensate demineralizer can be determined by the method described in claim 1, and the ion exchange can be performed. The amount of adsorption load on the resin can be known by the method described in claim 2.

[作 用] 復水の一部分を採取し、その導電率と炭酸濃度とを夫々
導電率計および炭酸濃度計で測ることによって、イオン
交換樹脂への真の負荷となる該復水中のイオン濃度は次
のようにして知られる。復水の導電率aは一般に次の式
で表せる。
[Operation] By sampling a part of the condensate and measuring its conductivity and carbon dioxide concentration with a conductivity meter and a carbonate meter, respectively, the ion concentration in the condensate, which is the true load on the ion exchange resin, can be determined. It is known as follows. The electric conductivity a of the condensate can be generally expressed by the following equation.

a=Σ cαΛ……(2) ただし、 a:復水の導電率(μs/cm) c:各成分の濃度(mg当量/) α:各成分の解離度 Λ:各イオンの当量導電率 (μs/cm・mg当量/) Σ:合計の記号 各イオンのΛの値は第2表に示す。a = Σ cαΛ (2) where a: Condensate conductivity (μs / cm) c: Concentration of each component (mg equivalent /) α: Dissociation degree of each component Λ: Equivalent conductivity of each ion ( μs / cm · mg equivalent /) Σ: Symbol of total The value of Λ of each ion is shown in Table 2.

NaCl等の強電解質が溶解している場合はそのαはα=1
であり、H+,OH-は共に10-7mol/である。CO2が溶解し
ている場合は が既知であるから、炭酸(CO2あるいはH2CO3)のいろいろ
な濃度によって炭酸の解離度αが(4)式によって求めら
れ、〔H+〕,〔HCO3 -〕がわかる。
When a strong electrolyte such as NaCl is dissolved, its α is α = 1
And both H + and OH are 10 −7 mol /. If the CO 2 is dissolved Is known, the dissociation degree α of carbonic acid can be obtained by the equation (4) according to various concentrations of carbonic acid (CO 2 or H 2 CO 3 ), and [H + ], [HCO 3 ] can be found.

すなわち、導電率計で得られた復水の導電率の値をa(μ
s/cm)とすると、炭酸濃度計で得られた全炭酸濃度か
ら、(3)、(4)式によって(1)式のH+濃度がわかり、復水
の導電率aへの炭酸寄与b(μs/cm)がわかる。したがっ
て、 a−b=d(μs/cm)……(5) を計算すれば、このdは復水の導電率aへのNaCl等の強
電解質の寄与となり、この差し引きの導電率dをNaCl濃
度に換算することにより、イオン交換樹脂への真の負荷
となるイオンの濃度が正しく評価できる。
That is, the conductivity value of the condensate obtained by the conductivity meter is a (μ
s / cm), the H + concentration in Eq. (1) can be found from Eqs. (3) and (4) from the total carbon dioxide concentration obtained by the carbon dioxide concentration meter. (μs / cm) is known. Therefore, if a−b = d (μs / cm) (5) is calculated, this d becomes a contribution of strong electrolyte such as NaCl to the electric conductivity a of the condensate, and the electric conductivity d of this subtraction is By converting the concentration, it is possible to correctly evaluate the concentration of ions that are the true load on the ion exchange resin.

復水脱塩器の入口側と出口側で夫々復水の一部分を採取
し、その導電率と炭酸濃度を測定し、その測定値に基づ
き上記の演算をすれば、復水脱塩器入口および出口にお
ける復水中の該イオンの濃度が求まり、その差に復水脱
塩器の通水量を乗ずれば復水脱塩器のイオン交換樹脂の
イオン吸着負荷量(吸着したイオンの量)を正しく評価で
きる。これにより、該イオン交換樹脂の薬品再生時期を
適切に決めることができる。
By collecting a part of the condensate at the inlet side and the outlet side of the condensate demineralizer, measuring the conductivity and carbon dioxide concentration, and performing the above calculation based on the measured values, the condensate demineralizer inlet and If the concentration of the ion in the condensate at the outlet is obtained, and the difference is multiplied by the water flow rate of the condensate demineralizer, the ion adsorption load (the amount of adsorbed ions) of the ion exchange resin of the condensate demineralizer will be correct. Can be evaluated. As a result, it is possible to properly determine the chemical regeneration time of the ion exchange resin.

[実施例] 以下、沸騰水型原子力発電プラントの場合について、本
発明の一実施例を第1図により説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIG. 1 in the case of a boiling water nuclear power plant.

1は復水器、2は復水濾過器、3は復水脱塩器(イオン
交換樹脂21が充填されている)、4は給水加熱器、5
は原子炉、6はタービンである。復水器1からの復水
は、その全量が復水脱塩器3を通過してイオン成分がイ
オン交換樹脂21に吸着除去された後、給水加熱器4を
経て原子炉5に給水される。復水脱塩器3入口の試料水
採水配管7および復水脱塩器3出口の試料水採水配管8
から復水の一部を夫々試料水として採り入れ、夫々炭酸
濃度計9と導電率計10および炭酸濃度計11と導電率
計12に導き、炭酸濃度および導電率を連続的あるいは
間欠的に測定する。
1 is a condenser, 2 is a condensate filter, 3 is a condensate demineralizer (filled with ion exchange resin 21), 4 is a feed water heater, 5
Is a reactor, and 6 is a turbine. The entire amount of the condensate from the condenser 1 passes through the condensate demineralizer 3 and the ionic components are adsorbed and removed by the ion exchange resin 21, and then fed to the reactor 5 via the feed water heater 4. . Sample water sampling pipe 7 at the inlet of the condensate demineralizer 3 and sample water sampling pipe 8 at the outlet of the condensate demineralizer 3
Part of the condensate is taken as sample water and led to a carbon dioxide concentration meter 9 and a conductivity meter 10 and a carbonate concentration meter 11 and a conductivity meter 12, respectively, to measure the carbon dioxide concentration and the conductivity continuously or intermittently. .

炭酸濃度計9(または11)の原理的構成の例を第2図で
説明する。試料水採水配管7(または8)から導入した試
料水は、流路切り換えバルブ13を通って、陰イオン交
換樹脂20を充填した濃縮カラム14を通り、水素イオ
ン濃度計(pH計)15を通り、流量計16を通って排出さ
れる。一方、溶離液17が、定流量ポンプ18によっ
て、流量切り換えバルブ13を通して濃縮カラム14に
流れるようにする。試料水を濃縮カラム14に一定時間
流し、試料水中の炭酸を陰イオン交換樹脂20に吸着濃
縮した後、流路切り換えバルブ13の流路を切り換えて
溶離液17が濃縮カラム13に流れるようにする。溶離
液17は塩化ナトリウム(NaCl)のような中性塩溶液を用
いる。溶離液17はイオン交換樹脂20に(6)式のように吸
着された炭酸を(7)式のように溶離する。式中、Rは樹脂
を表している。
An example of the principle configuration of the carbon dioxide concentration meter 9 (or 11) will be described with reference to FIG. The sample water introduced from the sample water sampling pipe 7 (or 8) passes through the flow path switching valve 13, the concentration column 14 filled with the anion exchange resin 20, and the hydrogen ion concentration meter (pH meter) 15 Through the flow meter 16. On the other hand, the eluent 17 is caused to flow to the concentration column 14 through the flow rate switching valve 13 by the constant flow rate pump 18. After flowing the sample water through the concentrating column 14 for a certain period of time to adsorb and concentrate the carbonic acid in the sample water onto the anion exchange resin 20, the channel of the channel switching valve 13 is switched so that the eluent 17 flows into the concentrating column 13. . The eluent 17 is a neutral salt solution such as sodium chloride (NaCl). The eluent 17 elutes the carbonic acid adsorbed on the ion exchange resin 20 as shown in formula (6) as shown in formula (7). In the formula, R represents a resin.

吸着 R・Cl+H2CO3→R・CO3+HCl……(6) 溶離 R・CO3+NaCl→R・Cl+Na2CO3……(7) 溶離液中のNa2CO3は Na2CO3NaOH+H2CO3……(8) のように強アルカリと弱酸になり、溶液はアルカリ性と
なる。このときのpHは、イオン交換樹脂20に吸着されて
いた炭酸の量が多いほど高くなる。吸着された炭酸が完
全に溶離されるとpHは中性に戻るので、再び流路切り換
えバルブ13を切り換え、濃縮カラム14に試料水を流
す。この操作をくり返した場合、pH計15の記録は第3
図に示したようになる。pH計15の指示と炭酸の量の関
係は、あからじめ既知濃度の標準溶液を用いて求めてお
く。このようにして得られた炭酸の量を、濃縮カラム1
4に通した試料水量で除して試料水中の炭酸濃度を知る
ことができる。
Adsorption R ・ Cl + H 2 CO 3 → R ・ CO 3 + HCl …… (6) Elution R ・ CO 3 + NaCl → R ・ Cl + Na 2 CO 3 …… (7) Na 2 CO 3 in the eluent Becomes a strong alkali and a weak acid like Na 2 CO 3 NaOH + H 2 CO 3 (8), and the solution becomes alkaline. The pH at this time increases as the amount of carbonic acid adsorbed on the ion exchange resin 20 increases. When the adsorbed carbonic acid is completely eluted, the pH returns to neutral. Therefore, the flow path switching valve 13 is switched again to flow the sample water into the concentration column 14. If this operation is repeated, the pH meter 15 will record the third
It becomes as shown in the figure. The relationship between the indication of the pH meter 15 and the amount of carbonic acid is obtained using a standard solution of known concentration. The amount of carbonic acid thus obtained was measured by the concentration column 1
It is possible to know the carbonic acid concentration in the sample water by dividing by the amount of sample water passed through 4.

復水脱塩器3の入口の水中に含まれる成分のうち該復水
脱塩器3内のイオン交換樹脂21への負荷となるイオン
成分の濃度は、炭酸濃度計9で得られる炭酸濃度と導電
率計10で得られる導電率とから、(1) 〜(5)式に基づ
いて計算できる。同様に復水脱塩器3の出口の炭酸濃度
計11と導電率計12とから復水脱塩器3の出口水中の
上記と同じイオン成分の濃度が計算できる。
Of the components contained in the water at the inlet of the condensate demineralizer 3, the concentration of the ionic component that becomes a load on the ion exchange resin 21 in the condensate demineralizer 3 is the same as the carbon dioxide concentration obtained by the carbon dioxide concentration meter 9. It can be calculated based on the equations (1) to (5) from the electrical conductivity obtained by the electrical conductivity meter 10. Similarly, the concentration of the same ionic component in the outlet water of the condensate demineralizer 3 can be calculated from the carbon dioxide concentration meter 11 and the conductivity meter 12 at the outlet of the condensate demineralizer 3.

このようにして得た復水脱塩器入口と出口でのイオン濃
度の差と、復水脱塩器の復水通水量の積算値から復水脱
塩器イオン交換樹脂への吸着負荷量がわかる。これによ
り、復水脱塩器のイオン交換樹脂の薬品再生時期が的確
に判断できる。
From the difference in ion concentration at the inlet and outlet of the condensate demineralizer obtained in this way and the integrated value of the condensate flow rate of the condensate demineralizer, the adsorption load on the condensate demineralizer ion exchange resin can be calculated. Recognize. This makes it possible to accurately determine the time for regenerating the chemicals in the ion exchange resin of the condensate demineralizer.

さらに、次の方法で復水脱塩器のイオン交換樹脂の吸着
速度劣化の程度を知ることができる。イオン交換樹脂層
でのイオン吸着モデルを第4図に示す。樹脂層23は、
飽和吸着帯24と、吸着が進行している破過帯25とに
分けて考えることができる。破過帯25においては、水
中の任意のイオンの濃度および樹脂への吸着量は次のよ
うに表すことができる。
Furthermore, the degree of deterioration of the adsorption rate of the ion exchange resin of the condensate demineralizer can be known by the following method. An ion adsorption model in the ion exchange resin layer is shown in FIG. The resin layer 23 is
The saturated adsorption zone 24 and the breakthrough zone 25 in which adsorption is advancing can be considered separately. In the breakthrough zone 25, the concentration of any ion in water and the amount adsorbed on the resin can be expressed as follows.

但し、 C1:樹脂層出口イオン濃度(eq/) Co:樹脂層入口イオン濃度(eq/) Z :樹脂層入口からの距離(cm) β:樹脂層1cm当りの脱塩率 q0:樹脂層1cm当りのイオン交換容量(eq/cm樹脂) a :積分定数 また、飽和吸着帯の吸着量Q1は Q1=q(Z2−Z1)……(13) したがって、全吸着量Qは Q=Q1+Q2……(14) また、入口イオン濃度Coのとき、出口濃度がC1に達する
までの時間Tは 但し V:通水流速(cm/h) となる。
Where C 1 : Resin layer outlet ion concentration (eq /) Co: Resin layer inlet ion concentration (eq /) Z: Distance from resin layer inlet (cm) β: Desalination rate per 1 cm of resin layer q 0 : Resin Ion exchange capacity per 1 cm of bed (eq / cm resin) a: integral constant Also, the adsorption amount Q 1 in the saturated adsorption zone is Q 1 = q 0 (Z 2 −Z 1 ) …… (13) Therefore, the total adsorption amount Q is Q = Q 1 + Q 2 (14) When the inlet ion concentration is Co, the time T until the outlet concentration reaches C 1 is However, V: Flow velocity (cm / h).

ここで、炭酸濃度計9および11で夫々得られた復水脱
塩器3の入口および出口の炭酸濃度を(9)〜(12)式に代
入することにより、炭酸の脱塩率βが求められ、復水脱
塩器の炭酸の吸着性能を経時的に追跡できる。
Here, by substituting the carbon dioxide concentrations at the inlet and the outlet of the condensate demineralizer 3 obtained by the carbon dioxide concentration meters 9 and 11 into the equations (9) to (12), the carbon dioxide desalination rate β is obtained. Therefore, the adsorption performance of carbon dioxide in the condensate demineralizer can be tracked over time.

なおプラント運転中に、万一の復水器海水リークが生じ
た場合、原子炉内への塩化物イオンの流入を防止するた
めに、次の対応が可能となる。復水中の塩化物イオン濃
度は導電率計10と炭酸濃度計9を用いて (5)式から求
めることができ、この濃度をCoとし、復水脱塩器出口の
塩化物イオン濃度C1が規制値に達するまでの時間は、本
発明者らが実験で求めた(16)式により塩化物イオンの脱
塩率を求め、それぞれ(9)〜(15)式の脱塩率に代入する
ことによって、計算できる。
In the unlikely event of a condenser seawater leak during plant operation, the following measures can be taken to prevent chloride ion from flowing into the reactor. The chloride ion concentration in the condensate can be calculated from Eq. (5) using the conductivity meter 10 and the carbon dioxide concentration meter 9. Let this concentration be Co, and the chloride ion concentration C 1 at the outlet of the condensate demineralizer is The time to reach the regulated value is obtained by the inventors of the present invention experimentally determined the desalination rate of chloride ions by the equation (16), and substitute it into the desalination rate of the equations (9) to (15), respectively. Can be calculated by

[発明の効果] 本発明によれば、復水脱塩器イオン交換樹脂への負荷と
なるイオンの濃度、更には該イオン交換樹脂への吸着負
荷量が正確に求められるのでイオン交換樹脂の吸着能力
を効率良く使用するために適切なイオン交換樹脂の交換
あるいは薬品再生時期が定量的に決定できる。このた
め、再生薬品廃液の発生が低減でき。原子力発電プラン
トでは放射性廃棄物発生量および廃樹脂発生量が低減で
きる効果がある。
EFFECTS OF THE INVENTION According to the present invention, the concentration of ions that become a load on the ion exchange resin of the condensate demineralizer, and further the amount of adsorption load on the ion exchange resin, can be accurately determined. It is possible to quantitatively determine the appropriate ion exchange resin replacement or chemical regeneration time for efficient use of the capacity. For this reason, the generation of waste liquid of recycled chemicals can be reduced. Nuclear power plants have the effect of reducing the amount of radioactive waste and the amount of waste resin generated.

さらに、復水脱塩器イオン交換樹脂の脱塩性能がわかる
ので、万一海水リークが生じたとき、復水脱塩器出口で
の塩化物濃度が規制値に達するまでの時間を知ることが
できるので海水リークに対するプラト運用方法を事前に
検討でき、安全性の向上に貢献し得る。
Furthermore, since the desalination performance of the condensate demineralizer ion exchange resin can be known, it is possible to know the time until the chloride concentration at the outlet of the condensate demineralizer reaches the regulated value should a seawater leak occur. Because it is possible, it is possible to study the plate operation method for seawater leaks in advance and contribute to the improvement of safety.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す概要図、第2図は炭
酸濃度計の1例を示す原理的概要図、第3図は第2図で
得られるpH記録の1例を示す図、第4図はイオン交換樹
脂層のイオン吸着モデルを示す図、第5図は復水脱塩器
イオン交換樹脂のサンプリング位置を示す図である。 1……復水器、2……復水濾過器 3……復水脱塩器、4……給水加熱器 5……原子炉、6……タービン 7……復水脱塩器入口試料水採水配管 8……復水脱塩器出口試料水採水配管 9……復水脱塩器入口炭酸濃度計 10……復水脱塩器入口導電率計 11……復水脱塩器出口炭酸濃度計 12……復水脱塩器出口導電率計 13……流路切り換えバルブ 14……濃縮カラム、15……pH計 16……流量計、17……溶離液 18……送液ポンプ、19……制御器 20……イオン交換樹脂 21……復水脱塩器イオン交換樹脂 22……サンプリング個所、23……樹脂層 24……飽和吸着帯、25……破過帯
FIG. 1 is a schematic diagram showing an embodiment of the present invention, FIG. 2 is a principle schematic diagram showing an example of a carbon dioxide concentration meter, and FIG. 3 is an example of a pH record obtained in FIG. FIG. 4 is a diagram showing an ion adsorption model of the ion exchange resin layer, and FIG. 5 is a diagram showing sampling positions of the condensate demineralizer ion exchange resin. 1 ... Condenser, 2 ... Condensate filter 3 ... Condensate demineralizer, 4 ... Feed water heater 5 ... Reactor, 6 ... Turbine 7 ... Condensate demineralizer inlet sample water Water sampling pipe 8 …… Condensate demineralizer outlet Sample water sampling pipe 9 …… Condensate demineralizer inlet Carbon dioxide concentration meter 10 …… Condensate demineralizer inlet conductivity meter 11 …… Condensate desalinator outlet Carbon dioxide concentration meter 12 …… Condensate demineralizer outlet conductivity meter 13 …… Flow path switching valve 14 …… Concentration column, 15 …… pH meter 16 …… Flowmeter, 17 …… Eluent 18 …… Sending pump , 19 ...... Controller 20 …… Ion exchange resin 21 …… Condensate demineralizer Ion exchange resin 22 …… Sampling location, 23 …… Resin layer 24 …… Saturation adsorption zone, 25 …… Breakthrough zone

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大角 克巳 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 伊藤 久雄 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 五十嵐 裕夫 茨城県日立市幸町3丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 新藤 紀一 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Otsuka 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Hisao Ito 3-chome, Saiwaicho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd., Hitachi Works (72) Inventor Hiroo Igarashi 3-2-1, Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi Engineering Co., Ltd. (72) Inventor Kiichi Shindo Hitachi City, Ibaraki Prefecture 3-1-1, Machi, Hitachi Ltd. Hitachi factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】タービン復水器からの復水をイオン交換樹
脂を充填した復水脱塩器に通した後に蒸気発生装置に戻
す汽力発電プラントにおいて、復水の一部を採取してそ
の導電率および炭酸濃度を連続もしくは間欠的に経時的
に測定し、該炭酸濃度の測定値に基づき上記導電率の測
定値への炭酸に起因する遊離水素イオンの寄与を算出
し、該寄与を上記導電率の測定値から減算した残りの導
電率の値をNaCl濃度に換算することにより、復水中の前
記イオン交換樹脂への負荷となるイオンの濃度を評価す
ることを特徴とする汽力発電プラントにおける水質監視
方法。
1. A steam turbine power plant in which condensate from a turbine condenser is passed through a condensate demineralizer filled with an ion-exchange resin and then returned to a steam generator, and a part of the condensate is collected to conduct electricity. Rate and carbonic acid concentration are measured continuously or intermittently over time, and based on the measured value of the carbonic acid concentration, the contribution of free hydrogen ions due to carbonic acid to the measured value of the electrical conductivity is calculated, and the contribution is calculated as follows. The water quality in a steam power plant characterized by evaluating the concentration of ions that become a load on the ion exchange resin in the condensate by converting the value of the residual conductivity subtracted from the measured value of the rate into NaCl concentration. Monitoring method.
【請求項2】タービン復水器からの復水をイオン交換樹
脂を充填した復水脱塩器で処理した後に蒸気発生装置に
戻す汽力発電プラントにおいて、復水脱塩器の入口側と
出口側における復水の一部分を採取してその夫々の導電
率および炭酸濃度を連続もしくは間欠的に経時的に測定
し、これらの測定値に基づき上記請求項1中に記載した
演算を行なうことにより、復水脱塩器入口側および出口
側における復水中の前記イオン交換樹脂への負荷となる
イオンの濃度を夫々評価し、かくて得られた復水脱塩器
入口側および出口側における復水中の該イオンの濃度の
差をとり、該差に復水脱塩器の復水通水量を乗ずること
により、前記イオン交換樹脂の吸着負荷量を評価するこ
とを特徴とする汽力発電プラントにおける水質監視方
法。
2. In a steam power plant in which condensate from a turbine condenser is treated with a condensate desalinator filled with an ion exchange resin and then returned to a steam generator, an inlet side and an outlet side of the condensate demineralizer. By collecting a part of the condensate in the sample, the electric conductivity and the carbonic acid concentration of each sample are continuously or intermittently measured over time, and the calculation described in claim 1 is performed on the basis of these measured values. The concentrations of the ions serving as the load on the ion exchange resin in the condensate on the inlet side and the outlet side of the water demineralizer were evaluated, respectively, and A method for monitoring water quality in a steam power plant, characterized in that the adsorption load of the ion exchange resin is evaluated by taking the difference in ion concentration and multiplying the difference by the condensate flow rate of the condensate demineralizer.
【請求項3】前記炭酸濃度の測定は、炭酸を吸着する陰
イオン交換樹脂を充填したカラムに復水を流した後、該
カラムに塩化ナトリウムのような強電解質溶液よりなる
溶離液を流し、該溶離液の水素イオン濃度を検知するこ
とにより、行なわれる請求項1または2記載の汽力発電
プラントにおける水質監視方法。
3. The measurement of the carbonic acid concentration is performed by flowing condensate into a column packed with an anion exchange resin that adsorbs carbonic acid, and then flowing an eluent of a strong electrolyte solution such as sodium chloride into the column. The water quality monitoring method in a steam power plant according to claim 1 or 2, which is carried out by detecting a hydrogen ion concentration of the eluent.
JP63107315A 1988-04-28 1988-04-28 Water quality monitoring method in steam power plant Expired - Lifetime JPH0640081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63107315A JPH0640081B2 (en) 1988-04-28 1988-04-28 Water quality monitoring method in steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63107315A JPH0640081B2 (en) 1988-04-28 1988-04-28 Water quality monitoring method in steam power plant

Publications (2)

Publication Number Publication Date
JPH01277748A JPH01277748A (en) 1989-11-08
JPH0640081B2 true JPH0640081B2 (en) 1994-05-25

Family

ID=14455958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63107315A Expired - Lifetime JPH0640081B2 (en) 1988-04-28 1988-04-28 Water quality monitoring method in steam power plant

Country Status (1)

Country Link
JP (1) JPH0640081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132962A1 (en) * 2012-03-09 2013-09-12 三菱重工業株式会社 Degradation product-concentration measurement device, and acidic gas removal device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600617B2 (en) * 2000-08-07 2010-12-15 オルガノ株式会社 Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
JP5645551B2 (en) * 2010-08-27 2014-12-24 東芝プラントシステム株式会社 Pretreatment device for online sample analyzer and control method for pretreatment device for online sample analyzer
CN114660129A (en) * 2022-03-15 2022-06-24 西安热工研究院有限公司 Combined monitoring system and method for corrosive ions in water vapor
CN115902004B (en) * 2022-11-08 2023-08-18 中科特肯(山东)智能科技有限公司 Measurement device and measurement method for conductivity of degassed hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132962A1 (en) * 2012-03-09 2013-09-12 三菱重工業株式会社 Degradation product-concentration measurement device, and acidic gas removal device
JP2013186091A (en) * 2012-03-09 2013-09-19 Mitsubishi Heavy Ind Ltd Degradation product concentration measurement device, and acidic gas removal device
CN104160268A (en) * 2012-03-09 2014-11-19 三菱重工业株式会社 Degradation product-concentration measurement device, and acidic gas removal device
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Also Published As

Publication number Publication date
JPH01277748A (en) 1989-11-08

Similar Documents

Publication Publication Date Title
JP4600617B2 (en) Anion exchange resin performance evaluation method and apparatus, and condensate demineralizer
Rossum et al. An evaluation of the calcium carbonate saturation indexes
EP0777120B1 (en) Apparatus for detecting anions in water
Živojinović et al. Application and validation of ion chromatography for the analysis of power plants water: Analysis of corrosive anions in conditioned water–steam cycles
JPH0640081B2 (en) Water quality monitoring method in steam power plant
JP3704289B2 (en) Method and apparatus for detecting anions in water
EP1322943A1 (en) A process and device for continuous ionic monitoring of aqueous solutions
JPH0743365B2 (en) Water treatment equipment performance diagnostic equipment
US20030180186A1 (en) Process and device for continuous tonic monitoring of aqueous solutions
JP3226971B2 (en) Water sampling and regeneration cycle controller for ion exchange equipment
JPS60166081A (en) Apparatus for detecting silica break in demineralized water producing equipment
JPH07269303A (en) Condenser sea water leakage continuously monitoring method
KR100627694B1 (en) A highly detective apparatus and method for leaked carbonaceous species form the ion exchange tower in nuclear power plants
JP3974732B2 (en) Seawater leak detection device
JP2000131307A (en) Method and device for evaluating water quality
JPH05146687A (en) Method for detecting concentration of sulfate ion in treatment device of spent resin
KR840002375B1 (en) A method of determination of the concentration of free bases in an industrial water
JP3089867B2 (en) Salt detection method and apparatus
CN114917965A (en) Alkaline solution generating system and method for chemical instrument
Simpson et al. In-plant system for continuous low-level ion measurement in steam-producing water
JP2000046990A (en) Method for analyzing amount of impurity eluted from ion exchange resin
Mindick Capacity and Leakage of Ion Exchange Columns
CN107421996A (en) A kind of water-steam system surveys hydrogen conductivity efficiency lost resin point analysis method and device
Elmiger et al. Description and evaluation of a continuous sample water evaporator
JPS62203094A (en) Ion-exchange capacity controller for condensate desalter