JPH0640013B2 - Photoelectric end position detector - Google Patents

Photoelectric end position detector

Info

Publication number
JPH0640013B2
JPH0640013B2 JP63243684A JP24368488A JPH0640013B2 JP H0640013 B2 JPH0640013 B2 JP H0640013B2 JP 63243684 A JP63243684 A JP 63243684A JP 24368488 A JP24368488 A JP 24368488A JP H0640013 B2 JPH0640013 B2 JP H0640013B2
Authority
JP
Japan
Prior art keywords
light
light emitting
light receiving
emitting element
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63243684A
Other languages
Japanese (ja)
Other versions
JPH0291516A (en
Inventor
清 澁川
秀郎 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP63243684A priority Critical patent/JPH0640013B2/en
Publication of JPH0291516A publication Critical patent/JPH0291516A/en
Publication of JPH0640013B2 publication Critical patent/JPH0640013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可視光又は赤外光を透過しにくい板材やウェ
ブなどの端部位置を検出するもので外乱光に強い光電式
端部位置検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention detects an end position of a plate material or a web that is difficult to transmit visible light or infrared light, and is a photoelectric end position that is strong against ambient light. Regarding a detection device.

〔従来の技術〕[Conventional technology]

第7図Aに示す方式は直流電源1によって光学ランプ2
を点灯することにより、受光素子3で光学ランプ2と受
光素子3間(投受光間隔)17に介在する測定対象物を
検出するものである。受光素子3の検出電流は直流アン
プ4で増巾され、レベル判別回路5で設定レベルに対す
る判別を行い、測定対象物の有無を出力回路6から出力
信号8を出力する。各回路は電源7でドライブされる。
この方式は光学ランプ非変調方式といわれ、高速応答性
にすぐれている反面、外乱光に弱く、ランプ寿命があ
る。そのため外乱光に対しては検出防止対策として装置
周辺に遮光板を設ける必要があり、その上ランプ交換作
業のタイミングによってはラインの操業に支障を来す場
合もある。
In the method shown in FIG. 7A, the optical lamp 2 is driven by the DC power source 1.
Is turned on, the light receiving element 3 detects an object to be measured which is interposed between the optical lamp 2 and the light receiving element 3 (light emitting / receiving interval) 17. The detection current of the light receiving element 3 is amplified by the DC amplifier 4, the level discrimination circuit 5 discriminates against the set level, and the output circuit 6 outputs an output signal 8 indicating the presence or absence of the measurement object. Each circuit is driven by the power supply 7.
This method is called an optical lamp non-modulation method, which has excellent high-speed response, but is weak against ambient light and has a lamp life. Therefore, it is necessary to provide a light-shielding plate around the device as a countermeasure against detection of ambient light, and furthermore, depending on the timing of lamp replacement work, the line operation may be hindered.

第7図Bに示す方式は半導体発光素子11を用いる場合
で、発光素子11はドライバー13でドライブされる。
他の回路及び機能は第8図A方式と同様である。この方
式は半導体発光素子(LED)非変調方式といわれ、高
速応答には優れているものの、外乱に弱く、更に、発光
素子11は直流電源1によってドライバー13を介して
ドライブされる。現在ランプに相当する発光輝度を持つ
LEDはないので発光輝度が弱く、投,受光間隔17を
長くとることができない等の欠点を持っている。第7図
Cに示す方式は半導体発光素子(LED)11をパルス
発振回路12を介してドライバー13でパルスドライブ
する変調方式であり、現在最も多く用いられ、単に被測
定体の有無、すなわちオン,オフ検出であれば外乱に強
く、高感度にできるので投受光間隔17を長くできる特
徴があるものの板材やウェブなどの端部位置をアナログ
量として検出する場合には第8図の相対放射強度1
周囲温度Ta(℃)の関係図に示す如く、半導体発光素
子(LED)は周囲温度の影響を受けやすく、例えば周
囲温度25℃の時に相対放射強度を1とすれば0℃で約1.
3、50℃では約0.7となるため、温度ドリフトを生ずると
同時に、LED11の径年変化による出力変化も生じ、
検出誤差の原因となる。
The method shown in FIG. 7B is a case where the semiconductor light emitting element 11 is used, and the light emitting element 11 is driven by the driver 13.
Other circuits and functions are the same as those in the system of FIG. 8A. This method is called a semiconductor light emitting element (LED) non-modulation method, which is excellent in high-speed response but weak in disturbance, and the light emitting element 11 is driven by the DC power source 1 through the driver 13. At present, there is no LED having a light emission brightness equivalent to a lamp, so that the light emission brightness is weak, and it has a drawback that the interval 17 between the light emitting and light receiving cannot be long. The method shown in FIG. 7C is a modulation method in which the semiconductor light emitting element (LED) 11 is pulse-driven by the driver 13 via the pulse oscillation circuit 12, and is most often used at present, and simply the presence or absence of the measured object, that is, ON, If it is OFF detection, it is strong against disturbance and can be made highly sensitive, so that the light emitting / receiving interval 17 can be lengthened. However, when detecting the end position of a plate or web as an analog quantity, the relative radiation intensity 1 in FIG. As shown in the relationship diagram between E and ambient temperature Ta (° C), the semiconductor light emitting element (LED) is easily affected by the ambient temperature. For example, if the relative radiant intensity is 1 when the ambient temperature is 25 ° C, it is about 1 at 0 ° C. .
It becomes about 0.7 at 3 and 50 ° C, so temperature drift occurs, and at the same time, the output change due to the aging of the LED 11 occurs.
It causes a detection error.

14はフィルター、15は交流アンプ、16は検波積分
回路である。第9図は第7図Cを実装置的に変形したも
のであり、測定対象物20との関係を示すものである。
Reference numeral 14 is a filter, 15 is an AC amplifier, and 16 is a detection integration circuit. FIG. 9 is a modification of FIG. 7C as an actual device, and shows the relationship with the measurement object 20.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

第1図の概念図に示す如く、投光部9と受光部10の間
隔を流長くして対向設置し、測定対象物20が投光部9
からの平行光Aを遮光Bすることにより、その端部を受
光部10によってアナログ的に検出する装置であって、
第2図に示す如く、遮光量即ち測定対象材の侵入量21
と受光部出力22の関係が直線23となるとともに、分
解能が良いことに加えて外乱光の影響を受けにくく、投
受光間隔17を長くできること、さらには保守不要であ
るとともに温度ドリフトが小さく、再現性が良い光電式
端部位置検出装置の提供を目的としている。
As shown in the conceptual diagram of FIG. 1, the light projecting unit 9 and the light receiving unit 10 are installed so as to face each other with the distance between the light projecting unit 9 and the light receiving unit 10 set to be long.
A device for detecting the end portion of the parallel light A from the light receiving unit 10 in an analog manner by the light receiving unit 10,
As shown in FIG. 2, the amount of light shielding, that is, the amount of penetration of the material to be measured 21
The relationship between the output 22 and the light receiving unit 22 becomes a straight line 23, and in addition to having good resolution, it is less susceptible to the influence of ambient light, the projection / reception interval 17 can be lengthened, and maintenance is not required, and the temperature drift is small, and the reproduction It is an object of the present invention to provide a photoelectric type end position detecting device having good properties.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明は、第1に、周期的
に点滅する発光素子を有する投光部と光電受光素子を有
する受光部の間に被測定物体が入り前記発光素子から前
記受光素子に入る光量が変化することにより、前記発光
素子の点滅光により前記受光素子が発生する電圧の交流
成分のみの変化量を検出して、上記被測定物体の位置を
検出する光電式端部位置検出装置において、 前記投光部内に第2の光電受光素子を設けて前記の点滅
する発光素子の光の一部を受光し、前記第2の受光素子
の発生電圧の交流成分のみの単位時間当たりの時間積分
量が光量設定器の設定値になるように、前記の点滅する
発光素子の点滅周期を制御することを特徴とするもので
ある。
In order to achieve the above-mentioned object, firstly, the present invention is such that an object to be measured enters between a light emitting section having a light emitting element that blinks periodically and a light receiving section having a photoelectric light receiving element, and the light receiving element receives the light from the light receiving element. A photoelectric end position for detecting the position of the measured object by detecting the amount of change in only the AC component of the voltage generated by the light receiving element due to the blinking light of the light emitting element due to the change in the amount of light entering the element. In the detection device, a second photoelectric light receiving element is provided in the light projecting portion to receive a part of the light of the blinking light emitting element, and only the AC component of the voltage generated by the second light receiving element per unit time. The blinking cycle of the blinking light emitting element is controlled so that the time integration amount of is the set value of the light amount setting device.

また第二に、前記の点滅する発光素子及び受光素子に近
赤外線用のものを用いるものである。
Secondly, the near-infrared light emitting element is used as the blinking light emitting element and light receiving element.

第三に、前記発光素子から被測定物体に向かって放射さ
れる光を散乱(乳白色)ガラスを経由させて一様分布さ
せ、かつレンズ系と組合わせて平行光線を得ることによ
り、投受光間隔が長くても、被測定物体の位置に対し
て、線形出力を得ようとするものである。
Thirdly, the light emitted from the light emitting element toward the object to be measured is uniformly distributed via the scattering (milky white) glass, and the parallel light is obtained by combining with the lens system to obtain the light emitting / receiving interval. Even if is long, it tries to obtain a linear output with respect to the position of the measured object.

第四に、前記被測定物検出用の受光素子の前に可視光を
カットするフィルタを設置して外光の影響を少なくする
ものである。
Fourthly, a filter for cutting visible light is installed in front of the light receiving element for detecting the object to be measured to reduce the influence of external light.

すなわち、第3図に示す如く、半導体発光素子(LE
D)11の発する光を受光素子26によって受光し、交
流アンプ27によって、交流成分のみ増巾し、AC/D
C交換器28でDC信号として、光量設定器29で設定
された値とDC信号を比較し、その偏差が零になるよう
に制御器30で制御し、その出力をV/F変換器31へ
出力する。V/F変換器31はLEDドライバー13を
介してLED11を点滅制御し、常に偏差値が零となる
ようにLEDの点滅周波数制御するものである。
That is, as shown in FIG. 3, a semiconductor light emitting device (LE
D) The light emitted from 11 is received by the light receiving element 26, and only the AC component is amplified by the AC amplifier 27.
The C switch 28 compares the DC signal as a DC signal with the value set by the light amount setting device 29, controls the controller 30 so that the deviation becomes zero, and outputs the output to the V / F converter 31. Output. The V / F converter 31 controls the blinking of the LED 11 via the LED driver 13 and controls the blinking frequency of the LED so that the deviation value is always zero.

〔作用〕[Action]

上記構成の本発明検出装置は前述の如く、投受光間に存
在する測定対象物の有無を検出するのではなく、測定対
象物の端部位置をアナログ量として検出するものである
から、半導体発光素子(LED)の輝度変動は誤検出の
原因となるもので、その対策として、第3図のブロック
図に示す如く、半導体発光素子(LED)11が発生す
る光の一部を受光素子(シリコンフォトダイオード)2
6にて受光し、光電変換してACアンプ27にてAC成
分のみを増幅し、AC/DC交換器28にてDC信号と
する。そして、DC信号は光量を設定する設定器29の
信号と比較され、その偏差値が零になるように制御装置
30で演算し、V/F変換器31の出力周波数を制御す
る。V/F変換器31の出力周波数でLEDドライバー
13を介して、LED11を点滅ドライブし、前述の偏
差値が零になるように制御するものである。
As described above, the detection device of the present invention, which detects the presence or absence of the measuring object existing between the light projecting and receiving light, does not detect the presence or absence of the measuring object, but detects the end position of the measuring object as an analog quantity. Fluctuations in the brightness of the element (LED) cause erroneous detection. As a countermeasure against this, as shown in the block diagram of FIG. 3, a part of the light generated by the semiconductor light emitting element (LED) 11 is received by the light receiving element (silicon). Photodiode) 2
The light is received at 6, photoelectrically converted, the AC amplifier 27 amplifies only the AC component, and the AC / DC exchanger 28 converts it into a DC signal. Then, the DC signal is compared with the signal of the setting device 29 for setting the light quantity, and the controller 30 calculates so that the deviation value becomes zero, and the output frequency of the V / F converter 31 is controlled. The LED 11 is flicker-driven via the LED driver 13 at the output frequency of the V / F converter 31, and the deviation value is controlled to zero.

〔実施例〕〔Example〕

第3図は本発明検出装置の発光部を示すブロック図で、
構成作用については前述した通りであり、周囲温度が上
昇し、半導体発光素子(LED)11の輝度が低下する
と、受光素子(SPD)26で検出する、発光輝度信号
も当然ながら低下する。この状態は第4図の様になる。
即ち、受光素子(SPD)26の出力波形は34の状態
からドリフトΔa分だけ低下し、35の状態となる。当
然のことながら、A/Cアンプ27及びAC/DC変換
器28の出力DC信号も低下するので、光量設定VR2
9の値より、低くなるので偏差が発生し、その偏差値に
より制御装置30で例えばPI演算して、V/F変換器
31に出力し、周波数を上昇させ、ドライバー13を介
してLED11を点滅制御する。
FIG. 3 is a block diagram showing a light emitting part of the detection device of the present invention.
The constituent operation is as described above, and when the ambient temperature rises and the luminance of the semiconductor light emitting element (LED) 11 decreases, the light emission luminance signal detected by the light receiving element (SPD) 26 also naturally lowers. This state is as shown in FIG.
That is, the output waveform of the light receiving element (SPD) 26 is lowered from the state of 34 by the amount of drift Δa, and becomes the state of 35. As a matter of course, the output DC signals of the A / C amplifier 27 and the AC / DC converter 28 also decrease, so the light amount setting VR2
Since the value becomes lower than the value of 9, a deviation occurs, and the deviation value causes the controller 30 to perform, for example, PI calculation, output to the V / F converter 31, increase the frequency, and blink the LED 11 via the driver 13. Control.

点滅周波数が上昇することは、第4図の点灯間隔Tが短
くなることであり、AC/DC変換器31の出力を上昇
させて、偏差が零となる方向に制御する。
The increase in the blinking frequency means that the lighting interval T in FIG. 4 is shortened, and the output of the AC / DC converter 31 is increased to control the deviation to zero.

この発光部9の制御は第4図に示す波形34,35部分
の面積が単位時間当り、一定の面積となるように、LE
D11の点滅周波数(周期T)をフィードバック制御す
るものである。32は発光部の受光素子の出力であり、
33は時間である。受光部10は第9図に示す如く、従
来法と変わりない。第9図中24はレンズである。この
レンズ24の組合せで平行光線を得、かつ第3図に示す
乳白色ガラス25併用することは投受光間隔17を大き
くしても、第2図のように被測定対象物の変位に対して
直線状の出力を得るために重要である。
The control of the light emitting unit 9 is performed so that the areas of the waveforms 34 and 35 shown in FIG. 4 are constant areas per unit time.
The blinking frequency (cycle T) of D11 is feedback-controlled. 32 is the output of the light receiving element of the light emitting unit,
33 is time. As shown in FIG. 9, the light receiving unit 10 is the same as the conventional method. Reference numeral 24 in FIG. 9 denotes a lens. By using this combination of the lenses 24 to obtain parallel rays and using the milky white glass 25 shown in FIG. 3 together, even if the light emitting / receiving interval 17 is increased, a straight line is obtained with respect to the displacement of the object to be measured as shown in FIG. It is important to get the shape output.

第5図は受光部10の受光素子(SPD)3の検出出力
波形であり、波形37は投受光間17に測定対象物20
の端面が全く侵入していない時で全光束が受光素子(S
PD)3に達し電気信号へ変換した状態Vを示してい
る。波形38は光束が測定対象物の端面で遮光され1/
2の光束が受光素子3に達し電気信号へ変換した状態V
を示すものである。すなわち、この斜線部分で示され
る波形37,38の単位時間当たり面積を演算し、測定
対象物20の端面位置を検出することになる。
FIG. 5 shows a detection output waveform of the light receiving element (SPD) 3 of the light receiving section 10.
When the end face of the
The state V 1 after reaching PD) 3 and converted into an electric signal is shown. In the waveform 38, the light flux is shielded by the end surface of the measuring object and 1 /
State V in which the light flux of 2 reaches the light receiving element 3 and is converted into an electric signal
2 is shown. That is, the area per unit time of the waveforms 37 and 38 indicated by the shaded portion is calculated, and the end surface position of the measurement object 20 is detected.

第6図は本実施例の外乱に対する影響を実験した模式図
であり、投受光器9,10間17を700mmにセットし、測
定対象物20の端面を1/2の位置で固定した状態とし、投
光部9側に隣接した位置に外乱光として、AC100V,1
00Wのタングステン電球39を設置し、受光面に向けて
点滅させた結果、受光部10の出力は2.5V(全遮光0
V,全入光5V)と安定し、全く外乱の影響は受けなか
った。
FIG. 6 is a schematic diagram in which the influence of the present embodiment on the disturbance was tested. The distance 17 between the light emitting and receiving devices 9 and 10 was set to 700 mm, and the end face of the measuring object 20 was fixed at the 1/2 position. , AC100V, 1 as ambient light at a position adjacent to the light projecting unit 9 side
As a result of installing the 00W tungsten light bulb 39 and making it blink toward the light receiving surface, the output of the light receiving unit 10 is 2.5V (total light shielding 0
V, total incident light 5V) and was stable and not affected by disturbance.

当然のことなから従来法では著しく外乱の影響を受け、
測定誤差の大きいことが確認された。
As a matter of course, the conventional method is significantly affected by disturbance,
It was confirmed that the measurement error was large.

温度ドリフトについては約25℃の時受光部10の出力信
号を5Vに調整しておき、恒温槽内で影響温度を0〜50
℃まで変化させ、受光部10の出力信号変化をチェック
したが、0℃のとき5.1V,50のとき4.9Vとなり、0℃
から50℃間はリニアに変化した。50℃の温度差で0.2
Vの変化は端面位置の変化に換算すると約1.2mmのドリ
フトなった。
Regarding the temperature drift, when the temperature is about 25 ° C, the output signal of the light receiving unit 10 is adjusted to 5V, and the affected temperature is adjusted to 0 to 50 in the constant temperature bath.
It was changed to ℃, and the output signal change of the light receiving part 10 was checked. It was 5.1V at 0 ℃, 4.9V at 50, and 0 ℃.
The temperature changed linearly from to 50 ℃. 0.2 at a temperature difference of 50 ° C
The change in V resulted in a drift of about 1.2 mm when converted to the change in the end face position.

従来法での点検では0℃のとき5.8V、50℃のとき3.7V
となり、50℃差で2.1Vの変化は端面位置の変化に換
算すると12.6mmとなり、本発明に比し、約10倍の誤差
となった。更に、表面がミラーのように光る鋼板でテス
トした結果、本発明では全く誤検が無く良好な結果を得
たが従来法では誤検出が屡々起こった。
5.8V at 0 ℃, 3.7V at 50 ℃ according to the conventional method
Therefore, the change of 2.1 V due to the difference of 50 ° C. is 12.6 mm when converted into the change of the end face position, which is about 10 times the error of the present invention. Further, as a result of testing with a steel plate whose surface shines like a mirror, good results were obtained without any erroneous detection in the present invention, but erroneous detection often occurred in the conventional method.

〔発明の効果〕〔The invention's effect〕

本発明を実施することで、外乱光のある環境、温度変化
のある環境に於いて、ミラーのように光る測定対象物で
も容易に端部位置のアナログ検出が高精度で容易とな
り、この種測定装置分野に於ける利益は大きい。又装置
コストを従来品に若干の機器を付加する程度であり、利
益に対する付加価値は高く評価できる。
By implementing the present invention, in an environment with ambient light or an environment with temperature change, analog detection of the edge position can be easily performed with high accuracy even for an object to be measured that shines like a mirror. The profit in the equipment field is great. In addition, the equipment cost is only to add some equipment to the conventional product, and the added value for profit can be highly evaluated.

【図面の簡単な説明】[Brief description of drawings]

第1図は投受光器と測定対象物,光束との関係を示す検
出装置の概念図、第2図は遮光量と受光部出力との関係
を示す線図、第3図は本発明装置の発光部を示すブロッ
ク図、第4図は発光部の受光素子出力波形とドリフトの
関係を示す線図、第5図は発光部の受光素子出力波形と
端部検出位置との関係を示す線図、第6図は本発明の装
置を用いて外乱の影響を調査するための概略図、第7図
Aは従来法の光学ランプを用いた非変調方式を示すブロ
ック図、第7図Bは従来法の半導体発光素子(LED)
を用いた非変調方式を示すブロック図、第7図Cは従来
法の半導体発光素子(LED)を用いた変調方式を示す
ブロック図、第8図は周辺温度の変化に対する相対放射
強度の変化を示す線図、第9図は従来法の第7図Cの実
装装置のブロック図である。 11……半導体発光素子(LED) 13……LEDドライバー 25……散乱(乳白色)ガラス 26……受光素子 27……交流アンプ 28……AC/DC交換器 29……光量設定器 30……制御器 31……V/F変換器
FIG. 1 is a conceptual diagram of a detection device showing the relationship between a light emitter / receiver, an object to be measured, and a light flux, FIG. 2 is a diagram showing the relationship between the amount of light shielding and the output of the light receiving portion, and FIG. FIG. 4 is a block diagram showing the light emitting portion, FIG. 4 is a diagram showing the relationship between the light receiving element output waveform of the light emitting portion and drift, and FIG. 5 is a diagram showing the relationship between the light receiving element output waveform of the light emitting portion and the edge detection position. FIG. 6 is a schematic diagram for investigating the influence of disturbance using the apparatus of the present invention, FIG. 7A is a block diagram showing a non-modulation method using an optical lamp of a conventional method, and FIG. 7B is a conventional method. Method semiconductor light emitting device (LED)
FIG. 7C is a block diagram showing a non-modulation method using a light emitting diode, FIG. 7C is a block diagram showing a modulation method using a conventional semiconductor light emitting device (LED), and FIG. 8 shows a change in relative radiation intensity with respect to a change in ambient temperature. The diagram shown in FIG. 9 is a block diagram of the mounting apparatus of FIG. 7C according to the conventional method. 11 ... Semiconductor light emitting element (LED) 13 ... LED driver 25 ... Scattering (milky white) glass 26 ... Light receiving element 27 ... AC amplifier 28 ... AC / DC exchanger 29 ... Light quantity setting device 30 ... Control Vessel 31 ... V / F converter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】周期的に点滅する発光素子を有する投光部
と光電受光素子を有する受光部の間に被測定物体が入り
前記発光素子から前記受光素子に入る光量が変化するこ
とにより、前記発光素子の点滅光により前記受光素子が
発生する電圧の交流成分のみの変化量を検出して、上記
被測定物体の位置を検出する光電式端部位置検出装置に
おいて、 前記投光部内に第2の光電受光素子を設けて前記の点滅
する発光素子の光の一部を受光し、前記第2の受光素子
の発生電圧の交流成分のみの単位時間当たりの時間積分
量が光量設定器の設定値になるように、前記の点滅する
発光素子の点滅周期を制御することを特徴とする光電式
端部位置検出装置。
1. An object to be measured enters between a light projecting portion having a light emitting element that blinks periodically and a light receiving portion having a photoelectric light receiving element, and the amount of light entering the light receiving element from the light emitting element changes, In a photoelectric end position detecting device for detecting the position of the object to be measured by detecting the amount of change of only the AC component of the voltage generated by the light receiving element by the blinking light of the light emitting element, a second device is provided in the light projecting section. Is provided to receive a part of the light of the blinking light emitting element, and the time integration amount per unit time of only the AC component of the generated voltage of the second light receiving element is the set value of the light quantity setting device. The photoelectric end position detecting device is characterized by controlling the blinking cycle of the blinking light emitting element.
【請求項2】前記点滅する発光素子及び受光素子に近赤
外線用のものを用いることを特徴とする請求項1記載の
光電式端部位置検出装置。
2. A photoelectric type end position detecting apparatus according to claim 1, wherein the blinking light emitting element and light receiving element for near infrared rays are used.
【請求項3】前記発光素子から被測定物体に向かって放
射される光を散乱ガラスを経由させることを特徴とする
請求項1記載の光電式端部位置検出装置。
3. The photoelectric type end position detecting device according to claim 1, wherein the light emitted from the light emitting element toward the object to be measured is passed through a scattering glass.
【請求項4】前記被測定物検出用の受光素子の前に可視
光をカットするフィルタを設置することを特徴とする請
求項2記載の光電式端部位置検出装置。
4. A photoelectric type end position detecting device according to claim 2, wherein a filter for cutting visible light is installed in front of the light receiving element for detecting the object to be measured.
JP63243684A 1988-09-28 1988-09-28 Photoelectric end position detector Expired - Fee Related JPH0640013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243684A JPH0640013B2 (en) 1988-09-28 1988-09-28 Photoelectric end position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243684A JPH0640013B2 (en) 1988-09-28 1988-09-28 Photoelectric end position detector

Publications (2)

Publication Number Publication Date
JPH0291516A JPH0291516A (en) 1990-03-30
JPH0640013B2 true JPH0640013B2 (en) 1994-05-25

Family

ID=17107449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243684A Expired - Fee Related JPH0640013B2 (en) 1988-09-28 1988-09-28 Photoelectric end position detector

Country Status (1)

Country Link
JP (1) JPH0640013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4739918B2 (en) * 2005-05-24 2011-08-03 嘉春 大谷 Dental handpiece

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263813A (en) * 1984-06-11 1985-12-27 Brother Ind Ltd Rotary angle detecting device

Also Published As

Publication number Publication date
JPH0291516A (en) 1990-03-30

Similar Documents

Publication Publication Date Title
SU1479012A3 (en) Method of detecting changes in material color
US6201236B1 (en) Detection system with improved noise tolerance
KR100391939B1 (en) Temperature correction treatment according to measurement value of sediment sensor of automatic washing machine or dishwasher
US7821618B2 (en) Method for light propagation time measurement
US3752978A (en) Photoelectric intrusion detector
US4365165A (en) Level measurement device
US6248989B1 (en) Tilt detecting device
US7956329B2 (en) Flame detector and a method
US5675150A (en) Active IR intrusion detector
US6271512B1 (en) Optical system for detecting obstruction
KR20010113911A (en) Laser photoelectric sensor
JPH0640013B2 (en) Photoelectric end position detector
KR20180102740A (en) Optical ultrafine dust measuring sensor which removes the influence of disturbance light
KR100493982B1 (en) Detection system with improved noise tolerance
GB2111193A (en) Method and apparatus for assessing the quality of cement clinker
KR920003041B1 (en) Measuring device of luster
US10907987B2 (en) System and method for detecting a change on a moving surface
US7999218B2 (en) Radiation detector
JP2843265B2 (en) Photoelectric smoke detector
JPS626524Y2 (en)
KR200144344Y1 (en) Laser diode output control circuit of internal pipe inspection device
JPH1096791A (en) Raindrop detecting device
JPS6040978A (en) Obstacle detecting apparatus
JPH06105185B2 (en) Photoelectric conversion processor
Lataire Optical Sensors For Factory Automation.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees