JPH0639344A - Powder coating method - Google Patents

Powder coating method

Info

Publication number
JPH0639344A
JPH0639344A JP12959992A JP12959992A JPH0639344A JP H0639344 A JPH0639344 A JP H0639344A JP 12959992 A JP12959992 A JP 12959992A JP 12959992 A JP12959992 A JP 12959992A JP H0639344 A JPH0639344 A JP H0639344A
Authority
JP
Japan
Prior art keywords
powder coating
coating material
processed
resin
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12959992A
Other languages
Japanese (ja)
Other versions
JP2544692B2 (en
Inventor
Kazuya Ono
和也 小野
Mikio Cho
美樹夫 長
Yoshiaki Umezawa
美昭 梅沢
Katsuji Kitagawa
勝治 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somar Corp
Original Assignee
Somar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somar Corp filed Critical Somar Corp
Priority to JP4129599A priority Critical patent/JP2544692B2/en
Publication of JPH0639344A publication Critical patent/JPH0639344A/en
Application granted granted Critical
Publication of JP2544692B2 publication Critical patent/JP2544692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To provide the coating method of superior permeability into very fine clearances of a material to be processed such as a coil and elminate substantially the generation of sags and runaway of resin from the material to be processed. CONSTITUTION:An epoxy resin powder coating material of high melting fluidity containing crystalline epoxy resin is made to adhere to the lower section surface of a preheated material to be processed, and then the material to be processed is turned upside down and the material to be processed in the above state is heated up to the curing temperature of the powder coating material. Curing reaction is carried out while the epoxy resin powder coating material adhered to the material to be processed in the molten state is flowed down.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱硬化性樹脂粉体塗料
を用いる新規な粉体塗装方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new powder coating method using a thermosetting resin powder coating material.

【0002】[0002]

【従来技術及びその問題点】エポキシ樹脂等の熱硬化性
樹脂を用いる塗装方法には、液状ワニスを用いる方法
と、粉体塗料を用いる方法がある。液状ワニスを用いる
方法としては、一般的には、予熱した被処理物(例え
ば、コイル)を回転させながら上方からワニスを滴下
し、液状ワニスを被塗装物表面上を流下させながら含浸
・固着硬化させる方法が行われている。一方、粉体塗料
を用いる方法としては、流動浸漬法、静電流動浸漬法、
静電スプレー法、あるいは被塗装物の上に粉体塗料をふ
りかける方法等が行われている。これらの方法は、モー
タや発電機における固定子コイルや回転子コイル等への
含浸・固着法として採用されている。ところで、液状ワ
ニスを用いる方法では、液状ワニスが低粘度である程コ
イル間への含浸性は優れているが、塗装・含浸中にワニ
スのタレが生じるという問題がある上、含浸・固着処理
の間は、被処理物であるコイルにワニスが均一に行渡る
ようにするためやワニスノタレを防止するために、ワニ
スの滴下中からゲル化して流動性が無くなるまで被処理
物を回転させる必要がある。従って、塗装・含浸・固着
工程の設備が煩雑になるという問題がある。さらに、安
定した吐出量や含浸性を確保するためには、ワニス粘度
の制御が必要であるという問題がある上、処理中にワニ
スが下方に垂れ落ちが生じ、設備の汚れ及びワニスの無
駄が生じるという問題がある。また、溶剤を使用するワ
ニスでは、安全面、環境保護面から好ましくない等の問
題を生じる。この液状ワニスの問題点をカバーするもの
として、粉体塗料が使用されているが、粉体塗料は、溶
融時の粘度が高いため微細な間隙への含浸・固着性が悪
いという問題がある。
2. Description of the Related Art As a coating method using a thermosetting resin such as an epoxy resin, there are a method using a liquid varnish and a method using a powder coating material. As a method of using a liquid varnish, generally, a varnish is dropped from above while rotating a preheated object to be treated (for example, a coil), and a liquid varnish is allowed to flow down on the surface of the object to be impregnated / fixed and cured. The method of letting is done. On the other hand, as a method of using the powder coating material, a fluidized dipping method, an electrostatic fluidized dipping method,
The electrostatic spraying method or a method of sprinkling powder coating material on an object to be coated is used. These methods have been adopted as impregnation / fixing methods for stator coils, rotor coils, etc. in motors and generators. By the way, in the method using the liquid varnish, the lower the viscosity of the liquid varnish is, the better the impregnation property between the coils is, but there is a problem that the varnish sags during the coating / impregnation, and the impregnation / fixing treatment is performed. In the meantime, in order to make the varnish evenly spread over the coil that is the object to be processed and to prevent varnish dripping, it is necessary to rotate the object to be treated from the varnish dropping until it gels and loses fluidity. . Therefore, there is a problem that the equipment for the painting / impregnation / fixing process becomes complicated. Furthermore, in order to secure a stable discharge amount and impregnating property, there is a problem that it is necessary to control the viscosity of the varnish, and the varnish droops downward during processing, resulting in equipment stains and waste of varnish. There is a problem that it will occur. In addition, a varnish using a solvent causes problems such as safety and environmental protection. A powder coating material is used to cover the problems of the liquid varnish, but the powder coating material has a problem that impregnation / adhesion to a minute gap is poor because the viscosity of the powder coating material is high when melted.

【0003】[0003]

【発明が解決しようとする課題】本発明は、被処理物の
塗装に見られる前記問題を解決し、被処理物の微細間隙
内への浸透性にすぐれるとともに、被処理物からの樹脂
の垂れ落ちを実質上生じない塗装方法を提供することを
その課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems found in coating of an object to be treated, has excellent permeability into the minute gaps of the object to be treated, and prevents the resin from the object from being treated. An object of the present invention is to provide a coating method that does not substantially cause dripping.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、結晶性熱硬化性樹脂
を含む、溶融流動性の高い樹脂粉体塗料を、予熱した被
処理物の下部表面に付着させた後、その被処理物を上下
反転させ、この状態で該粉体塗料をその硬化温度に加熱
し、被処理物に付着した樹脂粉体塗料を溶融状態で流下
させながら、硬化反応させることを特徴とする粉体塗装
方法が提供される。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, a resin powder coating having a high melt fluidity containing a crystalline thermosetting resin is adhered to the lower surface of the preheated object to be processed, and then the object to be processed is turned upside down. In this state, the powder coating material is heated to its curing temperature, and the resin powder coating material adhering to the object to be treated is allowed to undergo a curing reaction while flowing down in a molten state. .

【0005】本発明においては、粉体塗料として、結晶
性熱硬化性樹脂を含む、溶融流動性の高い樹脂粉体塗料
を用いる。結晶性熱硬化性樹脂は、常温固体の非結晶性
の熱硬化性樹脂とは異なり、その溶融時の粘度が低く、
高い溶融流動性を有する。結晶性熱硬化性樹脂として
は、従来公知の各種のものが用いられるが、好ましくは
結晶性エポキシ樹脂が用いられる。結晶性エポキシ樹脂
としては、例えば、トリグリシジルイソシアヌレート
(「エピコートRXE-15」、油化シェルエポキシ社製、エポ
キシ当量103、融点120℃)、エポキシプロポキシジメチ
ルベンジルアクリルアミド(「カネカレジンAXE」、鐘淵化
学工成社製、エポキシ当量270、融点100℃)、ハイドロ
キノンジグリシジルエーテル(「HQDGE」、日本化薬社製、
エポキシ当量125、融点100℃)、ビスフェノールSジグリ
シジルエーテル(日本化薬社製、「EBPS-200」、エポキシ
当量200、融点125℃、テトラメチルビフェノールジグリ
シジルエーテル(「YX-4000、油化シェルエポキシ社製、
エポキシ当量185、融点105℃)、テトラメチルビフェノ
ールジグリシジルエーテル変性物(「YL-0074C」、油化シ
ェルエポキシ社製、エポキシ当量190、融点93℃)、2,5-
ジ-t-ブチルハイドロキノンジグリシジルエーテル(「DTB
HQ-EX」、油化シェルエポキシ社製、エポキシ当量202、
融点132℃)、テレフタル酸ジグリシジルエーテル等が挙
げられる。
In the present invention, a resin powder coating material containing a crystalline thermosetting resin and having high melt fluidity is used as the powder coating material. The crystalline thermosetting resin is different from the amorphous thermosetting resin which is solid at room temperature in that it has a low viscosity when melted,
It has high melt flowability. As the crystalline thermosetting resin, various conventionally known resins are used, but a crystalline epoxy resin is preferably used. Examples of the crystalline epoxy resin include triglycidyl isocyanurate.
("Epicoat RXE-15", manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent 103, melting point 120 ° C), epoxy propoxydimethylbenzylacrylamide ("Kanekaresin AXE", manufactured by Kanegafuchi Chemical Co., Ltd., epoxy equivalent 270, melting point 100 ° C) ), Hydroquinone diglycidyl ether (“HQDGE”, manufactured by Nippon Kayaku Co., Ltd.,
Epoxy equivalent 125, melting point 100 ° C, bisphenol S diglycidyl ether (Nippon Kayaku Co., Ltd., "EBPS-200", epoxy equivalent 200, melting point 125 ° C, tetramethylbiphenol diglycidyl ether ("YX-4000, oil-based shell Epoxy,
Epoxy equivalent 185, melting point 105 ° C), tetramethylbiphenol diglycidyl ether modified product ("YL-0074C", manufactured by Yuka Shell Epoxy Co., epoxy equivalent 190, melting point 93 ° C), 2,5-
Di-t-butyl hydroquinone diglycidyl ether (`` DTB
HQ-EX ", made by Yuka Shell Epoxy Co., epoxy equivalent 202,
And a terephthalic acid diglycidyl ether.

【0006】前記結晶性エポキシ樹脂は、硬化剤と組合
せて用いられるが、この場合の硬化剤としては、慣用の
もの、例えば、アミン、アミンアダクト、ポリアミド、
ポリアミドアダクト、ポリカルボン酸、カルボン酸無水
物、多価フェノール、イミダゾール化合物、イミダゾリ
ン化合物、ジシアンジアミド及びその誘導体、三フッ化
ホウ素及びその誘導体、ジヒドラジド化合物等が挙げら
れる。これらの硬化剤は、結晶性及び非結晶性のもので
あることができるが、その少なくとも一部に結晶性硬化
剤を用いるのが好ましい。結晶性硬化剤の代表例として
は、例えば、5(2,5-ジオキソテトラヒドロフロリル)-3-
メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物(「エ
ピクロンB-4400」、大日本インキ社製、融点167℃)、テ
トラヒドロ無水フタル酸(THPA)(融点100℃)、ビスフェ
ノールA(融点157℃)、ビスフェノールS(融点245℃)の
他、有機酸ヒドラジド、ジシアンジアミド等が挙げられ
る。また、非結晶性硬化剤の代表例としては、例えば、
フェノールノボラック型樹脂(「タマノール#75
4」;Tg49℃、SP100℃、荒川化学社製)、o
−クレゾールノボラック型樹脂(「OCN90」;Tg
40℃、SP90℃、「OCN120」Tg70℃、S
P120℃、日本化薬社製)等が挙げられる。
The above-mentioned crystalline epoxy resin is used in combination with a curing agent, and in this case, the conventional curing agent is, for example, amine, amine adduct, polyamide,
Examples thereof include polyamide adducts, polycarboxylic acids, carboxylic acid anhydrides, polyhydric phenols, imidazole compounds, imidazoline compounds, dicyandiamide and its derivatives, boron trifluoride and its derivatives, and dihydrazide compounds. These hardeners can be crystalline and amorphous, but it is preferable to use a crystalline hardener for at least a part of them. As a typical example of the crystalline curing agent, for example, 5 (2,5-dioxotetrahydrofloryl) -3-
Methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride (“Epiclone B-4400”, manufactured by Dainippon Ink and Chemical Co., melting point 167 ° C.), tetrahydrophthalic anhydride (THPA) (melting point 100 ° C.), bisphenol A (melting point 157 ° C.), bisphenol S (melting point 245 ° C.), organic acid hydrazides, dicyandiamide and the like. Further, as a typical example of the non-crystalline curing agent, for example,
Phenol novolac type resin ("Tamanol # 75
4 "; Tg 49 ° C, SP 100 ° C, manufactured by Arakawa Chemical Co., Ltd., o
-Cresol novolac type resin ("OCN90"; Tg
40 ° C, SP90 ° C, "OCN120" Tg70 ° C, S
P120 ° C., manufactured by Nippon Kayaku Co., Ltd., etc.

【0007】本発明に用いられるエポキシ樹脂粉体塗料
には、非結晶性エポキシ樹脂を配合することができる。
このような非結晶性エポキシ樹脂としては、従来公知の
各種のものが用いられ、例えば、ビスフェノールAジグ
リシジルエーテル(「エピコート1001」;エポキシ
当量475、Tg(ガラス転移点)29℃、デュランス
軟化点(以下SPと略す)68℃、「エピコート100
2」;エポキシ当量650、Tg42℃、SP83℃、
「エピコート1004」;エポキシ当量950、Tg5
3℃、SP98℃、油化シェルエポキシ社製)、o−ク
レゾールノボラック型エポキシ樹脂(「エピコートE1
80S65」;エポキシ当量200、Tg18℃、SP
65℃、「エピコートE180S90」;エポキシ当量
220、Tg43℃、SP90℃、油化シェルエポキシ
社製)等が挙げられる。
The epoxy resin powder coating material used in the present invention may contain a non-crystalline epoxy resin.
As such an amorphous epoxy resin, various conventionally known resins are used. For example, bisphenol A diglycidyl ether (“Epicoat 1001”; epoxy equivalent 475, Tg (glass transition point) 29 ° C., Durance softening point) (Hereinafter abbreviated as SP) 68 ° C., “Epicoat 100
2 "; epoxy equivalent 650, Tg 42 ° C, SP83 ° C,
"Epicoat 1004"; Epoxy equivalent 950, Tg5
3 ° C., SP98 ° C., manufactured by Yuka Shell Epoxy Co., Ltd., o-cresol novolac type epoxy resin (“Epicoat E1
80S65 "; epoxy equivalent 200, Tg 18 ° C, SP
65 ° C., “Epicoat E180S90”; epoxy equivalent 220, Tg 43 ° C., SP 90 ° C., manufactured by Yuka Shell Epoxy Co., Ltd.) and the like.

【0008】本発明で用いるエポキシ樹脂粉体塗料に
は、前記したエポキシ樹脂及び硬化剤の他に、さらに、
硬化促進剤や、反応性固体状有機物、着色剤、難燃剤、
フロー調整剤、充填剤等の慣用の補助成分を併用するこ
とができる。これらのものは結晶性又は非結晶性のもの
であることができる。硬化促進剤としては、例えば、イ
ミダゾール(「キュアゾール2MZ」、融点:147
℃、四国化成社製)、又は変性イミダゾール(キュアゾ
ール2MZ−AZINE」、融点248℃、四国化成社
製)、エポキシ樹脂とイミダゾールとの予備反応物
(「エピキュアP−200」、油化シェルエポキシ社
製、Tg95℃)、トリフェニルフォスフィン、ジアザ
ビシクロウンデセンのフェノールノボラック樹脂塩
(「U−Cat831」、サンアプロ社製)等が挙げら
れる。反応性固体状有機物は、エポキシ樹脂に対して反
応性を示し、種々の効果を示すもので、このようなもの
としては、例えば、硬化物の耐熱性向上と配合成分のバ
インダー効果を向上させるために、ビスマレイミド・ト
リアジン樹脂(BTレジン)(「BT-2170」、三菱瓦斯化学社
製、Tg42℃)、硬化物の耐熱性向上と、溶融時の粘度を
低下させるために、ビスマレイミド樹脂(「MB−3000」、
三菱油化社製、融点156℃)、硬化物の接着性向上のため
に、ブチラール樹脂(「エスレックBLS」、積水化学社製、
Tg120℃)、硬化物の耐熱性と可とう性の向上のために、
固形ポリオール、例えば、トリス(2-ヒドロキシエチル)
イソシアヌレート(「THEIC」、四国化成社製、融点135℃)
等が挙げられる。フロー調整剤は、硬化物のクレータ発
生防止のために添加し、例えば、アクリル酸エステルオ
リゴマー(「ニカライトXK−21」、日本カーバイト
社製)等が挙げられる。
The epoxy resin powder coating used in the present invention contains, in addition to the above-mentioned epoxy resin and curing agent,
Curing accelerator, reactive solid organic matter, colorant, flame retardant,
Conventional auxiliary components such as flow regulators and fillers can be used in combination. These can be crystalline or amorphous. Examples of the curing accelerator include imidazole (“Curezol 2MZ”, melting point: 147).
C., Shikoku Kasei Co., Ltd., or modified imidazole (Curezol 2MZ-AZINE, melting point 248.degree. C., Shikoku Kasei Co., Ltd.), pre-reacted product of epoxy resin and imidazole (“Epicure P-200”, Yuka Shell Epoxy Co., Ltd.). , Tg95 ° C.), triphenylphosphine, diazabicycloundecene phenol novolac resin salt (“U-Cat831”, manufactured by San-Apro), and the like. Reactive solid organic substances are reactive with epoxy resins and exhibit various effects. Examples of such substances include, for example, improving the heat resistance of the cured product and improving the binder effect of the compounding ingredients. In, bismaleimide triazine resin (BT resin) ("BT-2170", Mitsubishi Gas Chemical Co., Inc., Tg42 ℃), to improve the heat resistance of the cured product, and to reduce the viscosity during melting, bismaleimide resin ( "MB-3000",
Mitsubishi Yuka Co., Ltd., melting point 156 ° C., butyral resin (“S-REC BLS”, manufactured by Sekisui Chemical Co., Ltd.
Tg120 ° C), to improve the heat resistance and flexibility of the cured product,
Solid polyols such as tris (2-hydroxyethyl)
Isocyanurate ("THEIC", Shikoku Kasei Co., melting point 135 ° C)
Etc. The flow regulator is added to prevent craters from being generated in the cured product, and examples thereof include acrylic acid ester oligomers (“Nikalite XK-21”, manufactured by Nippon Carbide Co.).

【0009】全エポキシ樹脂に対する全硬化剤の配合割
合は、全エポキシ樹脂のエポキシ当量あたり、官能基の
当量で、0.5〜1.5当量、好ましくは0.7〜1.2当量の割合
である。硬化促進剤は、全エポキシ樹脂100重量部に対
し、0.1〜5.0重量部、好ましくは0.3〜3.0重量部の割合
である。反応性固体状有機物の配合割合は所望に応じて
適当に選ばれるが、一般的には、全エポキシ樹脂100重
量部に対し、10〜50重量部、好ましくは20〜40重量部の
割合である。
The mixing ratio of the total curing agent to the total epoxy resin is 0.5 to 1.5 equivalents, preferably 0.7 to 1.2 equivalents, as the equivalent of functional groups, per epoxy equivalent of the total epoxy resin. The amount of the curing accelerator is 0.1 to 5.0 parts by weight, preferably 0.3 to 3.0 parts by weight, based on 100 parts by weight of the total epoxy resin. The proportion of the reactive solid organic compound is appropriately selected as desired, but is generally 10 to 50 parts by weight, preferably 20 to 40 parts by weight, based on 100 parts by weight of the total epoxy resin. .

【0010】以上、本発明で用いる結晶性エポキシ樹脂
粉体塗料について詳述したが、本発明の塗料方法は、他
の熱硬化性樹脂、例えば、結晶性ビスマレイミド樹脂を
含む塗体塗料や、結晶性エポキシ樹脂と結晶性ビスマレ
イミド樹脂を含む粉体塗料に対しも同様に適用し得るも
のである。なお、結晶性ビスマレイミドとしては、ジア
ミノジフェニルメタンとマレイン酸から合成されるビス
マレイミド(MB−3000、三菱油化(株)社製、
m.p.150℃)があり、その他に、各種ジアミンと
マレイン酸から合成されるビスマレイミドが挙げられ
る。
The crystalline epoxy resin powder coating material used in the present invention has been described above in detail. The coating method of the present invention is applied to a coating material coating material containing another thermosetting resin such as a crystalline bismaleimide resin, The same can be applied to a powder coating material containing a crystalline epoxy resin and a crystalline bismaleimide resin. As the crystalline bismaleimide, bismaleimide synthesized from diaminodiphenylmethane and maleic acid (MB-3000, manufactured by Mitsubishi Petrochemical Co., Ltd.,
m. p. 150 ° C.), and other examples include bismaleimide synthesized from various diamines and maleic acid.

【0011】本発明で用いる熱硬化性樹脂粉体塗料は、
結晶性熱硬化性樹脂を含む溶融流動性の高いものであれ
ばよく、一般には、その溶融時の粘度が1000cp以
下、好ましくは500cp以下のものが用いられる。
The thermosetting resin powder coating used in the present invention is
Any material containing a crystalline thermosetting resin and having a high melt fluidity may be used, and in general, a melt viscosity of 1000 cp or less, preferably 500 cp or less is used.

【0012】本発明の粉体塗装方法を実施するには、先
ず、熱硬化性樹脂粉体塗料の静止層又は流動層に、予熱
した被処理物の下部を浸漬し、この粉体塗料を被処理物
の下部表面に付着させる。被処理物の予熱温度は、通
常、粉体塗料の溶融温度である。被処理物の予熱は、そ
の被処理物に応じて適当な加熱方法が採用され、例え
ば、通電加熱や熱風炉加熱等を用いることができる。被
処理物を粉体塗料中へ浸漬する時間及び被処理物を粉体
塗料中へ浸漬させる割合により調節することができる。
被処理物を粉体塗料中に浸漬する割合は、被処理物の全
体積の20〜80vol%、好ましくは30〜60vo
l%である。被処理物に対する粉体塗料の付着量は、被
処理物の全体の表面を被覆し、被処理物中に微細空隙が
あればその微細空隙内を充填させる必要付着量ないしそ
の必要付着量の1.5倍程度である。なお、この必要付
着量は、簡単な予備実験により容易に知ることができ
る。
To carry out the powder coating method of the present invention, first, the lower part of the preheated object to be treated is immersed in a stationary layer or a fluidized bed of the thermosetting resin powder coating material, and the powder coating material is coated. It is attached to the lower surface of the processed material. The preheating temperature of the object to be treated is usually the melting temperature of the powder coating material. For preheating of the object to be treated, an appropriate heating method is adopted according to the object to be treated, and, for example, electric heating or hot stove heating can be used. It can be adjusted by the time for immersing the material to be treated in the powder coating material and the ratio of immersing the material to be treated in the powder coating material.
The rate of immersing the object to be treated in the powder coating material is 20 to 80 vol% of the total volume of the object to be treated, preferably 30 to 60 vo.
1%. The adhesion amount of the powder coating material to the object to be treated is one of the necessary adhesion amount to cover the entire surface of the object to be treated and to fill the minute voids in the object to be treated, or the required adhesion amount. It is about 5 times. The required adhesion amount can be easily known by a simple preliminary experiment.

【0013】次に、前記のようにして粉体塗料を下部に
付着させた被処理物は、その上下を反転させ、この状態
で付着した粉体塗料をその硬化温度に加熱する。この付
着した粉体塗料の硬化温度への加熱は、被処理物を加熱
炉に入れ、加熱炉からの熱量によって実施し得る他、被
処理物自体の保有する熱量によって行うことができる。
この加熱により、被処理物の上部に位置する粉体塗料の
溶融物は、被処理物表面を下方に流下し、また、その被
処理物に微細空隙があればその微細空隙内に浸入し、流
下するとともに、硬化反応を生じてしだいに硬化して行
く。このようにして、被処理物の表面が粉体塗料の溶融
物で被覆されるとともに、被処理物の微細空隙内が粉体
塗料の溶融物で充填された被処理物が形成される。そし
て、このようにして、被処理物に付着させた粉体塗料溶
融物は、最終的には不溶不融性の硬化物に硬化される。
粉体塗料を硬化させる場合、その硬化温度が高すぎると
粉体塗料の溶融粘度は低くなるが、ゲル化が速くなるた
め、溶融物のゲル化による粘度増加も速くなり、逆に、
硬化温度が低すぎると粉体塗料の溶融粘度は高くなる
が、溶融物のゲル化による粘度増加は遅くなる。従っ
て、硬化温度は、粉体塗料の具体的成分組成やゲル化特
性に応じて適当に定める。一般的には、200℃で5秒
以上、好ましくは10〜30秒のゲル化時間(JISC
2104)を示し、溶融粘度が1000cp以下、好ま
しくは500cp以下を示すような硬化温度を採用すれ
ばよい。最適硬化温度は、予備実験により容易に知るこ
とができる。
Next, the object to which the powder coating material is attached on the lower part as described above is turned upside down and the powder coating material attached in this state is heated to its curing temperature. The heating of the adhered powder coating material to the curing temperature can be carried out not only by placing the object to be treated in a heating furnace but also by the amount of heat from the heating furnace, or by the amount of heat possessed by the object itself.
By this heating, the melt of the powder coating material located on the top of the object to be processed flows down the surface of the object to be processed, and if the object to be processed has fine voids, it infiltrates into the fine voids, As it flows down, a hardening reaction occurs and hardening gradually occurs. In this way, the surface of the object to be treated is coated with the melt of the powder coating material, and the fine voids of the object to be treated are filled with the melt of the powder coating material to form the object to be processed. Then, in this way, the powder coating material melt adhered to the object to be processed is finally cured into an insoluble and infusible cured product.
When curing the powder coating material, if the curing temperature is too high, the melt viscosity of the powder coating material will be low, but since gelation will be faster, the viscosity increase due to gelation of the melt will be faster, and conversely,
If the curing temperature is too low, the melt viscosity of the powder coating material increases, but the viscosity increase due to gelation of the melt becomes slow. Therefore, the curing temperature is appropriately determined according to the specific component composition of the powder coating material and the gelling property. Generally, gelation time (JISC) of 5 seconds or more at 200 ° C., preferably 10 to 30 seconds.
2104) and a melt viscosity of 1000 cp or less, preferably 500 cp or less. The optimum curing temperature can be easily known by preliminary experiments.

【0014】本発明で用いる被処理物としては、モータ
や発電機における固定子コイル(ステータコイル)の
他、各種電気・電子部品等が挙げられる。本発明によれ
ば、これらの被処理物の表面に熱硬化性樹脂の硬化塗膜
を形成させることができ、またその被処理物に微細空隙
が存在する場合には、その微細空隙内にも熱硬化性樹脂
の硬化物を充填させることができる。
Examples of the objects to be processed used in the present invention include various electric and electronic parts in addition to a stator coil (stator coil) in a motor or a generator. According to the present invention, it is possible to form a cured coating film of a thermosetting resin on the surface of these objects to be treated, and, if there are fine voids in the object to be treated, also in the fine voids. A cured product of a thermosetting resin can be filled.

【0015】[0015]

【発明の効果】本発明の粉体塗装方法によれば、被処理
物の表面及び被処理物の微細空隙内に熱硬化性樹脂の硬
化物を容易に付着させることができる。本発明の方法
は、従来の粉体塗装方法とは異なり、溶融時の粘度の低
い粉体塗料を用いているにもかかわらず、被処理物を回
転させなくても塗料溶融物の垂れ落ちがないことから、
塗装作業性及び経済性において著しくすぐれたものであ
る。また、本発明の方法は、液体ワニスを用いる方法に
比べても、塗料溶融物の垂れ落ちがないことから、塗料
の節約が大幅に達成されるとともに、作業性の点でも著
しく改善されたものである。本発明の方法は、特に、コ
イルの固着方法として有利に適用される。本発明により
コイルを塗装する時には、そのコイルの外表面及びコイ
ル間の微細空隙内に塗料が均一に付着され、コイルを強
固に固着させることができる。
According to the powder coating method of the present invention, the cured product of the thermosetting resin can be easily attached to the surface of the object to be treated and the fine voids of the object to be treated. Unlike the conventional powder coating method, the method of the present invention uses a powder coating having a low viscosity during melting, but the coating melt does not drip even without rotating the object to be treated. Because there is no
It is remarkably excellent in coating workability and economy. Further, the method of the present invention, compared with the method using a liquid varnish, because the paint melt does not sag, the paint is significantly saved, and the workability is also significantly improved. Is. The method of the present invention is particularly advantageously applied as a coil fixing method. When the coil is coated according to the present invention, the coating is uniformly adhered to the outer surface of the coil and the fine voids between the coils, so that the coil can be firmly fixed.

【0016】[0016]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0017】実施例1〜3 被処理物として、直径1.2mm、長さ50mmの銅線
20本を1本の棒状に束ね、その周囲の2カ所に直径
0.3mmの銅線を巻き付けて全体を固定した模擬コイ
ルを用いた。この模擬コイルにおいては、その中心部に
ある銅線の内の1本を100mmの長さにして銅線束端
部から突出させて操作部材とした。一方、表1中のN
o.1に示した組成(重量部)の粉体塗料を、直径25
0mm、高さ100mmの円筒状容器に、高さ100m
mまで充填して、粉体塗料層を形成した。次に、前記銅
線束を熱風加熱炉で予熱して、その銅線束端部から突出
した銅線を耐熱手袋をした手に持ち、前記粉体塗料層中
に、銅線束の先端から銅線束の長さの1/3(先端から
17mm)までの部分を表2に示す一定時間浸漬した
後、直ちにその上下を反転させ、銅線束から突出した銅
線を支持台上の穴にたてて加熱炉に入れ、表2に示す硬
化温度で30分間加熱した。このようにして得た各塗装
コイルについて、その塗装付着量を測定するとともに、
その銅線相互の固着性及び硬化時における溶融塗料の垂
れ落ちを調べた。その結果、塗料は銅線の各銅線間に形
成される微細空隙間に浸透付着して、各銅線相互を強固
に固着させていることが確認された。また、硬化後に支
持体上に塗料溶融物の垂れ落ちがあるか否かを調べたと
ころ、溶融物の垂れ落ちのないことが確認された。
Examples 1 to 3 Twenty copper wires having a diameter of 1.2 mm and a length of 50 mm are bundled into one rod-shaped object to be treated, and a copper wire having a diameter of 0.3 mm is wound around two places around the copper wire. A simulated coil with the whole fixed was used. In this simulated coil, one of the copper wires at the center was made 100 mm in length and projected from the end of the copper wire bundle to be used as an operating member. On the other hand, N in Table 1
o. The powder coating composition (part by weight) shown in 1 was
100m height in a cylindrical container of 0mm and height 100mm
It filled up to m and formed the powder coating material layer. Next, preheat the copper wire bundle in a hot air heating furnace, hold the copper wire protruding from the end of the copper wire bundle in a hand with heat-resistant gloves, and in the powder coating layer, from the tip of the copper wire bundle to the copper wire bundle. After immersing the part up to ⅓ of the length (17 mm from the tip) for a certain period of time shown in Table 2, immediately turn it upside down and heat the copper wire protruding from the copper wire bundle by placing it in a hole on the support base. It was placed in a furnace and heated at the curing temperature shown in Table 2 for 30 minutes. For each coated coil obtained in this way, while measuring the coating adhesion amount,
The adhesion of the copper wires to each other and the dripping of the molten coating upon curing were examined. As a result, it was confirmed that the paint permeated and adhered to the fine voids formed between the copper wires of the copper wires to firmly fix the copper wires to each other. In addition, when it was examined whether or not the coating melt dripped on the support after curing, it was confirmed that the melt did not droop.

【0018】比較例1〜2 表1中のNO.2に示すエポキシ樹脂粉体塗料を用いた
以外は前記実施例1と同様にして実験を行ったところ、
銅線間の間隙への塗料の浸透付着が不十分で、粉体層へ
浸漬させた反対側まで樹脂がまわり込んでおらず、その
銅線束を強く手で圧縮すると、銅線の動きが認められ
た。
Comparative Examples 1 and 2 NO. An experiment was conducted in the same manner as in Example 1 except that the epoxy resin powder coating shown in 2 was used.
Inadequate penetration of the paint into the gap between the copper wires and the resin has not reached the opposite side of the powder layer, and when the copper wire bundle is strongly compressed by hand, movement of the copper wire is recognized. Was given.

【0019】なお、表1において符号で示した成分の内
容は次の通りである。 YX−4000:テトラメチルビフェノールジグリシジ
ルエーテル、エポキシ当量185、融点105℃、油化
シェルエポキシ社製 E−1004 :ビスフェノールAジグリシジルエーテ
ル、エポキシ当量950、軟化点98℃、油化シェルエ
ポキシ社製 B−4400 :2(2,5−ジオキソテトラヒドロフ
ロリル)−3−シクロヘキセン−1,2−ジカルボン酸
無水物、融点167℃、大日本インキ社製 OCN−120:o−クレゾールノボラック樹脂、軟化
点120℃、日本化薬社製 2MZ−P :2−メチルイミダゾール、四国化成工
業社製 P−200 :エポキシ樹脂とイミダゾールとの予備
反応物、油化シェルエポキシ社製
The contents of the components indicated by the symbols in Table 1 are as follows. YX-4000: Tetramethylbiphenol diglycidyl ether, epoxy equivalent 185, melting point 105 ° C, made by Yuka Shell Epoxy Co. E-1004: Bisphenol A diglycidyl ether, epoxy equivalent 950, softening point 98 ° C, made by Yuka Shell Epoxy Co. B-4400: 2 (2,5-dioxotetrahydrofloryl) -3-cyclohexene-1,2-dicarboxylic acid anhydride, melting point 167 ° C., OCN-120: o-cresol novolac resin manufactured by Dainippon Ink and Chemicals, softened Point 120 ° C., Nippon Kayaku Co., Ltd. 2MZ-P: 2-methylimidazole, Shikoku Chemicals P-200: Preliminary reaction product of epoxy resin and imidazole, Yuka Shell Epoxy Co., Ltd.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 *被処理物の予熱温度における粘度 コントラバス社製レオマット115/CP400システム、コー
ンNo.8にて測定した
[Table 2] * Viscosity of pre-treatment object at preheat temperature Measured with Contrabass Rheomat 115 / CP400 system, cone No.8

【0022】実施例4 被処理物として、直径2.3mm、長さ40mmのAI
W銅線6本を束ね、長さ80mmの2本の銅線をその束
ねたものの両端から中心に向けて1本づつ突き刺し、そ
の周囲に0.3mmの銅線を巻き付けて全体を固定した
模擬コイルを用いた。この銅線束を所定の温度に予熱
し、束の両端中心から突き出た銅線の一方を持ち、銅線
束の先端から銅線束の長さの1/4(先端から10m
m)までの部分を粉体層に浸漬した後、ただちにその上
下を反転させ、ダブルクリックで掴み、硬化炉にて硬化
させた。硬化中に模擬コイル上部に付着した粉体は溶融
し、銅線間の間隙を流下し、銅線束全体が硬化樹脂で覆
われ、樹脂の垂れは認められなかった。
Example 4 As an object to be treated, an AI having a diameter of 2.3 mm and a length of 40 mm was used.
A simulation in which six W copper wires are bundled, two copper wires having a length of 80 mm are pierced one by one from both ends of the bundle to the center, and a 0.3 mm copper wire is wound around the copper wire and the whole is fixed. A coil was used. This copper wire bundle is preheated to a predetermined temperature and has one of the copper wires projecting from the center of both ends of the bundle, and from the tip of the copper wire bundle to 1/4 of the length of the copper wire bundle (10 m from the tip
After the parts up to m) were immersed in the powder layer, they were immediately inverted upside down, grabbed by double-clicking, and cured in a curing furnace. During the curing, the powder adhered to the upper part of the simulated coil was melted and flowed through the gap between the copper wires, the entire copper wire bundle was covered with the cured resin, and no resin dripping was observed.

【0023】比較例3 実施例4において、表1のNo.2の粉体を使用した以
外は同様にして実験を行った結果、銅線束上部に付着し
た樹脂は溶融後銅線束を流下せず、銅線束上部に残った
ままであり、粉体層に含浸させなかった側の端部中心か
ら突き出ている80mmの銅線は容易に抜けてしまっ
た。以上に示した実施例4及び比較例3の結果を表3に
示す。
Comparative Example 3 In Example 4, No. 1 in Table 1 was used. As a result of performing the same experiment except that the powder of No. 2 was used, the resin adhering to the upper part of the copper wire bundle did not flow down the copper wire bundle after melting, but remained on the upper part of the copper wire bundle, and was impregnated into the powder layer. The 80 mm copper wire protruding from the center of the end portion on the non-existing side was easily removed. The results of Example 4 and Comparative Example 3 shown above are shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

フロントページの続き (72)発明者 北川 勝治 東京都中央区銀座四丁目11番2号 ソマー ル株式会社内Front Page Continuation (72) Inventor Katsuji Kitagawa 4-11-2 Ginza, Chuo-ku, Tokyo Somer Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶性熱硬化性樹脂を含む、溶融流動性
の高い樹脂粉体塗料を、予熱した被処理物の下部表面に
付着させた後、その被処理物を上下反転させ、この状態
で該粉体塗料をその硬化温度に加熱し、被処理物に付着
した樹脂粉体塗料を溶融状態で流下させながら、硬化反
応を行わせることを特徴とする粉体塗装方法。
1. A resin powder coating material containing a crystalline thermosetting resin and having a high melt fluidity is applied to the lower surface of a preheated object to be processed, and the object is then turned upside down. The powder coating method is characterized in that the powder coating material is heated to the curing temperature thereof, and the curing reaction is performed while the resin powder coating material adhering to the object to be processed is allowed to flow down in a molten state.
【請求項2】 該被処理物がコイルである請求項1の方
法。
2. The method according to claim 1, wherein the object to be processed is a coil.
【請求項3】 該粉体塗料の溶融時粘度が1000cp
以下である請求項1又は2の方法。
3. The melt viscosity of the powder coating material is 1000 cp.
The method of claim 1 or 2, wherein:
JP4129599A 1992-04-21 1992-04-21 Powder coating method Expired - Fee Related JP2544692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129599A JP2544692B2 (en) 1992-04-21 1992-04-21 Powder coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129599A JP2544692B2 (en) 1992-04-21 1992-04-21 Powder coating method

Publications (2)

Publication Number Publication Date
JPH0639344A true JPH0639344A (en) 1994-02-15
JP2544692B2 JP2544692B2 (en) 1996-10-16

Family

ID=15013441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129599A Expired - Fee Related JP2544692B2 (en) 1992-04-21 1992-04-21 Powder coating method

Country Status (1)

Country Link
JP (1) JP2544692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230183A (en) * 2004-11-09 2006-08-31 General Electric Co <Ge> Powder-coating film for coating stator bar end part fitting of generator, and method for coating the powder-coating film
DE112011101987T5 (en) 2010-06-14 2013-06-27 Chuo Hatsujo K.K. Powder coating process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373447A (en) * 1990-08-06 1991-03-28 Canon Inc Medium for magneto-optical memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373447A (en) * 1990-08-06 1991-03-28 Canon Inc Medium for magneto-optical memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230183A (en) * 2004-11-09 2006-08-31 General Electric Co <Ge> Powder-coating film for coating stator bar end part fitting of generator, and method for coating the powder-coating film
DE112011101987T5 (en) 2010-06-14 2013-06-27 Chuo Hatsujo K.K. Powder coating process

Also Published As

Publication number Publication date
JP2544692B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
TWI485177B (en) Epoxy resin hardener compositions and epoxy resin compositions containing such hardener compositions
US4568606A (en) Powder coatable epoxy/polyester composition and electrical conductors coated therewith
JPH04248876A (en) Epoxy resin composition for powdery coating
CN103649158A (en) Insulation formulations
JPH03244626A (en) Epoxy resin powder composition
TW200408684A (en) Epoxy resin powder coating material
US4528127A (en) Composition for coating a substrate with an epoxy resin powder coating and a method of making matt finishes with the composition
JP2544692B2 (en) Powder coating method
US4362263A (en) Solderable solventless UV curable enamel
JPS6055066A (en) Powdered epoxy resin paint
JPS60181122A (en) Powder suitable for applying electric insulating coating on electric wire
EP0072371B1 (en) A composition for coating a substrate with an epoxy resin powder coating and a method of making matt finishes with the composition
JPH09316171A (en) One-component epoxy resin composition
JP3233222B2 (en) Epoxy resin composition
JPH08104737A (en) Epoxy resin composition and prepreg prepared using the same
JP3635283B2 (en) How to apply powder paint
JPH01115925A (en) Modified acid anhydride and epoxy resin hardener composition
JP3845212B2 (en) Manufacturing method of prepreg
JP2001185435A (en) Manufacturing method of coil for electric apparatus processed by thermosetting resin
JP2568593B2 (en) Conductive resin composition
JPH09100425A (en) Powder paint for casting
Meath Epoxy resin adhesives
JP3312485B2 (en) Powder epoxy resin composition
JPH1060084A (en) Epoxy resin composition and coil insulated with the same
JPS63193969A (en) Epoxy resin powder coating suitable for coil fixation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees