JPH0638383A - Lighting/power generator with unbalance compensation - Google Patents

Lighting/power generator with unbalance compensation

Info

Publication number
JPH0638383A
JPH0638383A JP4185593A JP18559392A JPH0638383A JP H0638383 A JPH0638383 A JP H0638383A JP 4185593 A JP4185593 A JP 4185593A JP 18559392 A JP18559392 A JP 18559392A JP H0638383 A JPH0638383 A JP H0638383A
Authority
JP
Japan
Prior art keywords
phase
current
load
generator
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4185593A
Other languages
Japanese (ja)
Other versions
JP3189398B2 (en
Inventor
Keiichi Tanaka
敬一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP18559392A priority Critical patent/JP3189398B2/en
Publication of JPH0638383A publication Critical patent/JPH0638383A/en
Application granted granted Critical
Publication of JP3189398B2 publication Critical patent/JP3189398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent the occurrence of magnetic unbalance in a generator by balancing each phase current and each line voltage. CONSTITUTION:A single-phase three-wire load group LO and threephase three- wire load group UNL are connected to a delta-star connection generator GE. When the load group is unbalanced and an N-phase current flows to the load group LO, one U-, one V-, and two N-phase current transformers CT-U, CT-V, and CT-N1 and CT-N2 for detecting load current detect the load current and input the detected load current to a three-phase balancer PBA. The balancer PBA suppresses the occurrence of an impedance unbalance in the generator GE as much as possible by giving a compensation current to the generator GE in accordance with the inputted load current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は灯動共用三相4線出力
を得るために使用する、単相3線出力付△結線交流同期
発電機の不平衡負荷に対する許容値を増大するための不
平衡補償付灯動共用発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used to obtain a three-phase four-wire output commonly used for lighting and is designed to increase the allowable value for an unbalanced load of a Δ-connection AC synchronous generator with a single-phase three-wire output. The present invention relates to a shared light and power generator with compensation.

【0002】[0002]

【従来の技術】低圧配電線の配電方式と配電電圧には、
単相2線式100V,単相2線式200V,単相3線式
100/200V,単相3線式200V,三相4線式1
00/200V等があり、中でも灯動共用負荷に配電す
るための三相4線式が最も一般的である。この灯動共用
三相4線式低圧配電線は、柱上変圧器が異容量△結線又
は異容量V結線で構成されている。
2. Description of the Related Art The distribution system and distribution voltage of low-voltage distribution lines are
Single-phase 2-wire system 100V, Single-phase 2-wire system 200V, Single-phase 3-wire system 100 / 200V, Single-phase 3-wire system 200V, Three-phase 4-wire system 1
There are 00 / 200V, etc., and among them, the three-phase four-wire type for distributing power to a shared load for lighting is the most common. In this three-phase four-wire low-voltage distribution line for both lighting and poles, the pole transformer is configured with different capacity Δ connection or different capacity V connection.

【0003】図7は異容量V結線変圧器からなる三相4
線式低圧配電線と接続されている需要家群の様子を示す
ものである。図7の場合は、R−S相間の単相変圧器に
比し、S−T相間の単相容量を大きく(異容量)し、か
つ巻線の中間から中性線を引き出し、単相3線回路を構
成している。
FIG. 7 shows a three-phase four-phase transformer composed of different-capacity V-connection transformers.
It shows a state of a customer group connected to a wire type low voltage distribution line. In the case of FIG. 7, compared with a single-phase transformer between the R and S phases, the single phase capacity between the S and T phases is made large (different capacity), and the neutral wire is drawn from the middle of the winding, and the single phase 3 It constitutes a line circuit.

【0004】この三相4線式低圧配電線に接続される負
荷は、S−N−T相間の単相3線回路に単相100V又
は200V負荷(電灯負荷群)が集中し、R−S−T相
間の三相回路に三相200V負荷(動力負荷群)が混在
している。このような低圧配電方式は、一般には樹枝式
が多く、図7のような1バンクの柱上変圧器2次側をみ
ると、三相不平衡負荷(単相負荷+三相負荷群)であ
る。
The load connected to this three-phase four-wire low-voltage distribution line is a single-phase 100V or 200V load (light load group) concentrated in the single-phase three-wire circuit between the S-N-T phases, and the load R-S. Three-phase 200V loads (power load group) are mixed in the three-phase circuit between the −T phases. Such a low-voltage distribution system is generally a tree-branch type, and looking at the secondary side of a pole transformer of one bank as shown in Fig. 7, it can be seen that a three-phase unbalanced load (single-phase load + three-phase load group) is there.

【0005】ここで、例えば、図7の配電線路で柱上変
圧器の交換を始めるとすると低圧配電線路の改修時、一
時的に低圧配電線側を常用電源(高圧配電線)側から切
り離す必要が生じる。この場合、配電線路の工事中、該
当する低圧需要家の工事停電を防ぐため、一つの手段と
して原動機駆動の三相交流同期発電機からなる移動用発
電装置又は車両搭載の電源車等を用い、柱上変圧器2次
側を開放して一時的に該当する低圧需要家群に電源車等
から給電する場合がある。
Here, for example, if replacement of a pole transformer is started in the distribution line of FIG. 7, it is necessary to temporarily disconnect the low-voltage distribution line side from the regular power supply (high-voltage distribution line) side when repairing the low-voltage distribution line. Occurs. In this case, during the construction of the distribution line, in order to prevent construction blackouts for the corresponding low-voltage customers, as a means, use a mobile generator system consisting of a three-phase AC synchronous generator driven by a prime mover or a power supply vehicle mounted on a vehicle, There is a case where the secondary side of the pole transformer is opened to temporarily supply power to the corresponding low voltage customer group from a power supply vehicle or the like.

【0006】[0006]

【発明が解決しようとする課題】上述した移動用発電装
置又は電源車の従来例として図8に示すような、単相3
線出力付△結線交流同期発電機と三相平衡装置を組み合
わせたものがある。図8において、GEは△結線発電機
で、この発電機GEのU,V,W各相は灯動共用不平衡
負荷となる三相3線負荷群UNLに接続され、また、
U,V,N各相は単相3線負荷群LOに接続される。P
BAは三相平衡装置で、この装置PBAにはU,V,W
各相の線路に設けられた負荷電流検出用変流器CTー
U,CTーV,CTーWで検出された負荷電流が供給さ
れる。この負荷電流は検出器DT1,DT2,DT3で検
出されて三相平衡装置PBAに設けられるインバータI
NVに与えられる。インバータINVは負荷電流に応じ
て補償電流を発電機側に送る。
As a conventional example of the above-mentioned mobile generator or power supply vehicle, a single-phase three-phase generator as shown in FIG. 8 is used.
There is one that combines a three-phase balancing device with a line-connection AC synchronous generator with line output. In FIG. 8, GE is a Δ-connection generator, and U, V, and W phases of the generator GE are connected to a three-phase three-wire load group UNL that is an unbalanced load shared by lights, and
The U, V, and N phases are connected to a single-phase three-wire load group LO. P
BA is a three-phase equilibrium device, and this device PBA has U, V, W
The load currents detected by the load current detecting current transformers CTU, CT-V, and CT-W provided on the lines of each phase are supplied. This load current is detected by the detectors DT 1 , DT 2 and DT 3 and the inverter I provided in the three-phase balance device PBA is detected.
Given to NV. The inverter INV sends a compensation current to the generator side according to the load current.

【0007】上記のように構成された三相平衡装置PB
AはU,V,W各相の負荷電流を検出し、そのうちの逆
相電流分を発電機側(電源側)に補償電流として供給し
て電源側電流から逆相分電流を除去する。この場合、主
に正相分電流を供給することにより、不平衡負荷許容限
度の増大を図るようにしている。
Three-phase balance device PB constructed as described above
A detects the load currents of the U, V, and W phases, supplies the negative-phase current component of them to the generator side (power source side) as a compensation current, and removes the negative-phase component current from the power source side current. In this case, the positive phase current is mainly supplied to increase the unbalanced load allowable limit.

【0008】しかし、従来の三相平衡装置PBAの負荷
電流検出方法では、N相電流が流れた場合、△結線発電
機内部巻線各相に、同相分電流が流れる。その結果、発
電機各相電流による電機子反作用磁界は不平衡になり、
磁気的アンバランスは発電機内部インピーダンスの不平
衡を起こし、結果として発電機各相電圧の不平衡を生じ
る欠点があった。
However, in the conventional load current detecting method of the three-phase balancing device PBA, when an N-phase current flows, a current of the same phase flows in each phase of the Δ-connection generator internal winding. As a result, the armature reaction magnetic field due to each phase current of the generator becomes unbalanced,
The magnetic imbalance causes the imbalance of the internal impedance of the generator, resulting in the imbalance of the voltage of each phase of the generator.

【0009】この発明は上記の事情に鑑みてなされたも
ので、発電機に磁気的不平衡が生じないように、各相電
流及び各線間電圧の平衡化を図った不平衡補償付灯動共
用発電装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an unbalanced compensating lamp shared for balancing each phase current and each line voltage so as not to cause magnetic unbalance in the generator. An object is to provide a power generation device.

【0010】[0010]

【課題を解決するための手段】この発明は上記の目的を
達成するために、単相3線負荷群および三相3線負荷群
に電力を供給する△結線発電機と負荷電流を検出して発
電機に補償電流を供給する三相平衡装置とを設け、前記
△結線発電機から単相3線負荷群に電力を供給する線路
のU相,N相およびV相にそれぞれ負荷電流検出用変流
器を設け、N相には第1,第2の変流器を設けて、N相
の第1変流器とU相の変流器とを並列接続するとともに
N相の第2変流器とV相の変流器とを並列接続し、両並
列接続した変流器で検出した負荷電流を前記三相平衡装
置に供給したものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention detects a Δ-connection generator that supplies electric power to a single-phase three-wire load group and a three-phase three-wire load group and a load current. A three-phase balancing device for supplying a compensating current to the generator is provided, and a load current detection variable is provided for each of the U-phase, N-phase and V-phase of the line for supplying power from the Δ-connection generator to the single-phase three-wire load group. A current transformer is provided, first and second current transformers are provided for the N phase, and the N-phase first current transformer and the U-phase current transformer are connected in parallel and the N-phase second current transformer is provided. And a V-phase current transformer are connected in parallel, and the load current detected by the current transformer connected in parallel is supplied to the three-phase balancing device.

【0011】[0011]

【作用】三相3線負荷群が不平衡でN相電流が流れる
と、N相検出用変流器がこれを検出して三相平衡装置内
に供給する。すると、三相平衡装置からは逆相電流分を
補償するように動作する。また、N相電流が流れないと
きには通常の2つの変流器による三相電流検出手段と同
様に動作する。
When the three-phase three-wire load group is unbalanced and the N-phase current flows, the N-phase detecting current transformer detects it and supplies it to the three-phase balancing device. Then, the three-phase balance device operates so as to compensate the negative-phase current component. Further, when the N-phase current does not flow, it operates in the same manner as the normal three-phase current detecting means by two current transformers.

【0012】[0012]

【実施例】以下この発明の実施例を図面に基づいて説明
するに、図8と同一部分は同一符号を付して示す。図1
において、U相線路LuとV相線路Lvには負荷電流検出
用変流器CT−UとCT−Vがそれぞれ設けられる。N
相線路Lnには2個の変流器CT−N1,CT−N2が
設けられ、変流器CT−N1とCT−UおよびCT−N
2とCT−Vはそれぞれ並列接続されて、三相平衡装置
PBA内に設けられる負荷電流信号検出器DT1〜DT3
に接続される。特に、変流器CT−UとCT−N1は検
出器DT1とDT3に接続され、変流器CT−VとCT−
N2は検出器DT2とDT3に接続される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to the drawings. The same parts as those in FIG. 8 are designated by the same reference numerals. Figure 1
In, the U-phase line Lu and the V-phase line Lv are provided with load current detecting current transformers CT-U and CT-V, respectively. N
Two current transformers CT-N1 and CT-N2 are provided in the phase line L n , and the current transformers CT-N1 and CT-U and CT-N are provided.
2 and CT-V are respectively connected in parallel, and load current signal detectors DT 1 to DT 3 provided in the three-phase balancing device PBA.
Connected to. In particular, the current transformers CT-U and CT-N1 are connected to the detectors DT 1 and DT 3 , and the current transformers CT-V and CT-V are connected.
N2 is connected to detectors DT 2 and DT 3 .

【0013】次に上記実施例の動作について述べる。い
ま、単相3線負荷群LOが不平衡でN相電流が流れた場
合でも、発電機GEの各相電流による電機子反作用磁界
を三相平衡化し、発電機内部インピーダンスの不平衡を
極力抑制する手段について以下述べる。負荷電流検出用
変流器CT−U,CT−Vは図1の実施例において、単
相3線200V出力側のU,V相からU相,V相電流を
検出する。また、単相3線出力のN相(中性相)から変
流器CT−N1,CT−N2によりN相電流を検出す
る。ただし、変流器CT−N1,CT−N2の変流比
は、変流器CT−U,CT−Vに対し2倍とする。(す
なわち、同一線路電流に対して、N相検出電流はU又は
V相検出電流の1/2になるようにする。例えば簡単化
してCT−U,CT−Vの変流比を1:1〔A〕とすれ
ば、CT−N1,CT−N2の変流比は1:0.5
〔A〕となる。)変流器CT−U,CT−V,CT−N
1,CT−N2を図1に示すように接続することによ
り、次のような効果がある。
Next, the operation of the above embodiment will be described. Now, even when the single-phase three-wire load group LO is unbalanced and N-phase current flows, the armature reaction magnetic field due to each phase current of the generator GE is balanced in three phases, and the unbalance of the generator internal impedance is suppressed as much as possible. The means for doing so will be described below. The load current detecting current transformers CT-U and CT-V detect U-phase and V-phase currents from the U and V phases on the output side of the single-phase three-wire 200V in the embodiment of FIG. In addition, the N-phase current is detected from the N-phase (neutral phase) of the single-phase three-wire output by the current transformers CT-N1 and CT-N2. However, the current ratio of the current transformers CT-N1 and CT-N2 is twice that of the current transformers CT-U and CT-V. (That is, for the same line current, the N-phase detection current is set to 1/2 of the U- or V-phase detection current. For example, the current-changing ratio of CT-U and CT-V is 1: 1. If [A], the current ratio of CT-N1 and CT-N2 is 1: 0.5.
It becomes [A]. ) Current transformer CT-U, CT-V, CT-N
The following effects can be obtained by connecting 1, CT-N2 as shown in FIG.

【0014】(a)N相電流が流れないとき(単相3線負
荷群が中性相を基準に平衡化している。100V側負荷
が均等に振り分けされている場合)、N相電流は零のた
め、通常の2CTによる三相電流検出と全く同様の原理
で、三相平衡装置内の負荷電流信号検出器には、負荷側
U,V,W各相電流成分が検出できる。
(A) When the N-phase current does not flow (the single-phase three-wire load group is balanced based on the neutral phase. When the 100V side load is evenly distributed), the N-phase current is zero. Therefore, the load-side U, V, and W-phase current components can be detected by the load current signal detector in the three-phase balancing device based on the same principle as the normal two-CT three-phase current detection.

【0015】(b)N相電流が流れているとき(単相3線
負荷群の100V側負荷の振り分けが不均等の場合)、
次の図2に示す原理により、三相平衡装置内の負荷電流
検出用変流器には、N相電流成分の影響を受けないよう
になる。なお、図2では原理説明のため、単相3線出力
のうち片側100V回路側のみに、単位電流1Aが流れ
ている負荷があるものとした場合、図2に示した通り、
等価的にはU−V相を循環する電流と、N相電流がU−
V,V−N相の両100V回路側を循環する電流が合成
したものである。
(B) When N-phase current is flowing (when the distribution of loads on the 100V side of the single-phase three-wire load group is uneven)
Based on the principle shown in FIG. 2 below, the load current detecting current transformer in the three-phase balancing apparatus is not affected by the N-phase current component. Note that, in FIG. 2, for the purpose of explaining the principle, when it is assumed that the load in which the unit current 1A flows is present only on one side of the 100 V circuit side of the single-phase three-wire output, as shown in FIG.
Equivalently, the current circulating in the U-V phase and the N-phase current are U-
This is a combination of the currents that circulate on both the 100V circuit sides of the V and VN phases.

【0016】ここで重要なことは以下の通りである。
(イ)図1による負荷電流検出用変流器の接続はN相電流
が流れているときは、あたかも、負荷電流が図2Bと等
価な電流が流れたものとして検出する。(ロ)零相分を含
んだ図2Aから零相分を含まない図2Bを等価的に、三
相平衡装置の負荷電流検出用変流器で作っているので、
三相平衡装置は図2B中の逆相電流分を補償するように
動作する。(ハ)従って、△結線発電機から供給する電流
は、図2Bの正相電流分に、図2CのN相電流をU−
N,V−Nに振り分けた電流を重畳した電流が流れる。
(ニ)ここで、発電機巻線から見た図2CのN相電流の発
電機電機子△結線中の一巻線(U−V間)を中間点N点
振り分けで、同一電流が逆向き(180°位相差)で流
れるため、同一巻線の結合係数を1.0と仮定した場合
には、磁気的不平衡は互いにキャンセルするため、磁気
回路的に三相平衡化を疎外する要因にはなりにくくな
る。
The important points here are as follows.
(B) When the N-phase current is flowing, the connection of the load current detecting current transformer shown in FIG. 1 is detected as if the load current is equivalent to that shown in FIG. 2B. (B) Since FIG. 2A including the zero-phase component and FIG. 2B not including the zero-phase component are equivalently made by the current transformer for detecting the load current of the three-phase balance device,
The three-phase balancer operates to compensate the negative phase current component in FIG. 2B. (C) Therefore, the current supplied from the Δ-connection generator is equal to the positive phase current of FIG. 2B and the N phase current of FIG. 2C is U−.
A current in which the current distributed to N and VN is superimposed flows.
(D) Here, one winding (between U and V) in the generator armature Δ connection of the N-phase current of FIG. 2C viewed from the generator winding is distributed at the intermediate point N point, and the same current flows in the opposite direction. Since the current flows at (180 ° phase difference), assuming that the coupling coefficient of the same winding is 1.0, magnetic imbalances cancel each other out, and this is a factor for alienating three-phase balancing in terms of a magnetic circuit. It becomes difficult to become.

【0017】次に従来例とこの発明の装置を比較して見
る。比較を単純に判りやすくするため、従来例とこの発
明の装置とも負荷は単相100V(U−N相側)単位電
流(1.0A)負荷とし、負荷電流検出用変流器の変流
比は、CT−U,CT−V,CT−Wは1:1〔A〕、
CT−N1,CT−N2は1:0.5〔A〕とする。
Next, a comparison will be made between the conventional example and the device of the present invention. In order to make the comparison simple and easy to understand, the load is a single-phase 100 V (U-N phase side) unit current (1.0 A) load in both the conventional example and the device of the present invention, and the current transformer ratio of the current transformer for detecting the load current. Is 1: 1 [A] for CT-U, CT-V, and CT-W,
CT-N1 and CT-N2 are 1: 0.5 [A].

【0018】図3はこの発明装置のU相とN相間に1A
(アンペア)負荷を接続したときの回路図であり、電源
側各相電流は図4に示すようになり、また、電源側各相
電流の合成分展開のうち正相電流分は図5に示すように
なり、N相電流分流分は図6に示すようになる。
FIG. 3 shows 1A between the U phase and the N phase of the device of the present invention.
FIG. 6 is a circuit diagram when a (ampere) load is connected, in which the power source side phase currents are as shown in FIG. 4, and the positive phase current portion of the combined component expansion of the power source side phase currents is shown in FIG. Then, the N-phase current shunt becomes as shown in FIG.

【0019】図9は従来例のU相とN相間に1Aの負荷
を接続したときの回路図であり、電源側各相電流は図1
0に示すようになり、また、電源側各相電流の合成分展
開のうち正相電流分は図11に示すようになり、N相電
流分流分は図12に示すようになる。
FIG. 9 is a circuit diagram when a load of 1 A is connected between the U-phase and the N-phase of the conventional example, and the current of each phase on the power supply side is shown in FIG.
0, the positive phase current component of the combined component expansion of the power source side phase currents is as shown in FIG. 11, and the N phase current shunt component is as shown in FIG.

【0020】次表は従来例とこの発明装置における負荷
電流検出用変流器の2次電流CT、負荷電流信号検出器
電流DT、検出電流の対称分DTSおよび補償電流CM
Pを比較して示したものである。
The following table shows the secondary current CT of the current transformer for detecting the load current, the load current signal detector current DT, the symmetrical portion DTS of the detected current and the compensation current CM in the conventional example and the device of the present invention.
It is shown by comparing P.

【0021】[0021]

【表1】 [Table 1]

【0022】上記のように比較することにより、この発
明装置では発電機巻線(V−W)相、(W−U)相には
同相電流が重畳されないため、発電機の磁気的な不平衡
を生じる要因が除去できるのに対して、従来例では上記
相に同相電流が重畳されるため、発電機の磁気的不平衡
が生じる。
As a result of the above comparison, in the device of the present invention, since the in-phase current is not superimposed on the generator winding (VW) phase and the (WU) phase, the magnetic imbalance of the generator. However, in the conventional example, the in-phase current is superimposed on the above-mentioned phase, so that the magnetic imbalance of the generator occurs.

【0023】上述した実施例では△結線交流発電機、三
相平衡装置とも従来例のものが使用でき、また、次のよ
うな5種類の配線方式からなる負荷回路への給電が可能
となる。
In the above-described embodiment, the Δ connection AC generator and the three-phase balancing device of the conventional example can be used, and power can be supplied to the load circuit composed of the following five types of wiring systems.

【0024】 (イ)灯動共用三相4線200/100V回路 (ロ)三相3線200V回路 (ハ)単相3線200/100V回路 (ニ)単相2線200V回路 (ホ)単相2線100V回路 上記5配電方式に対して、移動電源車を使用すれば、発
電機だけでは許容し切れない範囲まで給電範囲が拡大さ
れるため、特に効果を発揮する。また、電圧が異なって
もこの発明の実施例は使用できる。
(A) Common three-phase four-wire 200 / 100V circuit for lighting (b) Three-phase three-wire 200V circuit (c) Single-phase three-wire 200 / 100V circuit (d) Single-phase two-wire 200V circuit (e) Single Phase 2 wire 100V circuit If the mobile power supply vehicle is used for the above-mentioned 5 power distribution system, the power supply range is expanded to a range that cannot be permitted by the generator alone, so that it is particularly effective. Also, the embodiments of the present invention can be used with different voltages.

【0025】[0025]

【発明の効果】以上述べたように、この発明によれば、
負荷電流検出用変流器の構成を従来のものに若干変更を
加えただけで、単相3線100V負荷不平衡負荷時の特
性改善(三相電圧平衡化)が図れる。また、不平衡負荷
時も電源として使用される発電機の磁気的不平衡が抑制
されれば、それだけ電圧波形歪も少なくなる利点があ
る。
As described above, according to the present invention,
The characteristics of the current transformer for detecting the load current can be improved (three-phase voltage balancing) when a single-phase three-wire 100V load unbalanced load is made by only slightly changing the configuration of the conventional current transformer. Further, if the magnetic imbalance of the generator used as the power supply is suppressed even when there is an unbalanced load, there is an advantage that the voltage waveform distortion is reduced accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す構成説明図。FIG. 1 is a structural explanatory view showing an embodiment of the present invention.

【図2】A,B,Cは実施例の動作を述べるための説明
図。
2A, 2B, and 2C are explanatory diagrams for describing the operation of the embodiment.

【図3】従来例と比較するための具体的従来例の説明
図。
FIG. 3 is an explanatory diagram of a specific conventional example for comparison with the conventional example.

【図4】図3における電源側各相電流の説明図。FIG. 4 is an explanatory diagram of each phase current on the power supply side in FIG.

【図5】図3における正相電流分の説明図。5 is an explanatory diagram of a positive-phase current component in FIG.

【図6】図3におけるN相電流分の説明図。FIG. 6 is an explanatory diagram of an N-phase current portion in FIG.

【図7】灯動共用三相4線低圧配電線の回路図。FIG. 7 is a circuit diagram of a common three-phase four-wire low-voltage distribution line for lighting.

【図8】従来例を示す構成説明図。FIG. 8 is a structural explanatory view showing a conventional example.

【図9】この発明の実施例と比較するための従来例の説
明図。
FIG. 9 is an explanatory diagram of a conventional example for comparison with the example of the present invention.

【図10】図9における電源側各相電流の説明図。FIG. 10 is an explanatory diagram of currents of respective phases on the power supply side in FIG. 9.

【図11】図9における正相電流分の説明図。FIG. 11 is an explanatory diagram of a positive-phase current component in FIG. 9.

【図12】図9におけるN相電流分流分の説明図。12 is an explanatory diagram of an N-phase current shunt in FIG.

【符号の説明】[Explanation of symbols]

GE…△結線発電機 LO…単相3線負荷群 UNL…三相3線負荷群 PBA…三相平衡装置 CT−U,CT−V,CT−N1,CT−N2…負荷電
流検出用変流器
GE ... △ Connection generator LO ... Single-phase three-wire load group UNL ... Three-phase three-wire load group PBA ... Three-phase balancing device CT-U, CT-V, CT-N1, CT-N2 ... Current transformation for load current detection vessel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単相3線負荷群および三相3線負荷群に
電力を供給する△結線発電機と負荷電流を検出して発電
機に補償電流を供給する三相平衡装置とを設け、 前記△結線発電機から単相3線負荷群に電力を供給する
線路のU相,N相およびV相にそれぞれ負荷電流検出用
変流器を設け、N相には第1,第2の変流器を設けて、
N相の第1変流器とU相の変流器とを並列接続するとと
もにN相の第2変流器とV相の変流器とを並列接続し、
両並列接続した変流器で検出した負荷電流を前記三相平
衡装置に供給したことを特徴とする不平衡補償付灯動共
用発電装置。
1. A Δ-connection generator that supplies electric power to a single-phase three-wire load group and a three-phase three-wire load group and a three-phase balance device that detects a load current and supplies a compensation current to the generator, A load current detecting current transformer is provided in each of the U-phase, N-phase and V-phase of the line that supplies electric power from the Δ-connection generator to the single-phase three-wire load group, and the N-phase has the first and second transformers. With a sink,
The N-phase first current transformer and the U-phase current transformer are connected in parallel, and the N-phase second current transformer and the V-phase current transformer are connected in parallel.
An unbalanced compensating lamp shared power generator, wherein a load current detected by current transformers connected in parallel is supplied to the three-phase balancer.
JP18559392A 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation Expired - Fee Related JP3189398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18559392A JP3189398B2 (en) 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18559392A JP3189398B2 (en) 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation

Publications (2)

Publication Number Publication Date
JPH0638383A true JPH0638383A (en) 1994-02-10
JP3189398B2 JP3189398B2 (en) 2001-07-16

Family

ID=16173520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18559392A Expired - Fee Related JP3189398B2 (en) 1992-07-14 1992-07-14 Lighting shared power generator with unbalance compensation

Country Status (1)

Country Link
JP (1) JP3189398B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271080A (en) * 2005-03-23 2006-10-05 Nec Corp Power supply system and input current balancing control method
KR100707419B1 (en) * 2004-12-03 2007-04-13 엘지전자 주식회사 Air Conditioner Enable of Preventing Phase Inequity and the Preventing Method for the Same
JP2009296845A (en) * 2008-06-09 2009-12-17 Chugoku Electric Power Co Inc:The Compensation method of unbalanced current in microgrid electric power system and controlling method using the same
CN102565518A (en) * 2010-12-16 2012-07-11 鸿富锦精密工业(深圳)有限公司 Current balance test system
JP2012231628A (en) * 2011-04-27 2012-11-22 Sanken Electric Co Ltd Voltage regulation device
CN103368442A (en) * 2013-07-16 2013-10-23 上海煦达新能源科技有限公司 Grid-connected inverter
JP2016171683A (en) * 2015-03-13 2016-09-23 シャープ株式会社 Power system and control method of power system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707419B1 (en) * 2004-12-03 2007-04-13 엘지전자 주식회사 Air Conditioner Enable of Preventing Phase Inequity and the Preventing Method for the Same
JP2006271080A (en) * 2005-03-23 2006-10-05 Nec Corp Power supply system and input current balancing control method
JP4687177B2 (en) * 2005-03-23 2011-05-25 日本電気株式会社 Power supply system and input current balancing control method
JP2009296845A (en) * 2008-06-09 2009-12-17 Chugoku Electric Power Co Inc:The Compensation method of unbalanced current in microgrid electric power system and controlling method using the same
CN102565518A (en) * 2010-12-16 2012-07-11 鸿富锦精密工业(深圳)有限公司 Current balance test system
JP2012231628A (en) * 2011-04-27 2012-11-22 Sanken Electric Co Ltd Voltage regulation device
CN103368442A (en) * 2013-07-16 2013-10-23 上海煦达新能源科技有限公司 Grid-connected inverter
JP2016171683A (en) * 2015-03-13 2016-09-23 シャープ株式会社 Power system and control method of power system

Also Published As

Publication number Publication date
JP3189398B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
Von Jouanne et al. Assessment of voltage unbalance
US9190846B2 (en) Power quality management system and methods of controlling phase unbalance
WO2010116806A1 (en) Power conversion device
US3683199A (en) Over-{11 and underexcitation protection circuit for alternating current power systems
JP3189398B2 (en) Lighting shared power generator with unbalance compensation
JPH09135570A (en) Multiple rectifier
JP4131861B2 (en) Unbalance compensation apparatus and method, power supply circuit
JP3130234B2 (en) Inverter device
JPH1132437A (en) Three-phase four-wire low voltage distribution system
JP2004180363A (en) Reversed phase voltage compensation system for power grid system
JP3104242B2 (en) Lighting shared power generator with unbalance compensation
JPH11187576A (en) Distributed power supply
JPH05207660A (en) Troubleshooting system for power supply
JP3293277B2 (en) Active filter device
JPH11122953A (en) Voltage-type inverter
JP3272350B2 (en) Distribution line phase detector
JP2000037078A (en) Multilevel power converter
JPH09285014A (en) Inverter device
JPH05111165A (en) Power converter for system interconnection
JP2003230284A (en) Inverter apparatus
JP3135600B2 (en) Unbalance compensator
JP2682241B2 (en) Power failure countermeasure device
JP2003092884A (en) Electric circuit
JPH06189457A (en) Method for efficient use of contract power
Kim Active zero-sequence cancellation technique in unbalanced commercial building power system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees