JPH0638057B2 - Optical device of heat ray detector - Google Patents

Optical device of heat ray detector

Info

Publication number
JPH0638057B2
JPH0638057B2 JP60239933A JP23993385A JPH0638057B2 JP H0638057 B2 JPH0638057 B2 JP H0638057B2 JP 60239933 A JP60239933 A JP 60239933A JP 23993385 A JP23993385 A JP 23993385A JP H0638057 B2 JPH0638057 B2 JP H0638057B2
Authority
JP
Japan
Prior art keywords
light
pyroelectric
receiving surface
detection area
heat ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60239933A
Other languages
Japanese (ja)
Other versions
JPS6298225A (en
Inventor
亮 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60239933A priority Critical patent/JPH0638057B2/en
Publication of JPS6298225A publication Critical patent/JPS6298225A/en
Publication of JPH0638057B2 publication Critical patent/JPH0638057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0814Particular reflectors, e.g. faceted or dichroic mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • G01J5/0025Living bodies

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は人体等から発生させる熱線を検知する熱線式検
知器の光学装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an optical device of a heat ray detector for detecting heat rays generated from a human body or the like.

[背景技術] 熱線式検知器は赤外線(近赤外線)検知器とは異なって受
動型の検知器であり、例えば遠距離警戒型の検知器を考
えた場合、赤外線検知器では対向式で投・受光器を両側
に配置することで実現できるが、熱線式検知器Aを利用
した場合、遠距離を警戒するためには第8図(a)に示す
ように検知エリアを絞らないと、同図(b)に示すように
遠距離で検知エリアが広がってしまうと人体Mが検知エ
リア内に入ってきても検知エリア全体で温度変化が平均
化され温度変化分が小さくなって温度変化を捕らえるこ
とが出来なくなるという問題がある。
[Background Art] Unlike infrared (near infrared) detectors, heat ray type detectors are passive type detectors. For example, in the case of a long-distance warning type detector, the infrared ray detector is an opposed type detector. This can be achieved by arranging the light receivers on both sides, but when using the heat ray detector A, in order to be careful of long distances, the detection area must be narrowed as shown in Fig. 8 (a). When the detection area spreads over a long distance as shown in (b), even if the human body M enters the detection area, the temperature change is averaged over the entire detection area and the temperature change amount becomes small and the temperature change can be captured. There is a problem that can not be done.

そこで一般的には放物面鏡或いはフレネルレンズ等を用
いて検知エリアを絞るための光学系が構成されるわけで
あるが、現実的には光学系の特性により遠距離部では多
少のぼけ部を含めて理論よりも大きめの検知エリアが出
来上がり、人体を充分に検知できるエリアを確保できる
のである。ところが熱線式検知器Aの近くのエリアでは
ぼけ部も小さく光学系(放物面鏡又はフレネルレンズ)の
開口面積の広さが検知エリアに等しい場合が多く、検知
エリアが極狭いものとなるという問題があった。また光
学系として分割数を第9図に示すように増すと、各検知
エリアBの開口面積がますます狭くなるという問題があ
る。
Therefore, in general, an optical system for narrowing the detection area is constructed by using a parabolic mirror or Fresnel lens, etc., but in reality, due to the characteristics of the optical system, some blurring may occur at long distances. Including the above, a detection area larger than the theory is created, and an area where the human body can be detected sufficiently can be secured. However, in the area near the heat ray detector A, the blur is small, and the opening area of the optical system (parabolic mirror or Fresnel lens) is often equal to the detection area, and the detection area is extremely narrow. There was a problem. Further, if the number of divisions is increased as shown in FIG. 9 as an optical system, there is a problem that the opening area of each detection area B becomes smaller and smaller.

ところで熱線式検知器Aの検知素子としては焦電型熱線
検知素子が利用される場合が多く、特に人体検知用とし
ては同時入力に対して検知信号を出力しない(素子に高
周波が乗って来り、急激な温度変化が起こったり、或い
は外乱光が入っても信号出力を出さない)2エレメント
タイプ(又は4エレメントタイプ)のものの使用が一般的
である。
By the way, a pyroelectric type heat ray detecting element is often used as the detecting element of the heat ray type detector A, and particularly for detecting a human body, a detection signal is not output for simultaneous input (a high frequency wave enters the element. It is common to use a 2-element type (or 4-element type) that does not output a signal even when a sudden temperature change occurs or ambient light enters.

ここで2エレメントタイプの焦電型熱線検知素子は第1
0図に示すようにエレメントa,bを並置し且つ第11図
に示すように極性を逆に接続しており同時入力に対して
エレメントa,b相互の出力で素子としての出力が相殺さ
れようになっている。そしてこれらのエレメントa,bの
検知エリアがずれているため第10図に示すように人体
Mが矢印方向に移動すると夫々のエレメントa,bの出力
は第12図(a)のイ、ロで示すような波形となる。そし
てこの両エレメントa,bの合成出力は第12図(b)に示す
ような波形となる。
Here, the two-element type pyroelectric heat ray detecting element is the first
As shown in FIG. 0, the elements a and b are juxtaposed and the polarities are connected in reverse as shown in FIG. 11, so that the outputs of the elements a and b will cancel out the output of the element with respect to the simultaneous input. It has become. Since the detection areas of these elements a and b are displaced, when the human body M moves in the direction of the arrow as shown in FIG. 10, the outputs of the respective elements a and b are shown in a and b of FIG. 12 (a). The waveform is as shown. The combined output of both elements a and b has a waveform as shown in FIG. 12 (b).

この波形から分かるようにエレメントa,bの検知時間の
ずれtが小さくなってくると、キャンセル成分が大きく
なって、出力信号が小さくなる。そしてt=0の時は同
時入力となるわけである。従って上述したように検知器
Aの近傍では検知エリアが狭く、そこを人体Mが通過し
た時(特に早足で通過した時)は殆ど同時入力状態となっ
て熱線検知素子から検知出力が得られず、検知できなく
なることが分かる。
As can be seen from this waveform, when the deviation t between the detection times of the elements a and b becomes smaller, the cancel component becomes larger and the output signal becomes smaller. Then, when t = 0, simultaneous input is performed. Therefore, as described above, the detection area is small in the vicinity of the detector A, and when the human body M passes through the area (especially when the person walks fast), the heat ray detection element cannot obtain the detection output because the heat ray detection elements are almost in the simultaneous input state. It turns out that it can no longer be detected.

そして現在、一般に市販されている熱線式検知器Aは近
距離での人体Mの早足通過に対しては何等対策がなされ
ておらず、そのため不感帯を持つこととなり、防犯用に
使用した場合、信頼性の低いものとなっている。そして
熱線式検知器Aの近傍で検知エリアが狭いのは遠距離タ
イプだけでなく近距離タイプ(広角型、全周型)でも同様
であり、1分割のみの検知器においては致命的な欠陥と
なりうるものである。
At present, the commercially available heat ray detector A does not take any measures against the rapid walking of the human body M at a short distance, and therefore has a dead zone, which is reliable when used for crime prevention. It has low sex. The narrow detection area near the heat ray detector A is not only for the long-distance type but also for the short-distance type (wide-angle type, all-round type), which is a fatal defect in the detector with only one division. It is profitable.

[発明の目的] 本発明は上述の問題点に鑑みて為されたものでその目的
とするところは検知エリア内の検知器近傍での検知感度
を充分に確保できる熱線式検知器の光学装置を提供する
にある。
[Object of the Invention] The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical device of a heat ray type detector capable of sufficiently securing detection sensitivity in the vicinity of the detector in a detection area. To provide.

[発明の開示] 本発明を以下実施例により説明する。DISCLOSURE OF THE INVENTION The present invention will be described below with reference to Examples.

実施例1 本実施例は第1発明に対応し、第1図に示すようにフレ
ネルレンズ又は凸レンズからなる集光手段1a,1bを
同心円状に配設し、第2図に示すように中心部の小径の
集光手段1aとして焦点が例えば2エレメントタイプの
焦電型熱線検知素子2の受光面より手前側に位置するも
のを使用して受光面にぼけた形で像を結ばせ、外周の集
光手段1bの焦点を上記受光面としたものである。
Embodiment 1 This embodiment corresponds to the first invention, and concentrating means 1a and 1b composed of Fresnel lenses or convex lenses are concentrically arranged as shown in FIG. 1, and a central portion as shown in FIG. A small-diameter light condensing means 1a having a focal point located in front of the light receiving surface of the pyroelectric heat ray detecting element 2 of the two-element type is used to form an image in a blurred form on the light receiving surface, and The focus of the light collecting means 1b is the light receiving surface.

而して集光手段1aによる受光面での結像はぼけた形と
なり検知器近傍の検知エリアをXのように広げ、各エレ
メントの検知時間のずれを大きくすることができること
になり、検知エリアXを人体Mが早足で通過しても、同
時入力とはならず検知出力が得られることになる。
Thus, the image formation on the light receiving surface by the light collecting means 1a becomes a blurred shape, and the detection area in the vicinity of the detector can be widened like X to increase the detection time deviation of each element. Even if the human body M passes through X at a rapid pace, simultaneous detection is not input and detection output is obtained.

実施例2 本実施例は第2発明に対応するもので、第3図に示すよ
うに焦点距離の異なるレンズからなる2つの集光手段1
a,1bを同軸で前後に配置して夫々の焦点が丁度例え
ば2エレメントタイプの焦電型熱線検知素子2の受光面
に位置するように配置し、焦点距離の短い集光手段1a
により検知器近傍の検知エリアをXのように広げ、実施
例1と同様な作用効果を得るようにしたものである。
Embodiment 2 This embodiment corresponds to the second invention, and as shown in FIG. 3, two condensing means 1 composed of lenses having different focal lengths.
a and 1b are coaxially arranged in the front and rear so that their respective focal points are exactly located on the light receiving surface of the pyroelectric heat ray detecting element 2 of the two-element type, and the focusing means 1a having a short focal length.
Thus, the detection area in the vicinity of the detector is widened like X so as to obtain the same effect as that of the first embodiment.

実施例3 本実施例は第4図に示すように検知エリアを遠距離エリ
アX、中距離エリアX、近距離エリアXに分割し
た第3発明に対応するもので、第5図に示すように遠距
離エリアX、中距離エリアXに夫々対応するフレネ
ルレンズや凸レンズからなる集光手段1b,1cの焦点
が丁度例えば2エレメントタイプの焦電型熱線検知素子
2の受光面に位置するように焦点距離を設定し、近距離
エリアXに対応するフレネルレンズや凸レンズからな
る集光手段1aの焦点が焦電型熱線検知素子2の受光面
より後方にずれるように焦点距離を設定し、近距離エリ
アXが広がるようにしてある。
Embodiment 3 This embodiment corresponds to the third invention in which the detection area is divided into a long distance area X 1 , a middle distance area X 2 and a short distance area X 3 as shown in FIG. 4, and is shown in FIG. As shown, the focal points of the light collecting means 1b and 1c, which are Fresnel lenses and convex lenses respectively corresponding to the long-distance area X 1 and the medium-distance area X 2 , are exactly on the light-receiving surface of the two-element type pyroelectric heat ray detecting element 2, for example. The focal length is set so that it is positioned, and the focal length of the focusing means 1a including a Fresnel lens or a convex lens corresponding to the short-distance area X 3 is shifted rearward from the light receiving surface of the pyroelectric heat ray detecting element 2. It is set so that the short-distance area X 3 is expanded.

従って集光手段1aによる受光面での結像はぼけた形と
なり近距離エリアXを人体Mが早足で通過しても、同
時入力とはならず検知出力が得られることになる。
Therefore, even if the human body M passes through the short-distance area X 3 with a fast foot, the detection output is obtained without simultaneous input even if the image formation on the light-receiving surface by the light collecting means 1a becomes blurred.

実施例4 本実施例は第6図に示すようにフレネルレンズからなる
集光手段1を複数全周に張り合わせて、夫々の集光手段
1により検知エリアを分割したもので、器体4内部には
第7図に示すように反射鏡3a,3bを設け、遠距離エ
リアXに対応する集光手段1bによって集光された熱
線を反射させて器体4の天井面に設けた焦電型熱線検知
素子2の受光面に像を結ばせるようになっており、焦点
が丁度受光面になるように集光手段1bの焦点距離を設
定している。そして反射鏡3a,3bによる反射利用す
ることにより集光手段1bの焦点距離を長くすることが
可能となって検知エリアを絞ることにより遠くまで検知
エリアを延びるようにしたものである。一方近距離エリ
アXに対応する集光手段1aで集光された熱線は器体
4内部の反射鏡3a,3bでは反射されず、直接焦電型
熱線検知素子2の受光面に像を結ばせるようになってお
り、反射による減衰を無くし感度を上げるようにしてい
る。そして集光手段1aの焦点を集電型熱線検知素子2
の受光面より外して、近距離エリアXの拡大を図り、
実施例3と同様な作用効果を得ている。
Embodiment 4 In this embodiment, as shown in FIG. 6, a plurality of light collecting means 1 made of Fresnel lenses are attached to the entire circumference, and the detection areas are divided by the respective light collecting means 1. As shown in FIG. 7, the reflecting mirrors 3a and 3b are provided, and the heat rays condensed by the condensing means 1b corresponding to the long-distance area X 1 are reflected to provide the pyroelectric type provided on the ceiling surface of the body 4. An image is formed on the light receiving surface of the heat ray detecting element 2, and the focal length of the light collecting means 1b is set so that the focus is exactly on the light receiving surface. By utilizing the reflection by the reflecting mirrors 3a and 3b, the focal length of the light collecting means 1b can be lengthened and the detection area is narrowed to extend the detection area to a long distance. Meanwhile heat rays condensed by the condensing unit 1a corresponding to the short-distance area X 3 is not reflected in the device body 4 inside the reflector 3a, 3b, tied an image on the light receiving surface of the direct pyroelectric heat ray sensing element 2 The sensitivity is increased by eliminating the attenuation caused by reflection. Then, the focus of the light collecting means 1a is focused on the current collecting type heat ray detecting element 2
Remove from the light-receiving surface of and expand the short-distance area X 3 .
The same effect as that of the third embodiment is obtained.

[発明の効果] 第1発明は、焦電型熱検知素子の受光面に焦点が位置す
るように配置した第1の集光手段と、この第1の集光手
段より長い焦点距離を持ち且つ第1の集光手段よりも大
きな径を持ち、焦電型熱検知素子の受光面に焦点が位置
するように第1の集光手段の前方に第1の集光手段と同
心で同一光軸上に配置した第2の集光手段とからなり、
第1の集光手段の検知エリアの位置を第2の集光手段の
検知エリアの位置よりも近距離とし、また第2発明は、
焦電型熱検知素子の受光面に焦点が位置するように配置
した第1の集光手段と、この第1の集光手段より長い焦
点距離を持ち且つ第1の集光手段よりも大きな径を持
ち、焦電型熱検知素子の受光面に焦点が位置するように
第1の集光手段の前方に第1の集光手段と同心で同一光
軸上に配置した第2の集光手段とからなり、第1の集光
手段の検知エリアの位置を第2の集光手段の検知エリア
の位置よりも近距離とし、更に第3発明は、検知エリア
が広がるように焦点が焦電型熱検知素子の受光面よりず
れて配置される第1の集光手段と、焦点が焦電型熱検知
素子の受光面の位置に焦点が位置し、第1の集光手段と
同一光軸に存在しないように配置した第2の集光手段と
からなり、これら集光手段の検知エリアの方向を異なら
せ、第1の集光手段の検知エリアの位置を第2の集光手
段の検知エリアの位置よりも近距離としたので、同一検
知エリア型、或いは分割エリカ型の熱線式検知器におい
て近距離のエリアを拡大することができて焦電型熱線検
知素子に対する同時入力を防止でき、その結果検知器近
傍を人体が早足で通過しても確実に温度変化を検知する
ことができて、所謂不感帯を無くすことが可能となり、
防犯用として用いても高い信頼性を得ることができると
いう効果を奏する。
[Advantages of the Invention] The first invention has a first condensing means arranged such that the focal point is located on the light receiving surface of the pyroelectric heat sensing element, and a focal length longer than that of the first condensing means. It has a diameter larger than that of the first light collecting means, and is concentric with the first light collecting means and has the same optical axis in front of the first light collecting means so that the focal point is located on the light receiving surface of the pyroelectric heat detecting element. It consists of the second condensing means arranged above,
The position of the detection area of the first light-collecting unit is set to be closer than the position of the detection area of the second light-collecting unit, and the second invention is
A first condensing means arranged such that the focal point is located on the light receiving surface of the pyroelectric heat detecting element; and a diameter having a longer focal length than the first condensing means and larger than the first condensing means. And a second condensing means arranged concentrically with the first condensing means and on the same optical axis in front of the first condensing means so that the focal point is located on the light receiving surface of the pyroelectric heat detecting element. The position of the detection area of the first light converging means is closer than the position of the detection area of the second light condensing means, and the third invention is that the focus is a pyroelectric type so that the detection area expands. A first light converging unit, which is arranged at a position deviated from the light receiving surface of the heat detecting element, and a focus is located at a position of the light receiving surface of the pyroelectric heat detecting element, and is located on the same optical axis as the first light converging unit. The second light condensing means arranged so as not to exist, and the direction of the detection area of these light condensing means is made different, and the first light condensing means Since the position of the detection area is set to be closer than the position of the detection area of the second light converging means, it is possible to expand the short-distance area in the same detection area type or split Erica type heat ray detector. Simultaneous input to the pyroelectric heat ray detection element can be prevented, and as a result, it is possible to reliably detect the temperature change even if the human body passes through the vicinity of the detector with rapid walking, and it is possible to eliminate the so-called dead zone.
Even if it is used for crime prevention, it is possible to obtain high reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図は第1発明に対応する実施例1の光学系の正面
図、第2図は同上の動作説明用概略構成図、第3図は第
2発明に対応する実施例の動作説明用概略構成図、第4
図は第3発明に対応する実施例3の側面図、第5図は同
上の動作説明用概略構成図、第6図は第2発明に対応す
る実施例4の正面図、第7図は同上の要部断面図、第8
図、第9図は従来例の説明図、第10図、第11図、第
12図は2エレメントタイプの焦電型熱線検知素子の動
作説明図であり、1a,1b…は集光手段、2は焦電型
熱線検知素子である。
FIG. 1 is a front view of an optical system of Example 1 corresponding to the first invention, FIG. 2 is a schematic configuration diagram for explaining the operation of the same as above, and FIG. 3 is a schematic diagram for explaining the operation of the embodiment corresponding to the second invention. Block diagram, 4th
FIG. 6 is a side view of a third embodiment corresponding to the third invention, FIG. 5 is a schematic configuration diagram for explaining the operation of the same as above, FIG. 6 is a front view of a fourth embodiment corresponding to the second invention, and FIG. Sectional view of an essential part of No. 8
FIGS. 9 and 10 are explanatory views of a conventional example, FIGS. 10, 11 and 12 are operation explanatory views of a two-element type pyroelectric heat ray detecting element, and 1a, 1b ... Reference numeral 2 is a pyroelectric heat ray detecting element.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数のエレメントを有する焦電型熱検知素
子を用いた熱線式検知器において、焦電型熱検知素子の
受光面の前方位置に焦点が位置するように配置した第1
の集光手段と、この第1の集光手段の外周に形成され、
焦電型熱検知素子の受光面からの位置が第1の集光手段
と同位置で且つ同心で同一光軸上にあり、焦点位置が焦
電型熱検知素子の受光面に位置する第2の集光手段とか
らなり、第1の集光手段の検知エリアの位置を第2の集
光手段の検知エリアの位置よりも近距離としたことを特
徴とする熱線式検知器の光学装置。
1. A heat ray detector using a pyroelectric type heat detecting element having a plurality of elements, wherein a focus is located in front of a light receiving surface of the pyroelectric type heat detecting element.
Is formed on the outer periphery of the first light collecting means and the first light collecting means,
A position from the light receiving surface of the pyroelectric thermal detection element is at the same position as the first light converging means and concentrically on the same optical axis, and a focal position is located at the light receiving surface of the pyroelectric thermal detection element. The optical device of the heat ray detector, characterized in that the position of the detection area of the first light converging means is closer than the position of the detection area of the second light converging means.
【請求項2】複数のエレメントを有する焦電型熱検知素
子を用いた熱線式検知器において、焦電型熱検知素子の
受光面に焦点が位置するように配置した第1の集光手段
と、この第1の集光手段より長い焦点距離を持ち且つ第
1の集光手段よりも大きな径を持ち、焦電型熱検知素子
の受光面に焦点が位置するように第1の集光手段の前方
に第1の集光手段と同心で同一光軸上に配置した第2の
集光手段とからなり、第1の集光手段の検知エリアの位
置を第2の集光手段の検知エリアの位置よりも近距離と
したことを特徴とする熱線式検知器の光学装置。
2. A heat ray detector using a pyroelectric type heat detecting element having a plurality of elements, comprising a first light collecting means arranged so that a focal point is located on a light receiving surface of the pyroelectric type heat detecting element. The first light collecting means has a longer focal length than the first light collecting means and a larger diameter than the first light collecting means, and the focus is located on the light receiving surface of the pyroelectric thermal detection element. Of the first condensing means and a second condensing means arranged concentrically on the same optical axis, the position of the detection area of the first condensing means being the detection area of the second condensing means. An optical device for a heat ray detector characterized in that the distance is closer than the position.
【請求項3】複数のエレメントを有する焦電型熱検知素
子を用いた熱線式検知器において、検知エリアが広がる
ように焦点が焦電型熱検知素子の受光面よりずれて配置
される第1の集光手段と、焦点が焦電型熱検知素子の受
光面の位置に焦点が位置し、第1の集光手段と同一光軸
に存在しないように配置した第2の集光手段とからな
り、これら集光手段の検知エリアの方向を異ならせ、第
1の集光手段の検知エリアの位置を第2の集光手段の検
知エリアの位置よりも近距離としたことを特徴とする熱
線式検知器の光学装置。
3. A heat ray detector using a pyroelectric heat detecting element having a plurality of elements, wherein a focal point is displaced from a light receiving surface of the pyroelectric heat detecting element so as to widen a detection area. And the second condensing means which is arranged such that the focal point is located at the position of the light receiving surface of the pyroelectric heat detection element and is not located on the same optical axis as the first condensing means. The heat ray is characterized in that the directions of the detection areas of these light collecting means are made different so that the position of the detection area of the first light collecting means is made closer than the position of the detection area of the second light collecting means. Detector optical system.
JP60239933A 1985-10-25 1985-10-25 Optical device of heat ray detector Expired - Lifetime JPH0638057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60239933A JPH0638057B2 (en) 1985-10-25 1985-10-25 Optical device of heat ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60239933A JPH0638057B2 (en) 1985-10-25 1985-10-25 Optical device of heat ray detector

Publications (2)

Publication Number Publication Date
JPS6298225A JPS6298225A (en) 1987-05-07
JPH0638057B2 true JPH0638057B2 (en) 1994-05-18

Family

ID=17051988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60239933A Expired - Lifetime JPH0638057B2 (en) 1985-10-25 1985-10-25 Optical device of heat ray detector

Country Status (1)

Country Link
JP (1) JPH0638057B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2595281B2 (en) * 1988-01-26 1997-04-02 松下電工株式会社 Human body detection switch
JPH0312140U (en) * 1989-06-21 1991-02-07
JPH0312139U (en) * 1989-06-21 1991-02-07
JPH0312138U (en) * 1989-06-21 1991-02-07
JP2555447B2 (en) * 1989-07-15 1996-11-20 松下電工株式会社 Human body detector
JPH07159235A (en) * 1993-01-29 1995-06-23 Nippon Ceramic Co Ltd Infrared human body detector having wide angle of visibility

Also Published As

Publication number Publication date
JPS6298225A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
US5442178A (en) Cross-over field-of-view composite Fresnel lens for an infrared detection system
US4523095A (en) Radiation detector with asymmetrical pattern
US4238675A (en) Optics for infrared intrusion detector
US5818337A (en) Masked passive infrared intrusion detection device and method of operation therefore
US4317992A (en) Object detecting apparatus
JPH0638057B2 (en) Optical device of heat ray detector
US4617463A (en) Segmented optical system for an alarm system
US6528788B1 (en) Detection of position and motion of sub-pixel images
JP3303707B2 (en) Hot wire detector
JP3114117U (en) Reflector
JPH03199929A (en) Optical sensor
JPH0766049B2 (en) Aircraft optical system device
JPH0547053B2 (en)
JPH076549Y2 (en) Infrared sensor
JPH04181126A (en) Sensor for invasion of infrared rays
JPH1068806A (en) Converging mirror and detection device using it
JPS60200132A (en) Detecting device of infrared rays
KR100554618B1 (en) Passive infrared sensor detector
JPS63158429A (en) Optical structure of heat ray detector
JPH0425655B2 (en)
JPH06201996A (en) Wide angle condensing lens
JPH05127085A (en) Reflection optical system
JP2870752B2 (en) Hot wire detector
JPH03199930A (en) Optical sensor
JPH0525032Y2 (en)