JPH0637060B2 - Tube made of tetrafluoroethylene copolymer resin and method for producing the same - Google Patents

Tube made of tetrafluoroethylene copolymer resin and method for producing the same

Info

Publication number
JPH0637060B2
JPH0637060B2 JP1181580A JP18158089A JPH0637060B2 JP H0637060 B2 JPH0637060 B2 JP H0637060B2 JP 1181580 A JP1181580 A JP 1181580A JP 18158089 A JP18158089 A JP 18158089A JP H0637060 B2 JPH0637060 B2 JP H0637060B2
Authority
JP
Japan
Prior art keywords
tube
peripheral surface
copolymer resin
inner peripheral
tetrafluoroethylene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1181580A
Other languages
Japanese (ja)
Other versions
JPH0343215A (en
Inventor
洋一 小野
慶一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP1181580A priority Critical patent/JPH0637060B2/en
Publication of JPH0343215A publication Critical patent/JPH0343215A/en
Publication of JPH0637060B2 publication Critical patent/JPH0637060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/903Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/916Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、例えば、次世代半導体製造に用いられる薬
液や純水、医薬品、食品、バイオケミカル、化学薬品等
の極めて高いクリーン度を要求される流体の輸送に適用
される四弗化エチレン共重合樹脂製チューブ及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention requires an extremely high degree of cleanliness of chemicals, pure water, pharmaceuticals, foods, biochemicals, chemicals, etc. used in the production of next-generation semiconductors. TECHNICAL FIELD The present invention relates to a tetrafluoroethylene copolymer resin tube and a method for producing the same, which are applied to the transportation of fluids.

(ロ)従来の技術 従来、上述の樹脂製チューブの製造方法としては、例え
ば、ペレット状の樹脂原料を押出し機の加熱シリンダに
投入して混練し、溶融状態になった樹脂を押出し機のノ
ズルから押出し、この押出される半溶融状態のチューブ
を、サイジング装置を通って冷却水を入れた冷却装置に
より外周面から冷却してチューブを製造する方法があ
る。
(B) Conventional technology Conventionally, as a method for manufacturing the above-mentioned resin tube, for example, a pellet-shaped resin raw material is put into a heating cylinder of an extruder and kneaded, and a resin in a molten state is discharged into a nozzle of the extruder. There is a method for producing a tube by extruding from the outer peripheral surface of the extruded tube and cooling the extruded tube in a semi-molten state through a sizing device with a cooling device containing cooling water.

このような製法で得られたチューブの内周面の表面粗さ
は数ミクロン以上の粗さを有していた。
The surface roughness of the inner peripheral surface of the tube obtained by such a manufacturing method had a roughness of several microns or more.

(ハ)発明が解決しようとする問題点 しかし、上述の半溶融状態のチューブを外周面側から水
冷却装置するので、押出し機の押出し条件や加熱温度、
冷却温度や冷却水の供給量、引張り速度、引落し率等を
微調整しても、得られたチューブの内周面の表面粗さは
2.5μmRmax〜3.5μmRmaxに成形され、表面粗さ
を1μm以下に成形仕上げることが困難であり、かつ、
チューブの外周面側よりも内周面側の冷える速度が遅
く、チューブの内周面が結晶化する際に表面に無数の凹
凸が発生し、時にはボイドが発生するという問題点を有
している。これは、フッソ樹脂が溶融状態から冷却され
て固化する時に、フッソ樹脂が再結晶することにより、
その微細結晶が凹凸を生じさせるためである。
(C) Problems to be solved by the invention However, since the above-mentioned semi-molten tube is water-cooled from the outer peripheral surface side, the extrusion conditions and heating temperature of the extruder,
Even if the cooling temperature, the supply amount of cooling water, the pulling speed, the drop rate, etc. are finely adjusted, the surface roughness of the inner peripheral surface of the obtained tube is molded to 2.5 μm Rmax to 3.5 μm Rmax, and the surface roughness is Is difficult to mold and finish to less than 1 μm, and
There is a problem that the cooling rate of the inner peripheral surface side is slower than that of the outer peripheral surface side of the tube, and countless irregularities occur on the surface when the inner peripheral surface of the tube is crystallized, and sometimes voids occur. . This is because when the fluorine resin is cooled from the molten state and solidifies, the fluorine resin recrystallizes,
This is because the fine crystals cause unevenness.

また、多数発生した数μmの無数の凹凸によって、チュ
ーブの内周面に沿って流動する流体には乱流が生じ、こ
の時に付与される輸送抵抗により流体の円滑な輸送が妨
げられたり、或いは、流速が遅い時には、表面凹凸部に
流れの生じない所が発生し、該部分が長く停滞すること
により、超純水の場合には該部分にバクテリア等が発生
して、流体のクリーン度が損なわれるという深刻な問題
点も有していた。
In addition, due to the innumerable irregularities of several μm generated in large numbers, a turbulent flow is generated in the fluid flowing along the inner peripheral surface of the tube, and the transport resistance imparted at this time hinders smooth transport of the fluid, or However, when the flow velocity is low, there is a place where no flow occurs on the uneven surface of the surface, and the part remains stagnation for a long time. It also had a serious problem of being damaged.

この発明の請求項1記載の発明(第1発明)は、マイナ
ス30℃以下の急速冷却によりチューブの結晶化が抑制
され、アモルファス状態のチューブ内周面を有し、その
最大粗さが1μmRmax以下の四弗化エチレン共重合樹脂
製チューブの提供を目的とする。
The invention (first invention) according to claim 1 of the present invention has a tube inner peripheral surface in an amorphous state in which crystallization of the tube is suppressed by rapid cooling of -30 ° C or less, and the maximum roughness is 1 µmRmax or less. The present invention aims to provide a tube made of the tetrafluoroethylene copolymer resin.

この発明の請求項2記載の発明(第2発明)は、半溶融
状態に加熱処理された四弗化エチレン共重合樹脂製のチ
ューブ内周面を冷媒によりマイナス30℃以下に急速冷
却すると共に、上記チューブ外周面を冷却液にて冷却す
ることで、アモルファス状態のチューブ内周面を有し、
チューブの内周面に発生する表面凹凸を減少し、平滑で
良好な表面粗さに形成することができる四弗化エチレン
共重合樹脂製チューブの製造方法の提供を目的とする。
The invention according to claim 2 of the present invention (the second invention) rapidly cools the inner peripheral surface of a tube made of a tetrafluoroethylene copolymer resin heat-treated in a semi-molten state to -30 ° C or less with a refrigerant, By cooling the tube outer peripheral surface with a cooling liquid, the tube inner peripheral surface in an amorphous state,
An object of the present invention is to provide a method for producing a tetrafluoroethylene copolymer resin tube capable of reducing surface irregularities generated on the inner peripheral surface of the tube and forming a smooth and good surface roughness.

(ニ)問題点を解決するための手段 この発明の請求項1記載の発明(第1発明)は、溶融可
能な四弗化エチレン共重合樹脂製チューブにおいて、−
30℃以下の急速冷却により、該チューブの結晶化が抑
制され、該チューブ内周面の表面粗さが、最大粗さ表示
にて、1μmRmax以下の表面粗度に設定され四弗化エチ
レン共重合樹脂製チューブであることを特徴とする。
(D) Means for Solving the Problems The invention (first invention) according to claim 1 of the present invention provides a meltable tetrafluoroethylene copolymer resin tube,
Crystallization of the tube is suppressed by rapid cooling at 30 ° C. or less, and the surface roughness of the inner peripheral surface of the tube is set to a surface roughness of 1 μm Rmax or less in the maximum roughness display, and tetrafluoroethylene copolymerization is performed. It is characterized by being a resin tube.

この発明の請求項2記載の発明(第2発明)は、半溶融
状態に加熱処理した四弗化エチレン共重合樹脂製のチュ
ーブ内周面を冷媒により−30℃以下に急速冷却すると
共に、上記チューブ外周面を冷却液にて冷却して製造す
る四弗化エチレン共重合樹脂製チューブの製造方法であ
ることを特徴とする。
The invention according to claim 2 of the present invention (the second invention) rapidly cools the inner peripheral surface of a tube made of a tetrafluoroethylene copolymer resin heat-treated in a semi-molten state to -30 ° C or less with a refrigerant, and It is characterized in that it is a method for producing a tetrafluoroethylene copolymer resin tube produced by cooling the outer peripheral surface of the tube with a cooling liquid.

(ホ)作 用 この発明の四弗化エチレン共重合樹脂製チューブの製造
方法は、押出し機から押出される半溶融状態のチュー
ブ、またはヒータ等により再加熱された半溶融状態のチ
ューブの内周面を、液体窒素やフロンガス等の冷媒によ
り−30℃以下に急速冷却すると共に、上述のチューブ
外周面を冷却液にて冷却し、チューブ全体を急速に冷却
することで、非結晶状態に溶融された該チューブの内周
面が急速に凝固して結晶化が抑制され、チューブ内周面
をアモルファス状態と成すことができて、チューブの内
周面に発生する微小凹凸が抑えられる。
(E) Operation The method for producing a tetrafluoroethylene copolymer resin tube according to the present invention is a semi-molten tube extruded from an extruder, or an inner circumference of a semi-molten tube reheated by a heater or the like. The surface is rapidly cooled to −30 ° C. or lower with a refrigerant such as liquid nitrogen or CFC gas, and the outer peripheral surface of the tube is cooled with a cooling liquid to rapidly cool the entire tube, thereby being melted in an amorphous state. Further, the inner peripheral surface of the tube is rapidly solidified to suppress crystallization, the inner peripheral surface of the tube can be made into an amorphous state, and minute irregularities generated on the inner peripheral surface of the tube can be suppressed.

そして得られた該チューブは、チューブ内周面の表面粗
さが1μmRmax以下の表面粗度になることが判明した。
The obtained tube was found to have a surface roughness of 1 μm Rmax or less on the inner peripheral surface of the tube.

(ヘ)発明の効果 この発明によれば、半溶融状態に加熱処理されたチュー
ブの内周面を冷媒により−30℃以下に急速冷却すると
共に、上記チューブ外周面を冷却液にて拡径状態に維持
して冷却し、チューブの全体を急速冷却するので、非結
晶状態に溶融されたチューブ内周面の結晶化が抑制さ
れ、チューブ内周面をアモルファス状態に形成すること
ができ、従来例のようにチューブを外周面側からのみ冷
却処理するよりも、チューブの内周面側に発生する表面
凹凸が減少し、平滑で良好な表面粗さを有する四弗化エ
チレン共重合樹脂製チューブを製造することができる。
(F) Effect of the Invention According to the present invention, the inner peripheral surface of the tube heat-treated in a semi-molten state is rapidly cooled to −30 ° C. or less with a refrigerant, and the outer peripheral surface of the tube is expanded with a cooling liquid. Since the entire tube is rapidly cooled while maintaining the temperature at 1, the crystallization of the tube inner peripheral surface melted in an amorphous state is suppressed, and the tube inner peripheral surface can be formed in an amorphous state. Compared to cooling the tube only from the outer peripheral surface side, the surface irregularities generated on the inner peripheral surface side of the tube are reduced, and a tube made of tetrafluoroethylene copolymer resin having a smooth and good surface roughness is used. It can be manufactured.

しかも、四弗化エチレン共重合樹脂製チューブの内周面
は平滑で成形しているので、チューブの内周面に沿って
流動する流体が整流され、流体に対する輸送抵抗が減少
して輸送が円滑に行えると共に、該チューブ全体の肉厚
が均一であるため耐久性が向上し、漏洩の原因となる亀
裂やピンホール等ができ難く、極めて高いクリーン度
(例えば、 class1レベル)を要求される流体の輸送に
適用することができる。
Moreover, since the inner peripheral surface of the tube made of tetrafluoroethylene copolymer resin is formed smooth, the fluid flowing along the inner peripheral surface of the tube is rectified, the transport resistance against the fluid is reduced, and the transportation is smooth. In addition to being able to do well, the fluid is required to have an extremely high degree of cleanliness (for example, class 1 level) because the tube has a uniform wall thickness and durability is improved, cracks and pinholes that cause leakage are difficult to form. Can be applied to the transportation of.

(ト)実施例 この発明の一実施例を以下図面に基づいて詳述する。(G) Embodiment One embodiment of the present invention will be described in detail below with reference to the drawings.

図面は押出し機を用いて製造する四弗化エチレン共重合
樹脂製チューブの製造方法を示し、この四弗化エチレン
共重合樹脂製チューブ1は、例えば、PFA、FEP、
ETFE等の四弗化エチレン共重合樹脂を主原料にして
形成され、ペレット状の樹脂原料を押出し機2の加熱シ
リンダ3内に投入して混練し、この押出し機2から連続
的に押出される半溶融状態のチューブ1bを、サイジン
グダイ4により所定の外径寸法に縮径しつつ、半溶融状
態のチューブ1bの内周面を液化窒素やフロンガス等の
冷媒Cにより−30℃以下に急速冷却し、かつ、チュー
ブ1bの外周面を冷却槽5の冷却液Wに浸漬して冷却処
理すると共に、チューブ1bの冷却側端部を一定の牽引
速度で引張りながら製造する。
The drawings show a method for producing a tetrafluoroethylene copolymer resin tube produced by using an extruder. The tetrafluoroethylene copolymer resin tube 1 is, for example, PFA, FEP,
It is formed by using tetrafluoroethylene copolymer resin such as ETFE as a main raw material, and the pellet-shaped resin raw material is put into the heating cylinder 3 of the extruder 2 to be kneaded and continuously extruded from the extruder 2. The inner peripheral surface of the semi-molten tube 1b is rapidly cooled to −30 ° C. or less by a refrigerant C such as liquefied nitrogen or chlorofluorocarbon while reducing the diameter of the semi-molten tube 1b to a predetermined outer diameter by a sizing die 4. In addition, the outer peripheral surface of the tube 1b is immersed in the cooling liquid W in the cooling tank 5 for cooling treatment, and the cooling side end of the tube 1b is pulled while being pulled at a constant pulling speed.

上述の加熱シリンダ3の押出し側端部にはクロスヘッド
6を連設しており、このクロスヘッド6は、押出し方向
に沿って順次小径となるように形成したL字形の流動通
路7の大径側通路7aを、加熱シリンダ3の押出し側端
部に形成した押出し口3aと連通し、この流動通路7の
小径側通路7bを、クロスヘッド6の前面側に配設した
サイジングダイ4の縮径孔4aに向けて開放している。
A cross head 6 is continuously provided at the extruding side end of the heating cylinder 3 described above. The cross head 6 has a large diameter of an L-shaped flow passage 7 formed so as to have a gradually decreasing diameter along the extruding direction. The side passage 7a communicates with the extrusion port 3a formed at the extrusion side end of the heating cylinder 3, and the small diameter side passage 7b of the flow passage 7 is reduced in diameter of the sizing die 4 arranged on the front side of the crosshead 6. It is open toward the hole 4a.

上述の小径側通路7bの中心部には、この小径側通路7
bよりも長尺に形成したガイド管8を挿通しており、こ
のガイド管8の先端部は小径側通路7bの開口側に露出
し、基端部はクロスヘッド6の後面側に突出すると共
に、このガイド管8の基端部は閉栓部材9を嵌着して閉
鎖している。
At the center of the small diameter side passage 7b, the small diameter side passage 7b is formed.
A guide tube 8 formed to be longer than b is inserted, the tip end of this guide tube 8 is exposed to the opening side of the small diameter side passage 7b, and the base end thereof projects to the rear surface side of the crosshead 6 and A stopper member 9 is fitted and closed at the base end of the guide tube 8.

さらに、上述のガイド管8の中心部には、このガイド管
8よりも長尺に形成した冷媒供給管10を挿通してお
り、この冷媒供給管10の先端部は、クロスヘッド6の
前面側に突出してサイジングダイ4の中央部に形成した
縮径孔4aの中心部に挿通すると共に、この縮径孔4a
の中間部に保持している。
Further, a refrigerant supply pipe 10 formed to be longer than the guide pipe 8 is inserted through the central portion of the guide pipe 8 described above, and the tip end portion of the refrigerant supply pipe 10 is located on the front side of the crosshead 6. The reduced diameter hole 4a is inserted into the central portion of the reduced diameter hole 4a formed in the central portion of the sizing die 4 by projecting to
Holds in the middle part of.

一方、この冷媒供給管10の基端部は、ガイド管8の基
端部に固定した閉栓部材9を貫通すると共に、バルブ1
1を介して液化窒素やフロンガス等の冷媒Cを所定量充
填したタンク12に接続している。
On the other hand, the base end portion of the refrigerant supply pipe 10 penetrates the stopper member 9 fixed to the base end portion of the guide pipe 8, and the valve 1
1 is connected to a tank 12 filled with a predetermined amount of a refrigerant C such as liquefied nitrogen or CFC gas.

前述のサイジングダイ4は、直列に配設したダイ13,
13の外周部をダイカバー14により囲繞して、これら
各ダイ13,13の外周面とダイカバー14の内周面と
の間に冷却室15,15をそれぞれ形成し、かつ、これ
ら各ダイ13,13の間にスペーサ16を介在して負圧
室17を形成している。
The sizing die 4 is the die 13 arranged in series,
The outer peripheral portion of 13 is surrounded by a die cover 14, cooling chambers 15 and 15 are formed between the outer peripheral surfaces of the respective dies 13 and 13 and the inner peripheral surface of the die cover 14, and the respective dies 13 and 13 are formed. A negative pressure chamber 17 is formed with a spacer 16 interposed therebetween.

上述のダイカバー14の外周面には、各冷却室15,1
5と連通して冷却水等の冷却液Wを供給する各供給孔1
4a,14aと、冷却液Wを排出する各排出孔14b,
14bとを夫々開口し、中間部の負圧室17と連通して
吸気孔14cを開口している。
On the outer peripheral surface of the die cover 14, the cooling chambers 15 and 1 are provided.
Supply holes 1 that communicate with 5 and supply a cooling liquid W such as cooling water
4a, 14a and each discharge hole 14b for discharging the cooling liquid W,
14b, respectively, and communicates with the negative pressure chamber 17 in the middle part to open an intake hole 14c.

すなわち、上述の各供給孔14a,14aを介して各冷
却室15,15に冷却液Wを供給し、チューブ1bの余
熱で加熱される各ダイ13,13を冷却する。
That is, the cooling liquid W is supplied to the cooling chambers 15 and 15 via the supply holes 14a and 14a described above to cool the dies 13 and 13 that are heated by the residual heat of the tube 1b.

一方、吸気孔14cと、スペーサ16に多数開口した通
気孔16aとを介して負圧室17内のエアを吸引し、負
圧室17の負圧により冷却されるチューブ1bを所定の
外径寸法に吸引保持している。
On the other hand, the tube 1b sucked in the negative pressure chamber 17 through the intake hole 14c and the ventilation holes 16a opened in the spacer 16 and cooled by the negative pressure of the negative pressure chamber 17 has a predetermined outer diameter. Holding by suction.

前述のサイジングダイ4のチューブ引取り側には冷却槽
5を連設しており、この冷却槽5には、サイジングダイ
4から引取られるチューブ1bの外周面を完全に浸漬す
る液高さで冷却液Wを貯液している。
A cooling tank 5 is continuously provided on the tube taking side of the above-mentioned sizing die 4, and the outer circumferential surface of the tube 1b taken from the sizing die 4 is cooled in the cooling tank 5 at a liquid height so as to be completely immersed. The liquid W is stored.

図示装置は上記の如く構成するものにして、以下、四弗
化エチレン共重合樹脂製チューブ1の製造方法を説明す
る。
The apparatus shown in the figure is constructed as described above, and the method for producing the tetrafluoroethylene copolymer resin tube 1 will be described below.

まず、押出し機2を駆動して、加熱シリンダ3の押出し
口3aから連続的に押出される溶融樹脂1aを流動通路
7とガイド管8とに沿って移送し、この流動通路7の小
径側通路7bから押出される半溶融状態のチューブ1b
を冷媒供給管10によりガイドして、サイジングダイ4
の縮径孔4aと冷媒供給管10との隙間に圧入する。
First, the extruder 2 is driven to transfer the molten resin 1a continuously extruded from the extrusion port 3a of the heating cylinder 3 along the flow passage 7 and the guide pipe 8, and the small diameter passage of the flow passage 7 is passed. 7b is a semi-molten tube extruded from 7b
Is guided by the refrigerant supply pipe 10, and the sizing die 4
Is press-fitted into the gap between the reduced diameter hole 4a and the refrigerant supply pipe 10.

次に、サイジングダイ4の縮径孔4aにより半溶融状態
のチューブ1bを所定の外径寸法に縮径成形し、同時
に、バルブ11を開放して、タンク12内に充填された
液化窒素やフロンガス等の冷媒Cを冷媒供給管10に供
給し、この冷媒供給管10の先端部より勢いよく吹出さ
れる冷媒Cにより、非結晶状態に溶融された半溶融状態
のチューブ1bの内周面を−30℃以下に急速冷却する
ことで、非結晶状態のチューブ1bの内周面は急速に凝
固して結晶化が抑制され、チューブ1bの内周面をアモ
ルファス(amorphous )状態と成すことができて、チュ
ーブ1bの内周面に発生する表面凹凸が抑えられ、内周
面の最大表面粗さは1μmRmax以下であって、より好ま
しくは0.35μmRmax以下にすることもでき、チュー
ブ1bの内周面は平滑で良好な表面粗さに形成される。
Next, the semi-molten tube 1b is reduced in diameter to a predetermined outer diameter by the reduced diameter hole 4a of the sizing die 4, and at the same time, the valve 11 is opened to fill the tank 12 with liquefied nitrogen or CFC gas. A refrigerant C such as the above is supplied to the refrigerant supply pipe 10, and the inner peripheral surface of the semi-molten tube 1b melted in an amorphous state is cooled by the refrigerant C blown out vigorously from the tip of the refrigerant supply pipe 10. By rapidly cooling below 30 ° C, the inner peripheral surface of the non-crystalline tube 1b is rapidly solidified and crystallization is suppressed, and the inner peripheral surface of the tube 1b can be made into an amorphous state. The surface irregularities generated on the inner peripheral surface of the tube 1b are suppressed, and the maximum surface roughness of the inner peripheral surface is 1 μmRmax or less, more preferably 0.35 μmRmax or less. Is smooth and good It is formed with a smooth surface roughness.

次に、冷媒Cにより冷却処理されたチューブ1bを冷却
槽5の冷却液W中に浸漬して、このチューブ1bの外周
面を冷却処理しつつ、チューブ1bの冷却側端部を一対
の挾持ローラ等(図示省略)により一定の牽引速度で引
張りながら製造する。
Next, the tube 1b cooled by the refrigerant C is immersed in the cooling liquid W of the cooling tank 5 to cool the outer peripheral surface of the tube 1b, while the cooling side end of the tube 1b is held by a pair of holding rollers. Etc. (not shown), while pulling at a constant pulling speed.

このように押出し機2から押出される半溶融状態のチュ
ーブ1bの内周面を、液化窒素やフロンガス等の冷媒C
により−30℃以下に急速冷却すると共に、上述のチュ
ーブ1bの外周面を冷却液にて冷却するので、非結晶状
態に溶融されたチューブ1bの内周面の結晶化が抑制さ
れ、チューブ1b内周面をアモルファス状態と成すこと
ができて、チューブ1bの内周面側に発生する表面凹凸
が減少し、平滑で良好な表面粗さを有する四弗化エチレ
ン共重合樹脂製チューブ1を製造することができる。
In this way, the inner peripheral surface of the semi-molten tube 1b extruded from the extruder 2 is provided with a refrigerant C such as liquefied nitrogen or CFC gas.
In this way, the outer peripheral surface of the tube 1b is cooled with a cooling liquid as well as being rapidly cooled to −30 ° C. or less, crystallization of the inner peripheral surface of the tube 1b melted in an amorphous state is suppressed, and the inside of the tube 1b is suppressed. A tube 1 made of an ethylene tetrafluoride copolymer resin, which has a smooth peripheral surface and is capable of forming an amorphous state, reduces surface irregularities generated on the inner peripheral surface side of the tube 1b, and has a good surface roughness. be able to.

しかも、四弗化エチレン共重合樹脂製チューブ1の内周
面は平滑に成形されているので、四弗化エチレン共重合
樹脂製チューブ1の内周面に沿って流動する流体が整流
され、流体に対する輸送抵抗が減少して輸送が平滑に行
えると共に、四弗化エチレン共重合樹脂製チューブ1全
体の肉厚が均一であるため耐久性が向上し、漏洩の原因
となる亀裂やピンホール等ができ難く、高いクリーン度
を要求される流体の輸送に適用することができる。
Moreover, since the inner peripheral surface of the tetrafluoroethylene copolymer resin tube 1 is formed smooth, the fluid flowing along the inner peripheral surface of the tetrafluoroethylene copolymer resin tube 1 is rectified, The transport resistance is reduced and the transport is smooth, and since the thickness of the entire tube 1 made of tetrafluoroethylene copolymer resin is uniform, the durability is improved and cracks and pinholes that cause leakage are generated. It is difficult to do and can be applied to transportation of fluids that require high cleanliness.

なお、この発明は、上述の実施例の構成のみに限定され
るものではない。
The present invention is not limited to the configurations of the above-described embodiments.

例えば、成形済みの四弗化エチレン共重合樹脂製チュー
ブ1を再加熱して、半溶融状態にしたチューブ1bの内
周面を液体窒素やフロンガス等の冷媒Cにより−30℃
以下に再冷却すると共に、チューブ1b外周面を冷却液
にて冷却して製造するもよい。
For example, the molded tetrafluoroethylene copolymer resin tube 1 is reheated, and the inner peripheral surface of the semi-molten tube 1b is cooled to −30 ° C. by a refrigerant C such as liquid nitrogen or CFC gas.
The tube 1b may be recooled as follows, and the outer peripheral surface of the tube 1b may be cooled with a cooling liquid to be manufactured.

【図面の簡単な説明】[Brief description of drawings]

図面は四弗化エチレン共重合樹脂製チューブの製造装置
を示す縦断側面図である。 C……冷媒、W……冷却液 1……四弗化エチレン共重合樹脂製チューブ 1b……チューブ
The drawing is a vertical sectional side view showing an apparatus for producing a tetrafluoroethylene copolymer resin tube. C ... Refrigerant, W ... Cooling liquid 1 ... Tetrafluoroethylene copolymer resin tube 1b ... Tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶融可能な四弗化エチレン共重合樹脂製チ
ューブにおいて、−30℃以下の急速冷却により、該チ
ューブの結晶化が抑制され、該チューブ内周面の表面粗
さが、最大粗さ表示にて、1μmRmax以下の表面粗度に
設定されたことを特徴とする 四弗化エチレン共重合樹脂製チューブ。
1. A meltable tube of tetrafluoroethylene copolymer resin, wherein crystallization of the tube is suppressed by rapid cooling at -30 ° C. or less, and the inner peripheral surface of the tube has a maximum surface roughness. A tube made of tetrafluoroethylene copolymer resin, characterized in that the surface roughness is set to 1 μm Rmax or less.
【請求項2】半溶融状態に加熱処理した四弗化エチレン
共重合樹脂製のチューブ内周面を冷媒により−30℃以
下に急速冷却すると共に、上記チューブ外周面を冷却液
にて冷却して製造する 四弗化エチレン共重合樹脂製チューブの製造方法。
2. An inner peripheral surface of a tube made of a tetrafluoroethylene copolymer resin heat-treated in a semi-molten state is rapidly cooled to −30 ° C. or lower with a refrigerant, and an outer peripheral surface of the tube is cooled with a cooling liquid. Method for producing a tube made of tetrafluoroethylene copolymer resin.
JP1181580A 1989-07-12 1989-07-12 Tube made of tetrafluoroethylene copolymer resin and method for producing the same Expired - Lifetime JPH0637060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181580A JPH0637060B2 (en) 1989-07-12 1989-07-12 Tube made of tetrafluoroethylene copolymer resin and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181580A JPH0637060B2 (en) 1989-07-12 1989-07-12 Tube made of tetrafluoroethylene copolymer resin and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0343215A JPH0343215A (en) 1991-02-25
JPH0637060B2 true JPH0637060B2 (en) 1994-05-18

Family

ID=16103294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181580A Expired - Lifetime JPH0637060B2 (en) 1989-07-12 1989-07-12 Tube made of tetrafluoroethylene copolymer resin and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0637060B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051104B3 (en) * 2006-10-25 2008-01-10 Inoex Gmbh Extruder for hollow profiles made from thermoplastics comprises extruder head fitted with mandrel and calibration, mandrel containing turbulence chamber with cold air outlet which connects with cooling pipe extending into calibration unit
US20220349500A1 (en) * 2019-08-30 2022-11-03 Nissei Electric Co., Ltd. Heat Shrink Tube and Method for Forming Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140816A (en) * 1985-12-13 1987-06-24 Sekisui Chem Co Ltd Manufacture of theremoplastic resin pipe and device therefor

Also Published As

Publication number Publication date
JPH0343215A (en) 1991-02-25

Similar Documents

Publication Publication Date Title
US3920782A (en) Sharkskin
US4663107A (en) Method for the production of thermoplastic tubes
US4088724A (en) External sizing and cooling of extruded tubular profiles of thermoplastic material
US3546745A (en) Extrudate sizing sleeve
JPH09207200A (en) Manufacture of thick wall pipe of polyethylene
JPS5827725A (en) Blow formation
WO1990002644A1 (en) Method of pipe manufacture
KR100936729B1 (en) Longitudinal orientation of a tubular themoplastic film
US4115047A (en) Apparatus for quenching blown films
US3522337A (en) Method and apparatus for contacting the interior surface of tubular articles
US2863172A (en) Apparatus for production of films
US3382220A (en) Transparent linear polymers
KR102264236B1 (en) Apparatus for manufacturing large diameter synthetic resin pipe and large diameter synthetic resin pipe prepared by using the same
JPH0637060B2 (en) Tube made of tetrafluoroethylene copolymer resin and method for producing the same
US3784345A (en) Apparatus for the extrusion of hollow articles
JPS62255114A (en) Extrusion molding pipe and manufacture of said pipe
US4683094A (en) Process for producing oriented polyolefin films with enhanced physical properties
US3532780A (en) Method for producing a tubular film or tubes of thermoplastic resin
US3385918A (en) Extrusion process and apparatus for isotactic polypropylene
JPS5924633A (en) Manufacture of ultra-high-molecular-weight polyethylene pipe and pipe molding die
JPH0528168B2 (en)
EP0149335A2 (en) Apparatus and method for extruding polymer melts
US3302241A (en) Apparatus for preparation of plastic tubes
TWI250931B (en) Internal mandrel
JP3862589B2 (en) Optical glass outflow device and method of manufacturing optical glass block