JPH0636364U - Cooling mechanism for outer-rotor type high-speed rotating electric machine - Google Patents

Cooling mechanism for outer-rotor type high-speed rotating electric machine

Info

Publication number
JPH0636364U
JPH0636364U JP7719092U JP7719092U JPH0636364U JP H0636364 U JPH0636364 U JP H0636364U JP 7719092 U JP7719092 U JP 7719092U JP 7719092 U JP7719092 U JP 7719092U JP H0636364 U JPH0636364 U JP H0636364U
Authority
JP
Japan
Prior art keywords
fixed shaft
rotor
electric machine
cooling
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7719092U
Other languages
Japanese (ja)
Inventor
忠信 當山
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP7719092U priority Critical patent/JPH0636364U/en
Publication of JPH0636364U publication Critical patent/JPH0636364U/en
Pending legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

(57)【要約】 【目的】 アウタ−ロ−タ型高速回転電機の冷却効率を
向上して使用寿命を延長し、且つ機械加工が容易で冷却
水に対し流体抵抗の少ない冷却機構を提供する。 【構成】 ステ−タ4の固定軸自由端側の外表面16に
断面が半円形の螺旋状の溝17を設け、この外表面にス
リ−ブ23を外嵌し螺旋状の冷却水通路を形成して、冷
却水の受熱面積が大きく流体抵抗も少なく、さらに機械
加工も容易な構造とした構成である。
(57) [Abstract] [Purpose] To provide a cooling mechanism that improves the cooling efficiency of an outer-rotor high-speed rotating electric machine, prolongs its service life, is easy to machine, and has low fluid resistance to cooling water. . [Structure] A spiral groove 17 having a semicircular cross section is provided on an outer surface 16 of a free end side of a fixed shaft of a stator 4, and a sleeve 23 is externally fitted to the outer surface to form a spiral cooling water passage. The structure is such that it has a large heat-receiving area for cooling water, a small fluid resistance, and is easy to machine.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、アウタ−ロ−タ型高速回転電機に関し、特にアウタ−ロ−タ型高 速回転電機の改良された冷却機構に関する。 The present invention relates to an outer rotor type high speed rotating electric machine, and more particularly to an improved cooling mechanism for an outer rotor type high speed rotating electric machine.

【0002】[0002]

【従来の技術】[Prior art]

図3は、ロ−タが回転電機の外側に配置されて回転するアウタ−ロ−タ型高速 回転電機の従来の例としてのアウタ−ロ−タスピンドルモ−タの部分切断正面図 であり、図4(A)は、図3の断面側面図であり、図4(B)は図4(A)のB −B断面図であり、これらの図を参照してその構造の概略を説明する。 固定軸1の自由端部側の外周に固定された鉄心2と、この鉄心の溝に挿入され た複数個のコイル3とを有するステ−タ4があり、そのステ−タの外周を囲む形 で複数個のマグネット5を有するロ−タ6の自由端部側が軸方向にコイル3を越 えて外方に延長され、固定軸1とは軸心が同一で固定軸1の軸方向外側延長線上 で回転軸となるスピンドル6’を形成している。 このロ−タ6には、その外側に配置されてスピンドル側に端部フランジ7を、 反対側に軸受フランジ8を有するケ−シング9内に収納され、軸受フランジ8の 軸方向外側に隣接して固定軸1を支持固定している支持フランジ10と、更にそ の軸方向外側に端部フランジ11が備えられている。 FIG. 3 is a partially cut front view of an outer rotor spindle motor as a conventional example of an outer rotor type high speed rotating electric machine in which the rotor is arranged outside the rotating electric machine and rotates. 4A is a sectional side view of FIG. 3, and FIG. 4B is a sectional view taken along line BB of FIG. 4A. The outline of the structure will be described with reference to these drawings. There is a stator 4 having an iron core 2 fixed to the outer periphery of the fixed shaft 1 on the free end side, and a plurality of coils 3 inserted in the grooves of the iron core. The stator 4 has a shape surrounding the outer periphery of the stator. The free end side of the rotor 6 having a plurality of magnets 5 is extended outward in the axial direction beyond the coil 3, and the axis is the same as the fixed shaft 1, and the axially outward extension line of the fixed shaft 1 To form a spindle 6'as a rotation axis. The rotor 6 is housed in a casing 9 having an end flange 7 on the spindle side and a bearing flange 8 on the opposite side, which is arranged on the outer side of the rotor 6, and is adjacent to the outer side of the bearing flange 8 in the axial direction. A support flange 10 for supporting and fixing the fixed shaft 1 is provided, and an end flange 11 is further provided on the outer side in the axial direction.

【0003】 ロ−タ6は高速回転するので、この従来例では、いわゆるティルティングパッ ド形軸受として知られる部分円弧静圧気体軸受が使用され、図3と図4の(A) と(B)に示すように、ロ−タ6とケ−シング9の間の隙間内には円周方向に分 割され断面が円弧状の3個のパッド12,13,14が、それぞれ図示されてい ない3個のピボットにより揺動可能に支持されているが、これらのピボットは、 図3で紙面に直角な垂直面OXと、このOXから、左方及び右方へそれぞれ角度 130度の傾角で、スピンドルモ−タの軸線O−Oを含む平面OY,OZとケ− シング9の内表面上に中心が置かれている。 これらの平面OX,OY,OZに沿って図3と、図4の(A)及び(B)に示 すように、パッド12,13,14の長手方向両端付近に半径方向の内方に向け られた高圧空気噴出口12aと12b、13aと13b、14aと14bが配置 され、また端部フランジ7及び軸受側フランジ8には軸方向内方に指向されたス ラスト方向高圧空気噴出口7a〜7c,8a〜8cが設けられ、この高圧空気は 端部フランジ11の円周方向に設けられた高圧空気入口11a〜11cから、そ れぞれの通路Pを通って供給され空気軸受として機能する。Since the rotor 6 rotates at a high speed, in this conventional example, a partial arc static pressure gas bearing known as a so-called tilting pad type bearing is used, and the parts (A) and (B) of FIGS. 3 and 4 are used. ), Three pads 12, 13, 14 divided in the circumferential direction and having an arc-shaped cross section are not shown in the gap between the rotor 6 and the casing 9, respectively. It is swingably supported by three pivots, and these pivots are a vertical plane OX perpendicular to the paper surface in FIG. 3 and an inclination angle of 130 degrees from this OX to the left and right, respectively. Centers are placed on planes OY and OZ including the axis OO of the spindle motor and the inner surface of the casing 9. Along these planes OX, OY, and OZ, as shown in FIGS. 3 and 4A and 4B, the pads 12, 13, and 14 are directed inward in the radial direction near both ends in the longitudinal direction. High pressure air jets 12a and 12b, 13a and 13b, 14a and 14b are disposed, and the end flange 7 and the bearing side flange 8 are axially inwardly directed in the thrust direction high pressure air jets 7a to. 7c and 8a to 8c are provided, and this high pressure air is supplied from high pressure air inlets 11a to 11c provided in the circumferential direction of the end flange 11 through the respective passages P and functions as an air bearing. .

【0004】 一方、このアウタ−ロ−タ型高速回転電機の冷却機構は、固定軸1に図4(A )および(B)に示すように、軸線方向の両側にそれぞれ1本の比較的小口径の 長孔1aと、軸線を挟んで上下にそれぞれ1本の比較的大口径の長孔1bとが、 固定軸1の自由端部の近くに設けられた連絡室1cにより連通されるように設置 されて、軸受側の端部フランジ11に水平に設けられた2個の冷却水入口11d から流入する冷却水は、長孔1a、この長孔1aの終端の連絡室1c、長孔1b を通り支持フランジ10内で固定軸1の外周に設けられた空洞部10aを経て、 端部フランジ11に設けられた流出口11eから外部配管を介して熱交換器、ポ ンプなどへと循環する。On the other hand, as shown in FIGS. 4A and 4B, the cooling mechanism of the outer rotor type high-speed rotating electric machine has a relatively small one on each side in the axial direction, as shown in FIGS. A long hole 1a having a bore and a long hole 1b having a relatively large bore, one above and one below the axis, are connected to each other by a communication chamber 1c provided near the free end of the fixed shaft 1. The cooling water that is installed and flows in from the two cooling water inlets 11d provided horizontally on the end flange 11 on the bearing side is provided with the long hole 1a, the communication chamber 1c at the end of the long hole 1a, and the long hole 1b. After passing through the hollow portion 10a provided on the outer periphery of the fixed shaft 1 in the passage support flange 10, the air is circulated from the outflow port 11e provided in the end flange 11 to the heat exchanger, pump, etc. through the external pipe.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、このアウタ−ロ−タ型回転電機は通常高速回転されるため、前 記の空気軸受として供給される空気の流れは軸受としての機能には十分であって も、冷却作用としては不十分で、また前述した冷却水が循環する流路は固定軸1 の内部に限られるので、ステ−タ4や、さらにその外側のアウタ−ロ−タへの冷 却効果は十分でないため、モ−タは運転中に高温になり寿命が短かいトイウ問題 があった、そのため冷却構造部の冷却効率の向上が得られ、しかも機械加工が比 較容易で流体抵抗が少ない冷却機構が強く要望されていた。 However, since this outer rotor type rotating electric machine normally rotates at high speed, the flow of the air supplied as the air bearing described above is sufficient for the function as the bearing, but is insufficient for the cooling action. In addition, since the flow path through which the above-mentioned cooling water circulates is limited to the inside of the fixed shaft 1, the cooling effect to the stator 4 and the outer rotor outside thereof is not sufficient. However, there is a problem that the cooling system becomes hot during operation and its life is short.Therefore, there is a strong demand for a cooling mechanism that can improve the cooling efficiency of the cooling structure, is easy to machine, and has low fluid resistance. It was

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案では、ステ−タの固定軸の自由端部側外表面に螺旋形で半円形断面を有 する溝を形成して、この前記螺旋形溝の山部外面を覆う薄肉のスリ−ブを外嵌し て、そのスリ−ブの外側にステ−タの鉄心を取り付け、この螺旋形溝に沿って冷 却水の水路を形成する構造とし、冷却水の受熱面積を増大することにより冷却効 率を向上させた。 In the present invention, a spiral groove having a semi-circular cross section is formed on the outer surface of the fixed shaft of the stator at the free end side, and a thin sleeve covering the outer surface of the mountain portion of the spiral groove is formed. The structure is such that the stator core is fitted on the outside of the sleeve and the cooling water channel is formed along this spiral groove.The cooling effect is increased by increasing the heat receiving area of the cooling water. Improved the rate.

【0007】[0007]

【作用】[Action]

固定軸の外表面に形成された半円形断面を有する螺旋形溝と、この外表面に外 嵌されたスリ−ブとにより螺旋形の冷却水通路を形成したので、固定軸の内部へ 軸線方向に流入した冷却水は、固定軸の自由端部近くの連絡室から前記の螺旋形 通路を通って戻り流出するため、冷却水の受熱面積が格段に増大して冷却効率を 向上させ、しかも半円形断面の螺旋形溝は機械加工が容易で、流体抵抗を少くす ることができる。 Since a spiral cooling water passage is formed by a spiral groove having a semicircular cross section formed on the outer surface of the fixed shaft and a sleeve fitted on this outer surface, the spiral cooling water passage is formed in the fixed shaft in the axial direction. Since the cooling water that has flowed into the cooling water flows back from the communication chamber near the free end of the fixed shaft through the spiral passage and flows out, the heat receiving area of the cooling water is significantly increased and cooling efficiency is improved. The spiral groove of circular cross section is easy to machine and can reduce the fluid resistance.

【0008】[0008]

【実施例】【Example】

本考案によるアウタ−ロ−タ型高速回転電機の冷却機構の一実施例を、図3と 図4(A)と(B)に示した従来例と同じく静圧空気軸受を使用したアウタ−ロ −タ型高速回転機に適用した場合について、図1の部分切断正面図と図1のA− A断面側面図である図2に示すが、図3、図4の(A)、(B)に示した部品と 同じ部品には同じ符号を付し以下の説明では重複を避け異なる点のみを述べる。 固定軸1の自由端部側の外表面16に軸方向内方にピッチが進む半円形断面を 有する螺旋形の溝17を形成し、溝17の最初の溝(図で左端部)17aはリン グ状で軸1内の冷却水の流入路である長孔1aと水平孔18で連結され、また最 終(図で右端部)の溝17bもリング状で上,下の軸方向の溝19により固定軸 1の段部1eの切欠き20に連結され、切欠き20は段部1eの外表面にある上 と下の軸方向溝21及び斜行孔22を介して流出用の長孔1bに連結される。 固定軸1の外表面16と軸の段部1eとには、それぞれスリ−ブ23と24が 密接して嵌められ、スリ−ブ23の外側に鉄心2が層状に嵌められている。前記 の段部1eは必ずしも不可欠ではない。 An embodiment of a cooling mechanism for an outer rotor type high speed rotating electric machine according to the present invention is the same as the conventional example shown in FIGS. 3, 4A and 4B, which uses a static pressure air bearing. FIG. 2 is a partially cut front view of FIG. 1 and a side sectional view taken along the line AA of FIG. 1 in the case of being applied to a high-speed rotary machine of FIG. The same parts as the parts shown in are given the same reference numerals, and in the following description, only different points will be described to avoid duplication. On the outer surface 16 of the fixed shaft 1 on the free end side, a spiral groove 17 having a semicircular cross section in which the pitch advances axially inward is formed, and the first groove (left end in the figure) 17a of the groove 17 is a phosphorus It is connected like a long hole 1a, which is a channel for cooling water in the shaft 1, with a horizontal hole 18, and the groove 17b at the end (right end in the figure) is also ring-shaped and has upper and lower axial grooves 19. Is connected to the notch 20 of the step portion 1e of the fixed shaft 1, and the notch 20 is provided on the outer surface of the step portion 1e through the upper and lower axial grooves 21 and the oblique hole 22 for the outflow of the elongated hole 1b. Connected to. Sleeves 23 and 24 are closely fitted to the outer surface 16 of the fixed shaft 1 and the step portion 1e of the shaft, respectively, and the iron core 2 is fitted to the outer side of the sleeve 23 in a layered manner. The step portion 1e is not always essential.

【0009】 冷却水の流れを説明すると、右端面の入口11dに供給された冷却水は、長孔 1a、水平孔18、リング状溝17a、螺旋形の溝17、リング状溝17bと、 溝19、切欠き20、溝21、斜行孔穴22を経て流出用の長孔1bに戻り、空 室10a、出口11eを通過し図示されない配管により熱交換器、ポンプへと循 環される。 なお、上記の説明においては有鉄心形ステータの例を示したが、無鉄心形ステ ータへの応用も全く同一技術思想において可能である。 またロータ側にはマグネットを備えた同期形の例を示しが、2次側バーを備え た誘導形にも適用できるため、マグネットは一般には2次側電機部材として捉ら えることができる。Explaining the flow of the cooling water, the cooling water supplied to the inlet 11d on the right end face includes the elongated hole 1a, the horizontal hole 18, the ring-shaped groove 17a, the spiral groove 17, the ring-shaped groove 17b, and the groove. After passing through the notch 20, the notch 20, the groove 21, and the oblique hole 22 and returning to the elongated hole 1b for outflow, it passes through the chamber 10a and the outlet 11e and is circulated to a heat exchanger and a pump by a pipe (not shown). Although the example of the iron core type stator is shown in the above description, application to a non-iron core type stator is also possible in the completely same technical concept. Also, an example of a synchronous type having a magnet on the rotor side is shown, but since it can be applied to an induction type having a secondary side bar, the magnet can be generally regarded as a secondary side electric member.

【0010】[0010]

【考案の効果】[Effect of device]

固定軸外周の螺旋形の溝とスリ−ブとにより囲まれて形成され断面が螺旋形の 通路は、発熱する鉄心の内側に位置し冷却水の受熱面積が極めて大きいので、従 来のアウタ−ロ−タ型高速回転電機の固定軸に加工容易な半円形断面を有する螺 旋形通路を形成するための機械加工と、僅かな部品を追加するだけで冷却効率を 大巾に向上させ回転機の寿命を延長させ、流体抵抗を少くすることができる。 The spiral passage, which is formed by being surrounded by the spiral groove and the sleeve on the outer circumference of the fixed shaft, is located inside the iron core that generates heat and has a very large area for receiving cooling water. Rotating machine greatly improves cooling efficiency by machining to form a spiral passage having a semicircular cross section on the fixed shaft of a rotor type high-speed rotating electric machine, and by adding a few parts. It is possible to prolong the service life and reduce the fluid resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案によるアウタ−ロ−タ型高速回転電機の
冷却機構の一実施例を示す部分切断正面図である。
FIG. 1 is a partially cutaway front view showing an embodiment of a cooling mechanism of an outer rotor type high speed rotating electric machine according to the present invention.

【図2】図1のA−A断面側面図である。2 is a sectional side view taken along the line AA of FIG.

【図3】従来のアウタ−ロ−タ型高速回転電機の部分切
断正面図である。
FIG. 3 is a partially cut front view of a conventional outer rotor type high speed rotating electric machine.

【図4】本図(A)は、図3に示した従来のアウタ−ロ
−タ型高速回転電機の側断面図であり(B)は本図
(A)のB−B矢視部分断面図である。
4A is a side sectional view of the conventional outer-rotor high-speed rotating electric machine shown in FIG. 3, and FIG. 4B is a partial sectional view taken along the line BB of FIG. It is a figure.

【符号の説明】[Explanation of symbols]

1 固定軸 1a 冷却水の流入路としての長孔 1b 冷却水の第1の流出路としての長孔 3 コイル 4 ステ−タ 5 マグネット(2次側電機部材) 6 ロ−タ 6′ スピンドル 7 端部フランジ 8 軸受フランジ 9 ケ−シング 10 支持フランジ 11 軸受端部フランジ 11d 冷却水の流入口 11e 冷却水の流出口 16 固定軸外周面 17 冷却水の第2の流出路としての半円断面螺旋形溝 23 スリ−ブ 1 Fixed shaft 1a Long hole as an inflow passage for cooling water 1b Long hole as a first outflow passage for cooling water 3 Coil 4 Steer 5 Magnet (secondary side electric member) 6 Rotor 6'Spindle 7 End Part flange 8 Bearing flange 9 Casing 10 Support flange 11 Bearing end flange 11d Cooling water inflow port 11e Cooling water outflow port 16 Fixed shaft outer peripheral surface 17 Semicircular cross-section spiral shape as second outflow passage for cooling water Groove 23 sleeve

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 固定軸と、複数個のコイルを有するステ
−タと、このステ−タの外周を囲んで配置され、内周に
2次側電機部材を有し、前記固定軸と同軸の回転軸とな
るスピンドルを形成するロ−タと、前記スピンドル側の
端部に端部フランジを、その反対の固定端側に軸受フラ
ンジを有し前記ステ−タとロ−タとを内部に収納するケ
−シングと、前記軸受フランジの軸方向外側に隣接して
固定軸を支持固定する支持フランジと、更にその軸方向
外側の軸受端部フランジと、前記ロ−タとケ−シングと
の間に配置され前記ロ−タを軸支する軸受装置と、前記
固定軸を冷却する水冷却装置とを有するアウタ−ロ−タ
型高速回転電機において: 前記水冷却装置は、前記固
定軸の内部に明けられ冷却水を前記固定軸の一方端から
他方端まで導入する流入路と;前記固定軸内に設けられ
前記冷却水を前記流入路と向流に流出させる第1の流出
路と;前記固定軸の軸方向で前記鉄心にほぼ対応する部
分の外周面に形成された螺旋形溝と;この螺旋形溝の山
部の外周と前記鉄心の内周との間に挿入されたスリ−ブ
とを有し;このスリ−ブ内周面と螺旋形溝の間に形成さ
れた螺旋形の第2の流出路と;この第2の流出路を前記
の第1の流出路に連通させる連絡路と;を含んで成り、
前記螺旋形溝は半円形断面を有することを特徴とするア
ウタ−ロ−タ型高速回転電機の冷却機構。
1. A fixed shaft, a stator having a plurality of coils, a stator arranged to surround the outer circumference of the stator, and a secondary electric machine member on the inner circumference thereof, which is coaxial with the fixed shaft. A rotor forming a spindle serving as a rotating shaft, an end flange at the end on the spindle side, and a bearing flange at the fixed end opposite to the rotor, and the stator and the rotor are housed inside. Between the rotor and the casing, a casing for supporting the fixed shaft adjacent to the outer side in the axial direction of the bearing flange, and a bearing end flange on the outer side in the axial direction. In an outer rotor type high-speed rotating electric machine having a bearing device for axially supporting the rotor and a water cooling device for cooling the fixed shaft, the water cooling device is provided inside the fixed shaft. The cooling water that has been opened is introduced from one end to the other end of the fixed shaft. An inlet passage; a first outlet passage provided in the fixed shaft for flowing the cooling water countercurrently to the inlet passage; formed on an outer peripheral surface of a portion substantially corresponding to the iron core in the axial direction of the fixed shaft. And a sleeve inserted between the outer circumference of the mountain portion of the spiral groove and the inner circumference of the iron core; between the inner circumferential surface of the sleeve and the spiral groove A spiral-shaped second outflow passage formed in the above; and a connecting passage that connects this second outflow passage to the above-mentioned first outflow passage;
The cooling mechanism of an outer rotor type high speed rotating electric machine, wherein the spiral groove has a semicircular cross section.
JP7719092U 1992-10-13 1992-10-13 Cooling mechanism for outer-rotor type high-speed rotating electric machine Pending JPH0636364U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7719092U JPH0636364U (en) 1992-10-13 1992-10-13 Cooling mechanism for outer-rotor type high-speed rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7719092U JPH0636364U (en) 1992-10-13 1992-10-13 Cooling mechanism for outer-rotor type high-speed rotating electric machine

Publications (1)

Publication Number Publication Date
JPH0636364U true JPH0636364U (en) 1994-05-13

Family

ID=13626903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7719092U Pending JPH0636364U (en) 1992-10-13 1992-10-13 Cooling mechanism for outer-rotor type high-speed rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0636364U (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102791A2 (en) * 2011-01-28 2012-08-02 Remy Technologies, Llc Electric machine cooling system and method
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
CN103329406A (en) * 2011-01-28 2013-09-25 瑞美技术有限责任公司 Electric machine cooling system and method
WO2012102791A3 (en) * 2011-01-28 2012-10-04 Remy Technologies, Llc Electric machine cooling system and method
WO2012102791A2 (en) * 2011-01-28 2012-08-02 Remy Technologies, Llc Electric machine cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method

Similar Documents

Publication Publication Date Title
JPH0636364U (en) Cooling mechanism for outer-rotor type high-speed rotating electric machine
US20070210655A1 (en) Electric machine with improved water cooling system
JP4576309B2 (en) Rotating electric machine
JP3832434B2 (en) Rotating electric machine
JP2019161798A (en) Cooling structure for rotary electric machine
CN113098183A (en) In-wheel motor and in-wheel motor cooling system
JPH08340653A (en) Rotor of rotating machine
JP2563561Y2 (en) Cooling mechanism for outer rotor type high-speed rotating machine
JPH0382356A (en) Cooling structure of motor
JPH08275421A (en) Rotor structure of dynamo electric machine
JPH0636365U (en) Cooling mechanism for outer-rotor type high-speed rotating electric machine
JPH0584164U (en) Cooling mechanism of outer rotor type high speed induction machine
JP4023031B2 (en) Rotating electric machine
JP2571289Y2 (en) Cooling structure of outer rotor type high speed rotating electric machine
JPH07107705A (en) Cooling mechanism for outer rotor type high-speed electric rotating machine
JPH10229653A (en) Ventilation cooling structure of dynamo-electric machine
JP4637321B2 (en) Rotary joint
JP6911960B1 (en) Rotating machine
JPH09117101A (en) Electric rotating machine
JP6930671B1 (en) Cooling structure of rotary electric machine
JPH04368452A (en) Liquid cooling mechanism of motor
JPS6125747A (en) Spindle cooler for machine tool
JP7075836B2 (en) Motor with internal fan fan
KR100362889B1 (en) A circulaton pump for cooling transformer
JP3465661B2 (en) Rotating electric machine